All-Frequency Shadows Using Non-linear Wavelet Lighting Approximation

Ren Ng
Stanford

Ravi Ramamoorthi
Columbia

Pat Hanrahan
Stanford

SIGGRAPH 2003
Light on *Stone River* (Goldsworthy)
Lighting Design

From *Frank Gehry Architecture*, Ragheb ed. 2001
Existing Fast Shadow Techniques

We know how to render very hard and very soft shadows

Shadows from point-lights (shadow maps, volumes)

Shadows from smooth lighting (precomputed radiance transfer)

Sen, Cammarano, Hanrahan, 2003

Sloan, Kautz, Snyder 2002
Soft Lighting

Teapot in Grace Cathedral
All-Frequency Lighting

Teapot in Grace Cathedral
Formulation

\[B(x, \omega_0) = \int_\Omega L(x, \omega)V(x, \omega)f(x, \omega, \omega_0)(\omega \cdot n(x))d\omega \]

Geometry relighting: assume diffuse

\[T(x, \omega) = V(x, \omega)f(x, \omega \rightarrow \omega_0)(\omega \cdot n(x)) \]

Image relighting: fix view point

\[T(x, \omega) = V(x, \omega)f(x, \omega \rightarrow \omega_0(x))(\omega \cdot n(x)) \]

\[B(x_i) = \sum_j T(x_i, \omega_j)L(\omega_j) \]

\[B = TL \quad \text{T could include global effects} \]
Relighting as Matrix-Vector Multiply

\[
\begin{bmatrix}
P_1 \\
P_2 \\
P_3 \\
\vdots \\
P_N \\
\end{bmatrix}
=
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM} \\
\end{bmatrix}
\begin{bmatrix}
L_1 \\
L_2 \\
\vdots \\
L_N \\
\end{bmatrix}
\]
Relighting as Matrix-Vector Multiply

\[
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
\begin{bmatrix}
L_1 \\
L_2 \\
\vdots \\
L_N
\end{bmatrix}
\]

Input Lighting (Cubemap Vector)

Output Image (Pixel Vector)

Transport Matrix
Ray-Tracing Matrix Columns

\[
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
\]
Ray-Tracing Matrix Columns

Only works for image relighting
Light-Transport Matrix Rows

$$\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \vdots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}$$
Light-Transport Matrix Rows

\[
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
\]
Light-Transport Matrix Rows

\[
\begin{pmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{pmatrix}
\]
Rasterizing Matrix Rows

Pre-computing rows

- Rasterize visibility hemicubes with graphics hardware
- Read back pixels and weight by reflection function
Matrix Multiplication is Enormous

Dimension

- 512 x 512 pixel images
- 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable

- On the order of 10^{10} operations *per frame*
Sparse Matrix-Vector Multiplication

Choose data representations with mostly zeroes

Vector: Use *non-linear wavelet approximation* on lighting

Matrix: Wavelet-encode transport rows

\[
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
\begin{bmatrix}
L_1 \\
L_2 \\
\vdots \\
L_N
\end{bmatrix}
\]
Non-linear Wavelet Light Approximation

Wavelet Transform
Non-linear Wavelet Light Approximation

Non-linear Approximation

Retain 0.1% – 1% terms
Why Non-linear Approximation?

Linear

- Use a **fixed** set of approximating functions
- Precomputed radiance transfer uses 25 - 100 of the lowest frequency spherical harmonics

Non-linear

- Use a **dynamic** set of approximating functions (*depends on each frame’s lighting*)
- In our case: choose 10’s - 100’s from a basis of 24,576 wavelets

Idea: Compress lighting by considering input data
Why Wavelets?

Wavelets provide dual space / frequency locality

- Large wavelets capture low frequency, area lighting
- Small wavelets capture high frequency, compact features

In contrast

- Spherical harmonics
 - Perform poorly on compact lights
- Pixel basis
 - Perform poorly on large area lights
Choosing Non-linear Coefficients

Three methods of prioritizing

1. Magnitude of wavelet coefficient
 - Optimal for approximating lighting
2. Transport-weighted
 - Biases lights that generate bright images
3. Area-weighted
 - Biases large lights
Sparse Matrix-Vector Multiplication

Choose data representations with mostly zeroes

Vector: Use non-linear wavelet approximation on lighting

Matrix: Wavelet-encode transport rows

\[
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM} \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
L_1 \\
L_2 \\
\vdots \\
L_N \\
\end{bmatrix}
\]
Matrix Row Wavelet Encoding

\[
\begin{bmatrix}
T_{11} & T_{12} & T_{13} & T_{14} & \cdots & T_{1M} \\
T_{21} & T_{22} & T_{23} & T_{24} & \cdots & T_{2M} \\
T_{31} & T_{32} & T_{24} & T_{34} & \cdots & T_{3M} \\
T_{41} & T_{42} & T_{43} & T_{44} & \cdots & T_{4M} \\
T_{51} & T_{52} & T_{53} & T_{54} & \cdots & T_{5M} \\
T_{61} & T_{62} & T_{63} & T_{64} & \cdots & T_{6M} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & T_{N3} & T_{N4} & \cdots & T_{NM} \\
\end{bmatrix}
\]
Matrix Row Wavelet Encoding

\[
\begin{bmatrix}
T_{11} & T_{12} & T_{13} & T_{14} & \cdots & T_{1M} \\
T_{21} & T_{22} & T_{23} & T_{24} & \cdots & T_{2M} \\
T_{31} & T_{32} & T_{33} & T_{34} & \cdots & T_{3M} \\
T_{41} & T_{42} & T_{43} & T_{44} & \cdots & T_{4M} \\
T_{51} & T_{52} & T_{53} & T_{54} & \cdots & T_{5M} \\
T_{61} & T_{62} & T_{63} & T_{64} & \cdots & T_{6M} \\
T_{N1} & T_{N2} & T_{N3} & T_{N4} & \cdots & T_{NM}
\end{bmatrix}
\]

Extract Row
Matrix Row Wavelet Encoding

\[
\begin{bmatrix}
T_{11} & T_{12} & T_{13} & T_{14} & \cdots & T_{1M} \\
T_{21} & T_{22} & T_{23} & T_{24} & \cdots & T_{2M} \\
T_{31} & T_{32} & T_{34} & T_{34} & \cdots & T_{3M} \\
T_{41} & T_{42} & T_{43} & T_{44} & \cdots & T_{4M} \\
T_{51} & T_{52} & T_{53} & T_{54} & \cdots & T_{5M} \\
T_{61} & T_{62} & T_{63} & T_{64} & \cdots & T_{6M} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & T_{N3} & T_{N4} & \cdots & T_{NM}
\end{bmatrix}
\]

Wavelet Transform
Matrix Row Wavelet Encoding

$\begin{bmatrix}
T_{11} & T_{12} & T_{13} & T_{14} & \cdots & T_{1M} \\
T_{21} & T_{22} & T_{23} & T_{24} & \cdots & T_{2M} \\
T_{31} & T_{32} & T_{33} & T_{34} & \cdots & T_{3M} \\
T_{41} & T_{42} & T_{43} & T_{44} & \cdots & T_{4M} \\
T_{51} & T_{52} & T_{53} & T_{54} & \cdots & T_{5M} \\
T_{61} & T_{62} & T_{63} & T_{64} & \cdots & T_{6M} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & T_{N3} & T_{N4} & \cdots & T_{NM}
\end{bmatrix}$

Wavelet Transform
Matrix Row Wavelet Encoding

\[
\begin{bmatrix}
T_{11} & T_{12} & T_{13} & T_{14} & \cdots & T_{1M} \\
T_{21} & T_{22} & T_{23} & T_{24} & \cdots & T_{2M} \\
T_{31} & T_{32} & T_{33} & T_{34} & \cdots & T_{3M} \\
T_{41} & T_{42} & T_{43} & T_{44} & \cdots & T_{4M} \\
T_{51} & T_{52} & T_{53} & T_{54} & \cdots & T_{5M} \\
T_{61} & T_{62} & T_{63} & T_{64} & \cdots & T_{6M} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & T_{N3} & T_{N4} & \cdots & T_{NM}
\end{bmatrix}
\]

Wavelet Transform
Matrix Row Wavelet Encoding

$$\begin{bmatrix}
T_{11} & T_{12} & T_{13} & T_{14} & \cdots & T_{1M} \\
T_{21} & T_{22} & T_{23} & T_{24} & \cdots & T_{2M} \\
T_{31} & T_{32} & T_{33} & T_{34} & \cdots & T_{3M} \\
T_{41} & T_{42} & T_{43} & T_{44} & \cdots & T_{4M} \\
T_{51} & T_{52} & T_{53} & T_{54} & \cdots & T_{5M} \\
T_{61} & T_{62} & T_{63} & T_{64} & \cdots & T_{6M} \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
T_{N1} & T_{N2} & T_{N3} & T_{N4} & \cdots & T_{NM}
\end{bmatrix}$$

Wavelet Transform
Matrix Row Wavelet Encoding

\[
\begin{bmatrix}
T'_{11} & 0 & 0 & T'_{14} & \ldots & 0 \\
T_{21} & T_{22} & T_{23} & T_{24} & \ldots & T_{2M} \\
T_{31} & T_{32} & T_{34} & T_{34} & \ldots & T_{3M} \\
T_{41} & T_{42} & T_{43} & T_{44} & \ldots & T_{4M} \\
T_{51} & T_{52} & T_{53} & T_{54} & \ldots & T_{5M} \\
T_{61} & T_{62} & T_{63} & T_{64} & \ldots & T_{6M} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & T_{N3} & T_{N4} & \ldots & T_{NM}
\end{bmatrix}
\]

Store Back in Matrix
Matrix Row Wavelet Encoding

Only 3% – 30% are non-zero
Total Compression

Lighting vector compression
- Highly lossy
- Compress to 0.1% – 1%

Matrix compression
- Essentially lossless encoding
- Represent with 3% – 30% non-zero terms

Total compression in sparse matrix-vector multiply
- 3 – 4 orders of magnitude less work than full multiplication
Error Analysis

Compare to linear spherical harmonic approximation

- [Sloan, Kautz, Snyder, 2002]

Measure approximation quality in two ways:

- Error in lighting
- Error in output image pixels

Main point (for detailed natural lighting)

- Non-linear wavelets converge exponentially faster than linear harmonics
Lighting Error

SH (100) W (100)
SH (4096) W (4096)
SH (10,000) Reference

SH (100) W (100)
SH (4096) W (4096)
SH (10,000) Reference
Error in Lighting: St Peter’s Basilica

Approximation Terms

Relative L^2 Error (%)

Sph. Harmonics

Non-linear Wavelets

Approximation Terms

Relative L^2 Error (%)
Output Image Comparison

Top: Linear Spherical Harmonic Approximation
Bottom: Non-linear Wavelet Approximation

25 200 2,000 20,000
Error in Output Image: Plant Scene

Relative L^2 Error (%)

- Sph. Harmonics
- Non-linear Wavelets

Approximation Terms
Results

SIGGRAPH 2003 video
Summary

A viable representation for all-frequency lighting

- Sparse non-linear wavelet approximation
- 100 – 1000 times information reduction

Efficient relighting from detailed environment maps
Triple Product Wavelet Integrals For All-Frequency Relighting

Ren Ng
Stanford

Ravi Ramamoorthi
Columbia

Pat Hanrahan
Stanford

SIGGRAPH 2004
Precomputed Relighting Techniques

Low-Frequency Lighting, Dynamic View
[Sloan et al 2002, 2003]

All-Frequency Lighting, Fixed View
[Ng et al 2003]
Formulation

\[B(x, \omega_0) = \int_{\Omega} L(x, \omega)V(x, \omega)\rho(x, \omega, \omega_0)(\omega \cdot n(x))d\omega \]

Simplifications:

1. Incorporate cosine term into BRDF
2. Assume the lighting is distant, so \(L \) depends only on \(\omega \)
3. Uniform BRDF over the surface
4. Expressed in the global frame; BRDF has to be rotated

\[B(x, \omega_0) = \int_{\Omega} L(\omega)V(x, \omega)\tilde{\rho}(x, \omega, \omega_0)d\omega \]

For a fixed point,

\[B = \int_{\Omega} L(\omega)V(\omega)\tilde{\rho}(\omega)d\omega \]
Double product

\[B = \int_\Omega L(\omega) \Phi(\omega) \tilde{\rho}(\omega) d\omega \quad \text{Let} \quad C_{ij} = \int_\Omega \Psi_i(\omega) \Psi_j(\omega) d\omega \]

\[L(\omega) = \sum_i L_i \Psi_i(\omega) \quad T(\omega) = \sum_j T_j \Psi_j(\omega) \]

\[B = \int_\Omega \left(\sum_i L_i \Psi_i(\omega) \right) \left(\sum_j T_j \Psi_j(\omega) \right) d\omega \]

\[= \sum_i \sum_j L_i T_j \int_\Omega \Psi_i(\omega) \Psi_j(\omega) d\omega \]

\[= \sum_i \sum_j L_i T_j C_{ij} = \sum_i \sum_j L_i T_j \delta_{ij} = \sum_i L_i T_i = T \cdot L \]
Double Product Integral Relighting

- Changing Surface Position
- Changing Camera Viewpoint

Lighting

Transport
Problem Characterization

6D Precomputation Space

- Distant Lighting (2D)
- Surface (2D)
- View (2D)

With ~ 100 samples per dimension
 - Total of ~ 10^{12} samples
Factorization Approach

6D Transport $\approx 10^{12}$ samples

$\approx 10^{12}$ samples

4D Visibility $\approx 10^{8}$ samples

\ast

4D BRDF $\approx 10^{8}$ samples
Triple Product Integral Relighting
Triple Product Integrals

\[B = \int_{S^2} L(\omega) V(\omega) \tilde{\rho}(\omega) \, d\omega \]

\[= \int_{S^2} \left(\sum_i L_i \Psi_i(\omega) \right) \left(\sum_j V_j \Psi_j(\omega) \right) \left(\sum_k \tilde{\rho}_k \Psi_k(\omega) \right) \, d\omega \]

\[= \sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \, d\omega \]

\[= \sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k C_{ijk} \]
Basis Requirements

\[B = \sum_{i} \sum_{j} \sum_{k} L_i V_j \tilde{\rho}_h C_{ijk} \]

1. Need few non-zero “tripling” coefficients

\[C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \, d\omega \]

2. Need sparse basis coefficients

\[L_i, \ V_j, \ \tilde{\rho}_k \]
1. Number Non-Zero Tripling Coeffs

$$C_{ijk} = \int_{S^2} \Psi_i(\omega)\Psi_j(\omega)\Psi_k(\omega) \, d\omega$$

<table>
<thead>
<tr>
<th>Basis Choice</th>
<th>Number Non-Zero C_{ijk}</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (e.g. PCA)</td>
<td>$O(N^3)$</td>
</tr>
<tr>
<td>Pixels</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Fourier Series</td>
<td>$O(N^2)$</td>
</tr>
<tr>
<td>Sph. Harmonics</td>
<td>$O(N^{5/2})$</td>
</tr>
<tr>
<td>Haar Wavelets</td>
<td>$O(N \log N)$</td>
</tr>
</tbody>
</table>
Basis Requirements

\[B = \sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k C_{ijk} \]

1. Need few non-zero “tripling” coefficients

\[C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \, d\omega \]

2. Need sparse basis coefficients

\[L_i, \ V_j, \ \tilde{\rho}_k \]
2. Sparsity in Light Approximation

![Graph showing relative L^2 error (%) vs. approximation terms for Pixels and Wavelets.](image)

- **Relative L^2 Error (%)**
- **Approximation Terms**

The graph illustrates the relative L^2 error (%) for various approximation terms, with curves for Pixels and Wavelets. It shows how the error decreases as the percentage of approximation terms increases.
2. Sparsity in Visibility and BRDF

Visibility
- ~ 40% sparse in pixels
- 1 – 5% sparse in wavelets

BRDF with diffuse component
- ~ 50% sparse in pixels
- 0.1 – 1% sparse in wavelets
Summary of Basis Analysis

Choose wavelet basis because

1. Few non-zero tripling coefficients

\[C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \, d\omega \]

2. Sparse basis coefficients

\[L_i, \, V_j, \, \tilde{\rho}_k \]
Haar Tripling Coefficient Analysis

\[C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \, d\omega \]
Visual Review of 2D Haar Basis
1. Non-Overlapping Haar Multiplication
1. Zero Triple Product Integral
2. Co-Square Haar Multiplication
2. Non-Zero Triple Product Integrals
3. Overlapping Haar Multiplication
3. More Non-Zero Triple Integrals
Haar Tripling Coefficient Theorem

The integral of three Haar wavelets is non-zero iff

- All three are the scaling function

- All three are co-square and different

- Two are identical, and the third overlaps at a coarser level
Theorem Consequences

1. Prove $O(N \log N)$ Haar sparsity

2. Derive $O(N \log N)$ triple product integral algorithm
 - Dynamic programming eliminates $\log N$ term
 - Final complexity is linear in number of retained basis coefficients
High-Level Algorithm: Precomputation

for each vertex
 compute the visibility cubemap
 wavelet encode
 store

for each viewing direction
 compute BRDF for that view
 nonlinear wavelet approximation
 store
High-Level Algorithm: Relighting

for each frame
 wavelet encode lighting, \(L \)
for each vertex in mesh
 look up visibility, \(V \)
 look up BRDF for view, \(\rho \)
 integrate product of \(L, V, \rho \)
 set color of vertex
 draw colored mesh
Changing Lighting, Fixed View
Changing View, Fixed Lighting
Dynamic Lighting and View
Results

SIGGRAPH 2004 video
Summary

All-frequency relighting, changing view
- Factor into visibility and BRDF
- Fast relight in Haar basis

Triple product analysis and algorithms
- Analysis of several bases
- Haar tripling theorem
- Efficient triple product integral estimation
Efficient Wavelet Rotation for Environment Map Rendering

Rui Wang Ren Ng David Luebke Greg Humphreys
EGSR 2006
Triple product

Brightness at point x is the product of lighting at direction ω to view direction ω_0.

Lighting : Represents the radiance of direction ω.
Visibility : Decides whether light is visible in direction ω.
BRDF : Represents lighting reflective ratio of x at given ω.
Triple product

\[B^{x,\omega_0} = \int_{\Omega} L^x(\omega)V^x(\omega)\tilde{\rho}^{x,\omega_0}(\omega) d\omega \]

The output radiance is the integral of these functions over all directions!
BRDF

Lighting

Local frame
Rotation

- Because we can’t rotate wavelet basis easily, some functions must be sampled with different rotations in advance and use lookup at runtime.

- Spherical harmonics does not have this problem because it can be rotated easily.
Rotation of spherical functions
Rotation of spherical basis

source basis

\[L(R \cdot \omega) = \sum_i L_i \Psi_i (R \cdot \omega) \]

target basis

\[\Psi_i (R \cdot \omega) = \sum_j R_{ij} \varphi_j (\omega) \]

Basis transform matrix

\[L(R \cdot \omega) = \sum_i L_i \sum_j R_{ij} \varphi_j (\omega) = \sum_j \left(\sum_i R_{ij} L_i \right) \varphi_j (\omega) \]
Basis transform matrix

- Transform matrices have to be pre-computed at several rotations
Varying truncation threshold

128 (10.2%)

32 (7.7%)

8 (6.7%)

1 (5.1%)

Reference

Relative Error
Varying rotation sampling rate

8 × 8 (22.5%)
16 × 16 (8.7%)
32 × 32 (6.2%)
64 × 64 (5.1%)
Reference

Relative Error

Graph showing relative error across different sampling rates.