
Geometry and Transformations

Digital Image Synthesisg g y
Yung-Yu Chuang
9/24/20089/24/2008

with slides by Pat Hanrahan

Geometric classes

• Representation and operations for the basic
mathematical constructs like points vectors mathematical constructs like points, vectors
and rays.
A t l t h t i l d • Actual scene geometry such as triangles and
spheres are defined in the “Shapes” chapter.

• core/geometry.* and core/transform.*
• Purposes of learning this chapterp g p

– Get used to the style of learning by tracing source
code

– Get familiar to the basic geometry utilities because
you will use them intensively later on

Coordinate system
• Points, vectors and normals are represented

with three floating-point coordinate values: x with three floating point coordinate values: x,
y, z defined under a coordinate system.
A coordinate system is defined by an origin p• A coordinate system is defined by an origin po
and a frame (linearly independent vectors vi).
A di i • A vector v= s1v1 +…+snvn represents a direction,
while a point p= po+s1v1 +…+snvn represents a

i i Th f l i h blposition. They are not freely interchangeable.
• pbrt uses left-handed coordinate system.

y z
(0,1,0) (0,0,1)

ld
x(0,0,0)

(1,0,0) world space

Vectors
class Vector {
public:public:

<Vector Public Methods>
float x y z;float x, y, z;

} no need to use selector (getX) and mutator (setX)
because the design gains nothing and adds bulk to its usage

Provided operations: Vector u, v; float a;
+ +

because the design gains nothing and adds bulk to its usage

v+u, v-u, v+=u, v-=u
-v
()(v==u)
a*v, v*=a, v/a, v/=a
a=v[i], v[i]=a

Dot and cross product
Dot(v, u)
AbsDot(v u)

θcosuvuv =⋅
AbsDot(v, u)
Cross(v, u)

Vectors v u v u

θsinuvuv =×

Vectors v, u, v×u
form a frame u

θ

()
()

yzzyx

uvuvuv
uvuvuv

−=×

−=×

v
θ()

() zyyxz

zxxzy

uvuvuv
uvuvuv

−=×

=×

Normalization
a=LengthSquared(v)
a=Length(v)a=Length(v)
u=Normalize(v) return a vector, does not normalize in place

Coordinate system from a vector

Construct a local coordinate system from a vector.

inline void CoordinateSystem(const Vector &v1,
Vector *v2, Vector *v3) ,)

{
if (fabsf(v1.x) > fabsf(v1.y)) {

fl t i L 1 f/ tf(1 * 1 + 1 * 1)float invLen = 1.f/sqrtf(v1.x*v1.x + v1.z*v1.z);
*v2 = Vector(-v1.z * invLen, 0.f, v1.x * invLen);

}
else {

float invLen = 1.f/sqrtf(v1.y*v1.y + v1.z*v1.z);
*v2 = Vector(0 f v1 z * invLen v1 y * invLen);*v2 = Vector(0.f, v1.z * invLen, -v1.y * invLen);

}
*v3 = Cross(v1, *v2);

}

Points

Points are different from vectors; given a
coordinate system (p v v v) a point p and a coordinate system (p0,v1,v2,v3), a point p and a
vector v with the same (x,y,z) essentially means

(1)[]Tp=(x,y,z,1)[v1 v2 v3 p0]T

v=(x,y,z,0)[v1 v2 v3 p0]T

explicit Vector(const Point &p);p (p);
You have to convert a point to a vector explicitly
(i e you know what you are doing)(i.e. you know what you are doing).

Vector v=p;
Vector v=Vector(p);

Operations for points
Vector v; Point p, q, r; float a;

q
q=p+v;
q=p v;

q

q=p-v;
v=q-p; v

r=p+q;
* / pa*p; p/a; p

(This is only for the operation αp+βq.)

Distance(p,q);
()DistanceSquared(p,q);

Normals

• A surface normal (or just normal) is a vector
that is perpendicular to a surface at a that is perpendicular to a surface at a
particular position.

Normals

• Different than vectors in some situations,
particularly when applying transformationsparticularly when applying transformations.

• Implementation similar to Vector, but a
l t b dd d t i t d normal cannot be added to a point and one

cannot take the cross product of two normals.
• Normal is not necessarily normalized.
• Only explicit conversion between Vector and y p
Normal.

Rays
class Ray {
public:public:
<Ray Public Methods>
Point o; (They may be changed even if Ray is const Point o;
Vector d;
mutable float mint maxt;

(They may be changed even if Ray is const.
This ensures that o and d are not modified,
but mint and maxt can be.)

mutable float mint, maxt;
float time;

} (for motion blur)

Initialized as RAY_EPSILON to
avoid self intersection.};

maxt

(for motion blur) Ray r(o, d);
Point p=r(t);

d
i t

maxt

∞≤≤+= ttt 0)(doro mint)(

Rays
Ray(): mint(RAY_EPSILON), maxt(INFINITY),
time(0.f) {}time(0.f) {}

The reason why we need epsilon. Unfortunately, there
is not a universal epsilon that works for all scenes.is not a universal epsilon that works for all scenes.

Ray differentials

• Subclass of Ray with two auxiliary rays. Used to
estimate the projected area for a small part of estimate the projected area for a small part of
a scene and for antialiasing in Texture.

class RayDifferential : public Ray {
blipublic:
<RayDifferential Methods>
b l h iff i lbool hasDifferentials;
Ray rx, ry;

};

Bounding boxes

• To avoid intersection test inside a volume if the
ray doesn’t hit the bounding volumeray doesn t hit the bounding volume.

• Benefits depends on the expense of testing
l bj t i id d th ti ht f volume v.s. objects inside and the tightness of

the bounding volume.
• Popular bounding volume, sphere, axis-aligned

bounding box (AABB), oriented bounding box
(OBB) and slab.

Bounding volume (slab)

Bounding boxes
class BBox {
public:
<BBox Public Methods>
Point pMin, pMax;

}}

Point p,q; BBox b; float delta; bool s; two options
b = BBox(p,q) // no order for p, q
b = Union(b,p)
b = Union(b,b2)

of storing

b Union(b,b2)
b = b.Expand(delta)
s = b.Overlaps(b2)
s = b.Inside(p)
Volume(b)
b.MaximumExtent() which axis is the longest; for building kd-treeb. a u te t() g ; f g
b.BoundingSphere(c, r) for generating samples

Transformations

• p’=T(p); v’=T(v)
Only supports transforms with the following • Only supports transforms with the following
properties:

Linear: T(av+bu)=aT(v)+bT(u)– Linear: T(av+bu)=aT(v)+bT(u)
– Continuous: T maps the neighbors of p to ones of p’
– Ont-to-one and invertible: T maps p to single p’ and Ont to one and invertible: T maps p to single p and

T-1 exists
• Represented with a 4x4 matrix; homogeneous p ; g

coordinates are used implicitly
• Can be applied to points, vectors and normalspp p ,
• Simplify implementations (e.g. cameras and

shapes)p)

Transformations

• More convenient, instancing

scene
scene graph

i iti i itiprimitive primitive

Transformations
class Transform {
...
private:
Reference<Matrix4x4> m mInv;Reference<Matrix4x4> m, mInv;

} save space, but can’t be modified after construction
Usually not a problem because transforms are pre-specified

T f () { I M t i 4 4 }

Usually not a problem because transforms are pre specified
in the scene file and won’t be changed during rendering.

Transform() {m = mInv = new Matrix4x4; }
Transform(float mat[4][4]);
T f (t R f M t i 4 4 t)Transform(const Reference<Matrix4x4> &mat);
Transform(const Reference<Matrix4x4> &mat,

)A better way const Reference<Matrix4x4> &minv);A better way
to initialize

Transformations

• Translate(Vector(dx,dy,dz))
S l ()• Scale(sx,sy,sz)

• RotateX(a)

⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎛

=
010
001

)(
dy
dx

dzdydxT ⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎛

−
=

0sincos0
0001

)(
θθ

θR

⎟⎟
⎟

⎠
⎜⎜
⎜

⎝

=

1000
100

),,(
dz

dzdydxT

⎟⎟
⎟

⎠
⎜⎜
⎜

⎝

=

1000
0cossin0

)(
θθ

θxR

⎠⎝

⎟
⎟
⎞

⎜
⎜
⎛

000
000sx

⎠⎝

T1)()(θθ xx RR =−

⎟⎟
⎟
⎟

⎜⎜
⎜
⎜=

000
000

),,(
sz

sy
szsysxS because R is orthogonal

⎟
⎠

⎜
⎝ 1000

Example for creating common transforms
Transform Translate(const Vector &delta) {
Matrix4x4 *m *minv;Matrix4x4 *m, *minv;
m = new Matrix4x4(1, 0, 0, delta.x,

0 1 0 delta y0, 1, 0, delta.y,
0, 0, 1, delta.z,
0 0 0 1);0, 0, 0, 1);

minv = new Matrix4x4(1, 0, 0, -delta.x,
0 1 0 d lt0, 1, 0, -delta.y,
0, 0, 1, -delta.z,
0 0 0 1)0, 0, 0, 1);

return Transform(m, minv);
}

Rotation around an arbitrary axis

• Rotate(theta, axis) axis is normalized

a

v
v’

θ

Rotation around an arbitrary axis

• Rotate(theta, axis) axis is normalized

a

v a)a(vp ⋅=

p

v1 pvv1 −=
v’

θ
p v2

12 vav ×= 12 vv =

θθ sincos' 21 vvv ++= p

Rotation around an arbitrary axis

• Rotate(theta, axis) axis is normalized

a)a(vp ⋅=

pvv1 −=M v

12 vav ×= 12 vv =

θθ sincos' 21 vvv ++= p=

Rotation around an arbitrary axis
m[0][0]=a.x*a.x + (1.f-a.x*a.x)*c;
m[1][0]=a x*a y*(1 f-c) + a z*s;m[1][0]=a.x*a.y*(1.f-c) + a.z*s;
m[2][0]=a.x*a.z*(1.f-c) - a.y*s;

a)a(vp ⋅=

pvv1 −=
1

M v

12 vav ×= 12 vv =
1

0

θθ sincos' 21 vvv ++= p0

0
=

0

Look-at
• LookAt(Point &pos, Point look, Vector &up)

up is not necessarily perpendicular to dir
lookup

up is not necessarily perpendicular to dir

Vector dir=Normalize(look-pos);
Vector right=Cross(dir, Normalize(up));

pos
g (, (p))

Vector newUp=Cross(right,dir);
pos

Applying transformations

• Point: q=T(p), T(p,&q)
 h di t i li itl

Point: (p, 1)
Vector: (v, 0)

use homogeneous coordinates implicitly
• Vector: u=T(v), T(u, &v)
• Normal: treated differently than vectors

because of anisotropic transformationsp
0T ==⋅ tntn

() 0'' T =tn
M

() 0T =MtSn
() 0=tn

TT 0TT =MtSn
IMS =T• Transform should keep its inverse
T−= MS• For orthonormal matrix, S=M

Applying transformations

• BBox: transforms its eight corners and expand
to include all eight pointsto include all eight points.

BBox Transform::operator()(const BBox &b) const {
const Transform &M = *this;
BBox ret(M(Point(b.pMin.x, b.pMin.y, b.pMin.z)));
ret = Union(ret,M(Point(b.pMax.x, b.pMin.y, b.pMin.z)));
t U i (t M(P i t(b Mi b M b Mi)))ret = Union(ret,M(Point(b.pMin.x, b.pMax.y, b.pMin.z)));

ret = Union(ret,M(Point(b.pMin.x, b.pMin.y, b.pMax.z)));
ret = Union(ret,M(Point(b.pMin.x, b.pMax.y, b.pMax.z)));
ret = Union(ret M(Point(b pMax x b pMax y b pMin z)));ret = Union(ret,M(Point(b.pMax.x, b.pMax.y, b.pMin.z)));
ret = Union(ret,M(Point(b.pMax.x, b.pMin.y, b.pMax.z)));
ret = Union(ret,M(Point(b.pMax.x, b.pMax.y, b.pMax.z)));
return ret;return ret;

}

Differential geometry

• DifferentialGeometry: a self-contained
representation for a particular point on a representation for a particular point on a
surface so that all the other operations in pbrt
can be executed without referring to the g
original shape. It contains

• Position
• Parameterization (u,v)
• Parametric derivatives

(dp/du, dp/dv)
• Surface normal (derived from

(d /d) (d /d))(dp/du)x(dp/dv))
• Derivatives of normals

P i t t h• Pointer to shape

