Geometry and Transformations

Digital Image Synthesis
Yung-Yu Cbuang
9/24/2008
with slides by Pat Hanraban

Geometric classes

- Representation and operations for the basic mathematical constructs like points, vectors and rays.
- Actual scene geometry such as triangles and spheres are defined in the "Shapes" chapter.
- core/ geometry.* and core/ transform.*
- Purposes of learning this chapter
- Get used to the style of learning by tracing source code
- Get familiar to the basic geometry utilities because you will use them intensively later on

Coordinate system

- Points, vectors and normals are represented with three floating-point coordinate values: x , y, z defined under a coordinate system.
- A coordinate system is defined by an origin p_{0} and a frame (linearly independent vectors v_{i}).
- A vector $\mathrm{v}=\mathrm{s}_{1} \mathrm{v}_{1}+. .+\mathrm{s}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}$ represents a direction, while a point $p=p_{o}+s_{1} v_{1}+. .+s_{n} v_{n}$ represents a position. They are not freely interchangeable.
- pbrt uses left-handed coordinate system.

Vectors

```
class Vector {
    public:
    <Vector Public Methods>
    float x, y, z;
} no need to use selector (getX) and mutator (setX)
        because the design gains nothing and adds bulk to its usage
Provided operations: Vector u, v; float a;
v+u, v-u, v+=u, v-=u
-V
(v==u)
a*v, v*=a, v/a, v/=a
a=v[i], v[i]=a
```


Dot and cross product

$\operatorname{Dot}(\mathbf{v}, \mathbf{u}) \quad v \cdot u=\|v\|\|u\| \cos \theta$ $\operatorname{AbsDot}(v, u)$

Cross(v, u)
$\|v \times u\|=\|v v\| u \| \sin \theta$
Vectors v, u, vxu
form a frame
$(v \times u)_{x}=v_{y} u_{z}-v_{z} u_{y}$
$(v \times u)_{y}=v_{z} u_{x}-v_{x} u_{z}$
$(v \times u)_{z}=v_{x} u_{y}-v_{y} u_{z}$

Normalization

a=LengthSquared(v)
a=Length (v)
$\mathbf{u}=$ Normalize(v) return a vector, does not normalize in place

Coordinate system from a vector

Construct a local coordinate system from a vector.

```
inline void CoordinateSystem(const Vector &v1,
                                    Vector *v2, Vector *v3)
{
    if (fabsf(v1.x) > fabsf(v1.y)) {
    float invLen = 1.f/sqrtf(v1.x*v1.x + v1.z*v1.z);
    *v2 = Vector(-v1.z * invLen, 0.f, v1.x * invLen);
    }
    else {
    float invLen = 1.f/sqrtf(v1.y*v1.y + v1.z*v1.z);
    *v2 = Vector(0.f, v1.z * invLen, -v1.y * invLen);
    }
    *v3 = Cross(v1, *v2);
}
```


Points

Points are different from vectors; given a coordinate system ($\mathrm{p}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$), a point p and a vector v with the same (x, y, z) essentially means

$$
\begin{aligned}
& p=(x, y, z, 1)\left[\begin{array}{llll}
v_{1} & v_{2} & v_{3} & \left.p_{0}\right]^{\top} \\
v=(x, y, z, 0)\left[\begin{array}{llll}
v_{1} & v_{2} & v_{3} & p_{0}
\end{array}\right]^{\top}
\end{array} .\right.
\end{aligned}
$$

explicit Vector(const Point \&p);
You have to convert a point to a vector explicitly
(i.e. you know what you are doing).

区 Vector v=p;
∇ Vector $v=\operatorname{Vector}(p)$;

Operations for points

Vector v; Point p, q, r; float a;

$$
\begin{aligned}
& q=p+v ; \\
& q=p-v ; \\
& v=q-p ;
\end{aligned}
$$

```
r=p+q;
```

a*p; p/a;

(This is only for the operation $\alpha p+\beta q$.)
Distance(p,q);
DistanceSquared(p,q);

Normals

- A surface normal (or just normal) is a vector that is perpendicular to a surface at a particular position.

Normals

- Different than vectors in some situations, particularly when applying transformations.
- Implementation similar to Vector, but a normal cannot be added to a point and one cannot take the cross product of two normals.
- Normal is not necessarily normalized.
- Only explicit conversion between Vector and Normal.

Rays

Rays

Ray(): mint(RAY_EPSILON), maxt(INFINITY), time(0.f) \{\}

The reason why we need epsilon. Unfortunately, there is not a universal epsilon that works for all scenes.

Ray differentials

- Subclass of Ray with two auxiliary rays. Used to estimate the projected area for a small part of a scene and for antialiasing in Texture.
class RayDifferential : public Ray \{ public:
<RayDifferential Methods> bool hasDifferentials; Ray rx, ry;
\};

Bounding boxes

- To avoid intersection test inside a volume if the ray doesn't hit the bounding volume.
- Benefits depends on the expense of testing volume v.s. objects inside and the tightness of the bounding volume.
- Popular bounding volume, sphere, axis-aligned bounding box (AABB), oriented bounding box (OBB) and slab.

$$
\bar{H}{ }^{\prime}
$$

Bounding boxes

```
class BBox {
public:
    <BBox Public Methods>
    Point pMin, pMax;
}
```


Point $p, q ;$ BBox $b ;$ float delta; bool s; two options
$b=\operatorname{BBox}(p, q) \quad / /$ no order for p, q of storing
b $=\operatorname{Union}(b, p)$
b $=$ Union(b,b2)
b = b.Expand(delta)
s = b.Overlaps(b2)
s = b.Inside(p)
Volume(b)
b. MaximumExtent () which axis is the longest; for building kd-tree
b.BoundingSphere(c, r) for generating samples

Transformations

- $p^{\prime}=T(p) ; \quad v^{\prime}=T(v)$
- Only supports transforms with the following properties:
- Linear: $T(a v+b u)=a T(v)+b T(u)$
- Continuous: T maps the neighbors of p to ones of p^{\prime}
- Ont-to-one and invertible: T maps p to single p' and T^{-1} exists
- Represented with a 4×4 matrix; homogeneous coordinates are used implicitly
- Can be applied to points, vectors and normals
- Simplify implementations (e.g. cameras and shapes)

Transformations

- More convenient, instancing

Transformations

class Transform \{

private:
Reference<Matrix4x4> m, mInv;
\} save space, but can't be modified after construction Usually not a problem because transforms are pre-specified in the scene file and won't be changed during rendering.

Transform() \{m = mInv = new Matrix4x4; \}
Transform(float mat[4][4]);
Transform(const Reference<Matrix4x4> \&mat);
Transform(const Reference<Matrix4x4> \&mat,
A better way
to initialize const Reference<Matrix4x4> \&minv);

Transformations

- Translate(Vector(dx, dy,dz))
- Scale(sx,sy,sz)
- RotateX(a)

$$
\begin{array}{ll}
T(d x, d y, d z)=\left(\begin{array}{cccc}
1 & 0 & 0 & d x \\
0 & 1 & 0 & d y \\
0 & 0 & 1 & d z \\
0 & 0 & 0 & 1
\end{array}\right) & R_{x}(\theta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
S(s x, s y, s z)=\left(\begin{array}{cccc}
s x & 0 & 0 & 0 \\
0 & s y & 0 & 0 \\
0 & 0 & s z & 0 \\
0 & 0 & 0 & 1
\end{array}\right) & R_{x}(\theta)^{-1}=R_{x}(\theta)^{\mathrm{T}} \\
\text { because R is orthogonal }
\end{array}
$$

Example for creating common transforms

Transform Translate(const Vector \&delta) \{
Matrix4x4 *m, *minv;
m = new Matrix4x4(1, 0, 0, delta.x, $0,1,0$, delta.y, $0,0,1$, delta.z, 0, 0, 0, 1);
minv = new Matrix4x4(1, 0, 0, -delta.x, $0,1,0,-d e l t a . y$, $0,0,1,-d e l t a . z$, $0,0,0$,
1);
return Transform(m, minv);
\}

Rotation around an arbitrary axis

- Rotate(theta, axis) axis is normalized

Rotation around an arbitrary axis

- Rotate(theta, axis) axis is normalized

$$
\begin{gathered}
\mathbf{p}=\mathbf{a}(\mathbf{v} \cdot \mathbf{a}) \\
\mathbf{v}_{\mathbf{1}}=\mathbf{v}-\mathbf{p} \\
\mathbf{v}_{2}=\mathbf{a} \times \mathbf{v}_{1} \quad\left|\mathbf{v}_{2}\right|=\left|\mathbf{v}_{1}\right| \\
\mathbf{v}^{\prime}=p+\mathbf{v}_{1} \cos \theta+\mathbf{v}_{2} \sin \theta
\end{gathered}
$$

Rotation around an arbitrary axis

- Rotate(theta, axis) axis is normalized

$$
\mathbf{p}=\mathbf{a}(\mathbf{v} \cdot \mathbf{a})
$$

M

$$
\begin{gathered}
\mathbf{v}_{\mathbf{1}}=\mathbf{v}-\mathbf{p} \\
\mathbf{v}_{2}=\mathbf{a} \times \mathbf{v}_{1} \quad\left|\mathbf{v}_{2}\right|=\left|\mathbf{v}_{1}\right| \\
=\quad \mathbf{v}^{\prime}=p+\mathbf{v}_{1} \cos \theta+\mathbf{v}_{2} \sin \theta
\end{gathered}
$$

Rotation around an arbitrary axis

$$
\begin{aligned}
& m[0][0]=a \cdot x^{*} a \cdot x+\left(1 \cdot f-a \cdot x^{*} a \cdot x\right) * c ; \\
& m[1][0]=a \cdot x^{*} a \cdot y^{*}(1 \cdot f-c)+a \cdot z^{*} s ; \\
& m[2][0]=a \cdot x^{*} a \cdot z^{*}(1 \cdot f-c)-a \cdot y^{*} s ;
\end{aligned}
$$

$$
\mathbf{p}=\mathbf{a}(\mathbf{v} \cdot \mathbf{a})
$$

Look-at

- LookAt(Point \&pos, Point look, Vector \&up)
up is not necessarily perpendicular to dir

Applying transformations

- Point: $q=T(p), T(p, \& q)$ use homogeneous coordinates implicitly
- Vector: $u=T(v), ~ T(u, ~ \& v)$
- Normal: treated differently than vectors because of anisotropic transformations

$$
\mathbf{n} \cdot \mathbf{t}=\mathbf{n}^{\mathrm{T}} \mathbf{t}=0
$$

$\left(\mathbf{n}^{\prime}\right)^{\mathrm{T}} \mathbf{t}^{\prime}=0$
$(\mathbf{S n})^{\mathrm{T}} \mathbf{M t}=0$

$$
\mathbf{n}^{\mathrm{T}} \mathbf{S}^{\mathrm{T}} \mathbf{M} \mathbf{t}=0
$$

- Transform should keep its inverse
- For orthonormal matrix, S=M

$$
\begin{aligned}
& \mathbf{S}^{\mathrm{T}} \mathbf{M}=\mathbf{I} \\
& \hline \mathbf{S}=\mathbf{M}^{-\mathrm{T}} \\
& \hline
\end{aligned}
$$

Applying transformations

- BBox: transforms its eight corners and expand to include all eight points.

```
BBox Transform::operator()(const BBox &b) const {
    const Transform &M = *this;
    BBox ret( M(Point(b.pMin.x, b.pMin.y, b.pMin.z)));
    ret = Union(ret,M(Point(b.pMax.x, b.pMin.y, b.pMin.z)));
    ret = Union(ret,M(Point(b.pMin.x, b.pMax.y, b.pMin.z)));
    ret = Union(ret,M(Point(b.pMin.x, b.pMin.y, b.pMax.z)));
    ret = Union(ret,M(Point(b.pMin.x, b.pMax.y, b.pMax.z)));
    ret = Union(ret,M(Point(b.pMax.x, b.pMax.y, b.pMin.z)));
    ret = Union(ret,M(Point(b.pMax.x, b.pMin.y, b.pMax.z)));
    ret = Union(ret,M(Point(b.pMax.x, b.pMax.y, b.pMax.z)));
    return ret;
}
```


Differential geometry

- DifferentialGeometry: a self-contained representation for a particular point on a surface so that all the other operations in pbrt can be executed without referring to the original shape. It contains
- Position
- Parameterization (u,v)
- Parametric derivatives (dp/ du, dp/ dv)
- Surface normal (derived from (dp/ du) $\times(d p / d v)$)
- Derivatives of normals
- Pointer to shape

