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Geometric classes

Representation and operations for the basic
mathematical constructs like points, vectors
and rays.

Actual scene geometry such as triangles and
spheres are defined in the “Shapes” chapter.

core/geometry.* and core/transform.*

Purposes of learning this chapter

- Get used to the style of learning by tracing source
code

- Get familiar to the basic geometry utilities because
you will use them intensively later on

Coordinate system

Vectors

= Points, vectors and normals are represented
with three floating-point coordinate values: X,
y, z defined under a coordinate system.

= A coordinate system is defined by an origin p,
and a frame (linearly independent vectors v;).
e Avector v=s,v, +..+s. Vv, represents a direction,
while a point p= p,+s,v, +...4S,Vv, represents a
position. They are not freely interchangeable.
e pbrt uses left-handed coordinate system.
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class Vector {
public:

<Vector Public Methods>

float x, y, z;

by no need to use selector (getX) and mutator (setX)
because the design gains nothing and adds bulk to its usage

Provided operations: Vector u, v; float a;
v+u, v-u, V+=u, V-=uU

-V

(v==u)

a*v, v*=a, v/a, v/=a

a=v[i1], v[i]=a




Dot and cross product

Normalization

Dot(v, u) v-u = V||l cos @
AbsDot(v, u)

Cross(v, u)
|v><ul = [V]lulsin &

Vectors v, u, vxu

form a frame

(vxu), =v,u, —v,u,

(qu)y =V,u, —v,u, \3

(vxu), =v,u, —v,u,

a=LengthSquared(v)
a=Length(v)

u=Normalize(Vv) return avector, does not normalize in place

Coordinate system from a vector

Points

Construct a local coordinate system from a vector.

inline void CoordinateSystem(const Vector &vl,
Vector *v2, Vector *v3)
{
if (fabsf(vl.x) > fabsf(vi.y)) {
float invLen = 1.f/sqrtf(vl.x*vl.x + vli.z*v1.z);

*v2 = Vector(-vl.z * invLen, O.f, vl.x * invLen);

}
else {
float invLen = 1.f/sqrtf(vli.y*vli.y + vl.z*v1.z);

*v2 = Vector(0.f, vl.z * invLen, -vl.y * invLen);

}

*v3 = Cross(vl, *v2);

}

Points are different from vectors; given a
coordinate system (p,,V;,V,,V3), @ point p and a
vector v with the same (x,y,z) essentially means
p:(X,y,Z,l)[Vl VZ VS pO]T
v=(X,Y,2,0)[Vy V, V5 Pol”

explicit Vector(const Point &p);

You have to convert a point to a vector explicitly
(i.e. you know what you are doing).

Vector v=p;
M Vector v=Vector(p);




Operations for points

Vector v; Point p, q, r; float a;

/’(1
gq=ptv; %
q=p-v; il
v=q-p; v

%
s
r=p+q; ' 4
a*p; p/a; P

(This is only for the operation ap+pq.)

Distance(p,q);
DistanceSquared(p,q);

Normals

e A surface normal (or just normal) is a vector
that is perpendicular to a surface at a
particular position.

Normals

= Different than vectors in some situations,
particularly when applying transformations.

» Implementation similar to Vector, but a
normal cannot be added to a point and one
cannot take the cross product of two normals.

< Normal is not necessarily normalized.

« Only explicit conversion between Vector and
Normal.

Rays
class Ray {
public:
<Ray Public Methods>
Point o; (They may be changed even if Ray is const.

This ensures that o and d are not modified,

Vector d; but mint and maxt can be.)

float mint, maxt;

float [€ime]; ™~ Initialized as RAY_EPSILON to
}: (for motion blur) avoid self intersection.

Ray r(o, d);
Point p=r(t);




Rays

Ray differentials

Ray(): mint(RAY_EPSILON), maxt(INFINITY),
time(0.7) {}

The reason why we need epsilon. Unfortunately, there
is not a universal epsilon that works for all scenes.

e Subclass of Ray with two auxiliary rays. Used to
estimate the projected area for a small part of
a scene and for antialiasing in Texture.

class RayDifferential : public Ray {
public:
<RayDifferential Methods>
bool hasDifferentials;
Ray rx, ry;
};

Bounding boxes

Bounding volume (slab)

e To avoid intersection test inside a volume if the
ray doesn’t hit the bounding volume.

» Benefits depends on the expense of testing
volume v.s. objects inside and the tightness of
the bounding volume.

e Popular bounding volume, sphere, axis-aligned
bounding box (AABB), oriented bounding box
(OBB) and slab.




Bounding boxes

class BBox {

public:
<BBox Public Methods>
Point pMin, pMax;

}

Point p,q; BBox b; float delta; bool s; two options
BBox(p,q) 7/ no order for p, ¢ of storing
Union(b,p)

= Union(b,b2)

b.Expand(delta)

b.Overlaps(b2)

b.Inside(p)

Volume(b)

b.MaximumExtent() which axis is the longest; for building kd-tree
b.BoundingSphere(c, r) for generating samples
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Transformations

p’=T(p); V’'=T(V)

Only supports transforms with the following

properties:

- Linear: T(av+bu)=aT(v)+bT(u)

- Continuous: T maps the neighbors of p to ones of p’

- Ont-to-one and invertible: T maps p to single p’ and
T-1 exists

Represented with a 4x4 matrix; homogeneous

coordinates are used implicitly

Can be applied to points, vectors and normals

Simplify implementations (e.g. cameras and
shapes)

Transformations

e More convenient, instancing

scene
L d scene graph

primitive primitive

Transformations

class Transform {

private:

ReferenceMatrix4x4> m, minv;

} save space, but can’t be modified after construction
Usually not a problem because transforms are pre-specified
in the scene file and won’t be changed during rendering.

Transform() {m = mlnv = new Matrix4x4; }
Transform(float mat[4][4]);

Transform(const Reference<Matrix4x4> &mat);
Transform(const Reference<Matrix4x4> &mat,

Abetter way oot Reference<Matrix4x4> &minv);
to initialize




Transformations

- Translate(Vector(dx,dy,dz))
e Scale(sx,sy,sz)
- RotateX(a)

1 0 0 dx 1 0 0 0
01 0d 0 cos@ -singd O
T (dx, dy, dz) = IR ©
0 01 dz 0 sin@ cos@ O
0 00 1 0 0 0 1
x 000 R,(0)" =R (6)
S(sx, sy, 57) = 0 sy 00 because R is orthogonal
0 0 sz O
0O 0 0 1

Example for creating common transforris

Transform Translate(const Vector &delta) {
Matrix4x4 *m, *minv;

m = new Matrix4x4(1, 0, O, delta.x,
0, 1, 0, delta.y,
0, 0, 1, delta.z,
o, 0, O, 1);
minv = new Matrix4x4(1, 0, 0, -delta.x,
0, 1, 0, -delta.y,
0, 0, 1, -delta.z,
o0, 0, O, 1);
return Transform(m, minv);

}

Rotation around an arbitrary axis

e Rotate(theta, axis) axis is normalized

Rotation around an arbitrary axis

e Rotate(theta, axis) axis is normalized

a

v p=a(v-a)
D
‘ Vy=axyVv, ‘VZ‘:‘Vl‘

V'=p+vVv,c0s6+V,sind




Rotation around an arbitrary axis

e Rotate(theta, axis) axis is normalized

Rotation around an arbitrary axis

m[O][O]=a.x*a.x + (1l.f-a.x*a.x)*c;
m[1][O0]=a.-x*a.y*(1.f-c) + a.z*s;
m[2][0O]=a.x*a.z*(1.f-c) - a.y*s;

p=a(v-a) p=a(v-a)
Vv \Y
M V,=V-p _M_ o V,=V-p

1

V, =axV, ‘Vz‘ =‘V1‘ . V, =axy, ‘VZ‘ :‘Vl‘

= V'=p+Vv,c0s0+V,sind 0| = V'=p+v,cos0+V,sind
Lo

Look-at Applying transformations

e LookAt(Point &pos, Point look, Vector &up)

up is not necessarily perpendicular to dir
_@ look

-
-

//
Vector dir=Normalize(look-pos);
Vector right=Cross(dir, Normalize(up));

pos Vector newUp=Cross(right,dir);

pos

= Point: g=T(p), T(p.&p UARLIA

use homogeneous coordinates implicitly
e Vector: u=T(v), T(u, &v)
= Normal: treated differently than vectors
because of anisotropic transformations

I \ n-t=n't=0
R () t=0

o (Sn) Mt =0
l n'STMt =0

= Transformshould keep its inverse g™\ = |
= For orthonormal matrix, S=M S=M"




Applying transformations

= BBox: transforms its eight corners and expand
to include all eight points.

BBox Transform: :operator() (const BBox &b) const {
const Transform &M = *this;

BBox ret( M(Point(b.pMin.x, b.pMin.y, b.pMin.z)));
ret = Union(ret,M(Point(b.pMax.x, b.pMin.y, b.pMin.z)));
ret = Union(ret,M(Point(b.pMin.x, b.pMax.y, b.pMin.z)));
ret = Union(ret,M(Point(b.pMin.x, b.pMin.y, b.pMax.z)));
ret = Union(ret,M(Point(b.pMin.x, b.pMax.y, b.pMax.z))):;
ret = Union(ret,M(Point(b.pMax.x, b.pMax.y, b.pMin.z)));
ret = Union(ret,M(Point(b.pMax.x, b.pMin.y, b.pMax.z)));
ret = Union(ret,M(Point(b.pMax.x, b.pMax.y, b.pMax.z)));

return ret;

Differential geometry

DifferentialGeometry: a self-contained
representation for a particular point on a
surface so that all the other operations in pbrt
can be executed without referring to the
original shape. It contains
Position

Parameterization (u,Vv)
Parametric derivatives
(dp/du, dp/dv) A
Surface normal (derived from ( Iy e e
(dp/du)x(dp/dv))
Derivatives of normals
Pointer to shape oy s na




