Geometry and Transformations

Digital Image Synthesis
Yung-Yn Chuang
9/24/2008

with slides by Pat Hanrahan

Geometric classes

Representation and operations for the basic
mathematical constructs like points, vectors
and rays.

Actual scene geometry such as triangles and
spheres are defined in the “Shapes” chapter.

core/geometry.* and core/transform.*

Purposes of learning this chapter

- Get used to the style of learning by tracing source
code

- Get familiar to the basic geometry utilities because
you will use them intensively later on

Coordinate system

Vectors

= Points, vectors and normals are represented
with three floating-point coordinate values: X,
y, z defined under a coordinate system.

= A coordinate system is defined by an origin p,
and a frame (linearly independent vectors v;).
e Avector v=s,v, +..+s. Vv, represents a direction,
while a point p= p,+s,v, +...4S,Vv, represents a
position. They are not freely interchangeable.
e pbrt uses left-handed coordinate system.

y
(0,1,0) Z (0’051)

1,0,0 world space
(0,0.0) ()x p

class Vector {
public:

<Vector Public Methods>

float x, y, z;

by no need to use selector (getX) and mutator (setX)
because the design gains nothing and adds bulk to its usage

Provided operations: Vector u, v; float a;
v+u, v-u, V+=u, V-=uU

-V

(v==u)

a*v, v*=a, v/a, v/=a

a=v[i1], v[i]=a

Dot and cross product

Normalization

Dot(v, u) v-u = V||l cos @
AbsDot(v, u)

Cross(v, u)
|v><ul = [V]lulsin &

Vectors v, u, vxu

form a frame

(vxu), =v,u, —v,u,

(qu)y =V,u, —v,u, \3

(vxu), =v,u, —v,u,

a=LengthSquared(v)
a=Length(v)

u=Normalize(Vv) return avector, does not normalize in place

Coordinate system from a vector

Points

Construct a local coordinate system from a vector.

inline void CoordinateSystem(const Vector &vl,
Vector *v2, Vector *v3)
{
if (fabsf(vl.x) > fabsf(vi.y)) {
float invLen = 1.f/sqrtf(vl.x*vl.x + vli.z*v1.z);

*v2 = Vector(-vl.z * invLen, O.f, vl.x * invLen);

}
else {
float invLen = 1.f/sqrtf(vli.y*vli.y + vl.z*v1.z);

*v2 = Vector(0.f, vl.z * invLen, -vl.y * invLen);

}

*v3 = Cross(vl, *v2);

}

Points are different from vectors; given a
coordinate system (p,,V;,V,,V3), @ point p and a
vector v with the same (x,y,z) essentially means
p:(X,y,Z,l)[Vl VZ VS pO]T
v=(X,Y,2,0)[Vy V, V5 Pol”

explicit Vector(const Point &p);

You have to convert a point to a vector explicitly
(i.e. you know what you are doing).

Vector v=p;
M Vector v=Vector(p);

Operations for points

Vector v; Point p, q, r; float a;

/’(1
gq=ptv; %
q=p-v; il
v=q-p; v

%
s
r=p+q; ' 4
a*p; p/a; P

(This is only for the operation ap+pq.)

Distance(p,q);
DistanceSquared(p,q);

Normals

e A surface normal (or just normal) is a vector
that is perpendicular to a surface at a
particular position.

Normals

= Different than vectors in some situations,
particularly when applying transformations.

» Implementation similar to Vector, but a
normal cannot be added to a point and one
cannot take the cross product of two normals.

< Normal is not necessarily normalized.

« Only explicit conversion between Vector and
Normal.

Rays
class Ray {
public:
<Ray Public Methods>
Point o; (They may be changed even if Ray is const.

This ensures that o and d are not modified,

Vector d; but mint and maxt can be.)

float mint, maxt;

float [€ime]; ™~ Initialized as RAY_EPSILON to
}: (for motion blur) avoid self intersection.

Ray r(o, d);
Point p=r(t);

Rays

Ray differentials

Ray(): mint(RAY_EPSILON), maxt(INFINITY),
time(0.7) {}

The reason why we need epsilon. Unfortunately, there
is not a universal epsilon that works for all scenes.

e Subclass of Ray with two auxiliary rays. Used to
estimate the projected area for a small part of
a scene and for antialiasing in Texture.

class RayDifferential : public Ray {
public:
<RayDifferential Methods>
bool hasDifferentials;
Ray rx, ry;
};

Bounding boxes

Bounding volume (slab)

e To avoid intersection test inside a volume if the
ray doesn’t hit the bounding volume.

» Benefits depends on the expense of testing
volume v.s. objects inside and the tightness of
the bounding volume.

e Popular bounding volume, sphere, axis-aligned
bounding box (AABB), oriented bounding box
(OBB) and slab.

Bounding boxes

class BBox {

public:
<BBox Public Methods>
Point pMin, pMax;

}

Point p,q; BBox b; float delta; bool s; two options
BBox(p,q) 7/ no order for p, ¢ of storing
Union(b,p)

= Union(b,b2)

b.Expand(delta)

b.Overlaps(b2)

b.Inside(p)

Volume(b)

b.MaximumExtent() which axis is the longest; for building kd-tree
b.BoundingSphere(c, r) for generating samples

w w T oTUTT
|

Transformations

p’=T(p); V’'=T(V)

Only supports transforms with the following

properties:

- Linear: T(av+bu)=aT(v)+bT(u)

- Continuous: T maps the neighbors of p to ones of p’

- Ont-to-one and invertible: T maps p to single p’ and
T-1 exists

Represented with a 4x4 matrix; homogeneous

coordinates are used implicitly

Can be applied to points, vectors and normals

Simplify implementations (e.g. cameras and
shapes)

Transformations

e More convenient, instancing

scene
L d scene graph

primitive primitive

Transformations

class Transform {

private:

ReferenceMatrix4x4> m, minv;

} save space, but can’t be modified after construction
Usually not a problem because transforms are pre-specified
in the scene file and won’t be changed during rendering.

Transform() {m = mlnv = new Matrix4x4; }
Transform(float mat[4][4]);

Transform(const Reference<Matrix4x4> &mat);
Transform(const Reference<Matrix4x4> &mat,

Abetter way oot Reference<Matrix4x4> &minv);
to initialize

Transformations

- Translate(Vector(dx,dy,dz))
e Scale(sx,sy,sz)
- RotateX(a)

1 0 0 dx 1 0 0 0
01 0d 0 cos@ -singd O
T (dx, dy, dz) = IR ©
0 01 dz 0 sin@ cos@ O
0 00 1 0 0 0 1
x 000 R,(0)" =R (6)
S(sx, sy, 57) = 0 sy 00 because R is orthogonal
0 0 sz O
0O 0 0 1

Example for creating common transforris

Transform Translate(const Vector &delta) {
Matrix4x4 *m, *minv;

m = new Matrix4x4(1, 0, O, delta.x,
0, 1, 0, delta.y,
0, 0, 1, delta.z,
o, 0, O, 1);
minv = new Matrix4x4(1, 0, 0, -delta.x,
0, 1, 0, -delta.y,
0, 0, 1, -delta.z,
o0, 0, O, 1);
return Transform(m, minv);

}

Rotation around an arbitrary axis

e Rotate(theta, axis) axis is normalized

Rotation around an arbitrary axis

e Rotate(theta, axis) axis is normalized

a

v p=a(v-a)
D
‘ Vy=axyVv, ‘VZ‘:‘Vl‘

V'=p+vVv,c0s6+V,sind

Rotation around an arbitrary axis

e Rotate(theta, axis) axis is normalized

Rotation around an arbitrary axis

m[O][O]=a.x*a.x + (1l.f-a.x*a.x)*c;
m[1][O0]=a.-x*a.y*(1.f-c) + a.z*s;
m[2][0O]=a.x*a.z*(1.f-c) - a.y*s;

p=a(v-a) p=a(v-a)
Vv \Y
M V,=V-p _M_ o V,=V-p

1

V, =axV, ‘Vz‘ =‘V1‘ . V, =axy, ‘VZ‘ :‘Vl‘

= V'=p+Vv,c0s0+V,sind 0| = V'=p+v,cos0+V,sind
Lo

Look-at Applying transformations

e LookAt(Point &pos, Point look, Vector &up)

up is not necessarily perpendicular to dir
_@ look

-
-

//
Vector dir=Normalize(look-pos);
Vector right=Cross(dir, Normalize(up));

pos Vector newUp=Cross(right,dir);

pos

= Point: g=T(p), T(p.&p UARLIA

use homogeneous coordinates implicitly
e Vector: u=T(v), T(u, &v)
= Normal: treated differently than vectors
because of anisotropic transformations

I \ n-t=n't=0
R () t=0

o (Sn) Mt =0
l n'STMt =0

= Transformshould keep its inverse g™\ = |
= For orthonormal matrix, S=M S=M"

Applying transformations

= BBox: transforms its eight corners and expand
to include all eight points.

BBox Transform: :operator() (const BBox &b) const {
const Transform &M = *this;

BBox ret(M(Point(b.pMin.x, b.pMin.y, b.pMin.z)));
ret = Union(ret,M(Point(b.pMax.x, b.pMin.y, b.pMin.z)));
ret = Union(ret,M(Point(b.pMin.x, b.pMax.y, b.pMin.z)));
ret = Union(ret,M(Point(b.pMin.x, b.pMin.y, b.pMax.z)));
ret = Union(ret,M(Point(b.pMin.x, b.pMax.y, b.pMax.z))):;
ret = Union(ret,M(Point(b.pMax.x, b.pMax.y, b.pMin.z)));
ret = Union(ret,M(Point(b.pMax.x, b.pMin.y, b.pMax.z)));
ret = Union(ret,M(Point(b.pMax.x, b.pMax.y, b.pMax.z)));

return ret;

Differential geometry

DifferentialGeometry: a self-contained
representation for a particular point on a
surface so that all the other operations in pbrt
can be executed without referring to the
original shape. It contains
Position

Parameterization (u,Vv)
Parametric derivatives
(dp/du, dp/dv) A
Surface normal (derived from (Iy e e
(dp/du)x(dp/dv))
Derivatives of normals
Pointer to shape oy s na

