Color and Radiometry

Digital Image Synthesis Yung-Yu Chuang 10/15/2008

with slides by Pat Hanrahan and Matt Pharr

Radiometry

- Radiometry: study of the propagation of electromagnetic radiation in an environment
- Four key quantities: flux, intensity, irradiance and radiance
- These radiometric quantities are described by their spectral power distribution (SPD)
- Human visible light ranges from 370nm to 730nm

- pbrt is based on radiative transfer: study of the transfer of radiant energy based on radiometric principles and operates at the geometric optics level (light interacts with objects much larger than the light's wavelength)
- It is based on the particle model. Hence, diffraction and interference can't be easily accounted for.

Basic assumptions about light behavior

- Linearity: the combined effect of two inputs is equal to the sum of effects
- Energy conservation: scattering event can't produce more energy than they started with
- Steady state: light is assumed to have reached equilibrium, so its radiance distribution isn't changing over time.
- No polarization: we only care the frequency of light but not other properties (such as phases)
- No fluorescence or phosphorescence: behavior of light at a wavelength or time doesn't affect the behavior of light at other wavelengths or time

Fluorescent materials

Spectral power distribution

- Need a compact, efficient and accurate way to represent functions like these
- Find proper basis functions to map the infinitedimensional space of all possible SPD functions to a low-dimensional space of coefficients
- For example, $B(\lambda)=1$ is a trivial but bad approximation

Color matching experiment

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995

Color matching experiment

Human Photoreceptors

Metamers

tungsten (鎢絲) bulb

television monitor

Primary colors for addition (light sources)

Primary colors for subtraction (reflection)

- Vibration of atoms or electrons due to heat generates electromagnetic radiation as well. If its wavelength is within visible light (>1000K), it generates color as well.
- Color only depends on temperature, but not property of the object.
- Human body radiates IR light under room temperature.
- 2400-2900K: color temperature of incandescent light bulb

- In core/color.*
- Not a plug-in, to use inline for performance
- Spectrum stores a fixed number of samples at a fixed set of wavelengths. Better for smooth functions. Why is this possible? Human vision system

```
#define COLOR_SAMPLE 3 We actually sample RGB
class COREDLL Spectrum {
  public:
```

<arithmetic operations>
private:

```
component-wise
+ - * / comparison...
```

```
float c[COLOR_SAMPLES];
```


- Tristimulus theory: all visible SPDs S can be accurately represented for human observers with three values, x_{λ} , y_{λ} and z_{λ} .
- The basis are the *spectral matching curves*, X(λ), Y(λ) and Z(λ) determined by CIE (國際照明委員會).

$$\begin{aligned} x_{\lambda} &= \int_{\lambda} S(\lambda) X(\lambda) d\lambda \\ y_{\lambda} &= \int_{\lambda} S(\lambda) Y(\lambda) d\lambda \\ z_{\lambda} &= \int_{\lambda} S(\lambda) Z(\lambda) d\lambda \end{aligned}$$

XYZ basis

XYZ color

- Good for representing visible SPD to human observer, but not good for spectral computation.
- A product of two SPD's XYZ values is likely different from the XYZ values of the SPD which is the product of the two original SPDs.
- Hence, we often have to convert our samples (RGB) into XYZ

```
void XYZ(float xyz[3]) const {
    xyz[0] = xyz[1] = xyz[2] = 0.;
    for (int i = 0; i < COLOR_SAMPLES; ++i) {
        xyz[0] += XWeight[i] * c[i];
        xyz[1] += YWeight[i] * c[i];
        xyz[2] += ZWeight[i] * c[i];
    }
}</pre>
```

Conversion between XYZ and RGB


```
float Spectrum::XWeight[COLOR_SAMPLES] = {
  0.412453f, 0.357580f, 0.180423f
};
float Spectrum::YWeight[COLOR_SAMPLES] = {
  0.212671f, 0.715160f, 0.072169f
};
float Spectrum::ZWeight[COLOR_SAMPLES] = {
  0.019334f, 0.119193f, 0.950227f
};
Spectrum FromXYZ(float x, float y, float z) {
  float c[3];
  c[0] = 3.240479f * x + -1.537150f * y + -
  0.498535f * z;
  c[1] = -0.969256f * x + 1.875991f * y +
  0.041556f * z;
  c[2] = 0.055648f * x + -0.204043f * y +
  1.057311f * z;
  return Spectrum(c);
}
```

Conversion between XYZ and RGB

non-directional

Flux: power, (W)

Irradiance: flux density per area, (W/m²)

<u>directional</u>

Intensity: flux density per solid angle Radiance: flux density per solid angle per area

Flux (Φ)

- Radiant flux, power
- Total amount of energy passing through a surface per unit of time (J/s,W)

Irradiance (E)

The solid angle subtended by a surface is defined as the surface area of a unit sphere covered by the surface's projection onto the sphere.

 \Rightarrow sphere has 4π steradians

Intensity (I)

- Flux density per solid angle $I = \frac{d\Phi}{d\omega}$ Intensity describes the directional distribution of light

- Flux density per unit area per solid angle
 - $L = \frac{d\Phi}{d\omega dA^{\perp}}$
- Most frequently used, remains constant along ray.
- All other quantities can be derived from radiance

Ν

 $L(\theta, \varphi)$ $E(\theta, \varphi)$ **∕**R

Radiance Environment Map Irradiance Environment Map

Goal: find out the relationship between $d\omega$ and $d\theta$, $d\phi$

Why? In the integral, $\int_{C^2} f(\omega) d\omega$

 $d\omega$ is uniformly divided. To convert the integral to $\iint f(\theta, \phi) d\theta d\phi$

We have to find the relationship between $d\omega$ and uniformly divided $d\theta$ and $d\phi$.

If the total flux of the light source is Φ , what is the intensity?

