Radiometry

- Radiometry: study of the propagation of electromagnetic radiation in an environment
- Four key quantities: flux, intensity, irradiance and radiance
- These radiometric quantities are described by their spectral power distribution (SPD)
- Human visible light ranges from 370nm to 730nm
Color

- Need a compact, efficient and accurate way to represent functions like these
- Find proper basis functions to map the infinite-dimensional space of all possible SPD functions to a low-dimensional space of coefficients
- For example, B(\lambda)=1 is a trivial but bad approximation

Human visual system

- Tristimulus theory: all visible SPDs S can be accurately represented for human observers with three values, x_\lambda, y_\lambda and z_\lambda.
- The basis are the spectral matching curves, X(\lambda), Y(\lambda) and Z(\lambda) determined by CIE (國際照明委員會).

\[
x_\lambda = \int_{\lambda} S(\lambda) X(\lambda) d\lambda
\]
\[
y_\lambda = \int_{\lambda} S(\lambda) Y(\lambda) d\lambda
\]
\[
z_\lambda = \int_{\lambda} S(\lambda) Z(\lambda) d\lambda
\]

Spectrum

- In core/color.*
- Not a plug-in, to use inline for performance
- Spectrum stores a fixed number of samples at a fixed set of wavelengths. Better for smooth functions.

Why is this possible? Human vision system

```cpp
#define COLOR_SAMPLES 3

class COREDLL Spectrum {
public:
    <arithmetic operations>
private:
    float c[COLOR_SAMPLES];
    ...
};
```

XYZ basis

pbrt has discrete versions (sampled every 1nm) of these bases in core/color.cpp

- --- X
- ---- Y
- ⋯ ⋯ ⋯ Z

360 400 450 500 550 600 650 700 830
Color matching experiment

- To avoid negative parameters
Human Photoreceptors

XYZ color

- Good for representing visible SPD to human observer, but not good for spectral computation.
- A product of two SPD's XYZ values is likely different from the XYZ values of the SPD which is the product of the two original SPDs.
- Hence, we often have to convert our samples (RGB) into XYZ

```c
void XYZ(float xyz[3]) const {
    for (int i = 0; i < COLOR_SAMPLES; ++i) {
        xyz[0] += XWeight[i] * c[i];
        xyz[1] += YWeight[i] * c[i];
        xyz[2] += ZWeight[i] * c[i];
    }
}
```

Conversion between XYZ and RGB

```c
float Spectrum::XWeight[COLOR_SAMPLES] = {
    0.412453f, 0.357580f, 0.180423f
};
float Spectrum::YWeight[COLOR_SAMPLES] = {
    0.212671f, 0.715160f, 0.072169f
};
float Spectrum::ZWeight[COLOR_SAMPLES] = {
    0.019334f, 0.119193f, 0.950227f
};
Spectrum FromXYZ(float x, float y, float z) {
    float c[3];
    c[0] =  3.240479f * x + -1.537150f * y + -0.498535f * z;
    c[1] = -0.969256f * x +  1.875992f * y +  0.041556f * z;
    c[2] =  0.055648f * x + -0.204043f * y +  1.057311f * z;
    return Spectrum(c);
}
```

Conversion between XYZ and RGB

vector sampled at several wavelengths such as (R,G,B) device dependent (R,G,B)

\[
\begin{pmatrix}
 x \lambda, y \lambda, z \lambda \\
\end{pmatrix} =
\int_S (x \lambda) X(\lambda) d\lambda
\int_S (y \lambda) Y(\lambda) d\lambda
\int_S (z \lambda) Z(\lambda) d\lambda
\]

\[
\begin{pmatrix}
 x_2 \\
 y_2 \\
 z_2 \\
\end{pmatrix} =
\begin{pmatrix}
 3.240479 & 0.357580 & 0.180423 \\
 0.212671 & 0.715160 & 0.072169 \\
 0.019334 & 0.119193 & 0.950227 \\
\end{pmatrix}
\begin{pmatrix}
 x_1, y_1, z_1 \\
\end{pmatrix}
\]
Basic radiometry

- pbrt is based on radiative transfer: study of the transfer of radiant energy based on radiometric principles and operates at the geometric optics level (light interacts with objects much larger than the light’s wavelength)
- It is based on the particle model. Hence, diffraction and interference can’t be easily accounted for.

Basic assumptions about light behavior

- **Linearity**: the combined effect of two inputs is equal to the sum of effects
- **Energy conservation**: scattering event can’t produce more energy than they started with
- **Steady state**: light is assumed to have reached equilibrium, so its radiance distribution isn’t changing over time.
- **No polarization**: we only care the frequency of light but not other properties (such as phases)
- **No fluorescence or phosphorescence**: behavior of light at a wavelength or time doesn’t affect the behavior of light at other wavelengths or time

Fluorescent materials

Basic quantities

<table>
<thead>
<tr>
<th>Flux: power, (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irradiance: flux density per area, (W/m²)</td>
</tr>
<tr>
<td>Intensity: flux density per solid angle</td>
</tr>
<tr>
<td>Radiance: flux density per solid angle per area</td>
</tr>
</tbody>
</table>
Flux (Φ)
- Radiant flux, power
- Total amount of energy passing through a surface per unit of time ($J/s, W$)

Irradiance (E)
- Area density of flux (W/m2) $E = \frac{d\Phi}{dA}$
- Inverse square law $E = \frac{\Phi}{4\pi r^2}$
- Lambert’s law $E = \frac{\Phi}{A}$
 $E = \frac{\Phi \cos \theta}{A}$

Angles and Solid Angles
- Angle $\theta = \frac{I}{r}$
 \Rightarrow circle has 2π radians
- Solid angle $\Omega = \frac{A}{R^2}$

Intensity (I)
- Flux density per solid angle $I = \frac{d\Phi}{d\omega}$
- Intensity describes the directional distribution of light

The solid angle subtended by a surface is defined as the surface area of a unit sphere covered by the surface's projection onto the sphere.

\Rightarrow sphere has 4π steradians
Radiance (L)

- Flux density per unit area per solid angle
 \[L = \frac{d\Phi}{d\omega dA} \]
- Most frequently used, remains constant along ray.
- All other quantities can be derived from radiance

\[\Phi = \int d\omega L \]

Calculate irradiance from radiance

\[E(x) = \frac{d\Phi}{dA} = \int_{\Omega} L(x, \omega) \cos \theta d\omega \]

Irradiance Environment Maps

Radiance Environment Map → Irradiance Environment Map

Differential solid angles

Goal: find out the relationship between \(d\omega \) and \(d\theta, d\phi \)

Why? In the integral,
\[
\int f(\omega)d\omega
\]
\(d\omega \) is uniformly divided.
To convert the integral to
\[
\int \int f(\theta, \phi)d\theta d\phi
\]
We have to find the relationship between \(d\omega \) and uniformly divided \(d\theta \) and \(d\phi \).
Differential solid angles

Goal: find out the relationship between $d\omega$ and $d\theta$, $d\phi$

By definition, we know that
\[
d\omega = \frac{dA}{r^2}
\]

\[dA = (r d\theta)(r \sin \theta d\phi) = r^2 \sin \theta d\theta d\phi\]

\[d\omega = \frac{dA}{r^2} = \sin \theta d\theta d\phi = -d \cos \theta d\phi\]

We can prove that $\Omega = \int d\omega = 4\pi$

Isotropic point source

If the total flux of the light source is Φ, what is the intensity?
Isotropic point source

If the total flux of the light source is Φ, what is the intensity?

$$\Phi = \int_S I \, d\omega$$

$$= 4\pi I$$

$$I = \frac{\Phi}{4\pi}$$

Warn’s spotlight

If the total flux is Φ, what is the intensity?

$$I(\omega) \propto \cos^S \theta$$

Warn’s spotlight

If the total flux is Φ, what is the intensity?

$$I(\omega) = \begin{cases} c \cos^S \theta & \theta < \frac{\pi}{2} \\ 0 & \text{otherwise} \end{cases}$$

$$\Phi = c \int_0^{2\pi} \int_0^1 \cos^S \theta \, d\theta \, d\phi = 2\pi c \int_0^1 \cos^S \theta \, d\theta$$

$$= 2\pi c \frac{y^{S+1}}{S+1} \bigg|_{y=1}^{y=0} = 2\pi c \frac{S+1}{S+1} \Rightarrow c = \frac{S+1}{2\pi} \Phi$$

Irradiance: isotropic point source

What is the irradiance for this point?
Irradiance: isotropic point source

\[r = \frac{h}{\cos \theta} \]

\[I = \frac{d\Phi}{d\omega} = \frac{\Phi}{4\pi} \]

\[E = \frac{d\Phi}{dA} = \frac{Id\omega}{dA} = \frac{\Phi}{4\pi} \frac{d\omega}{dA} = \frac{\Phi}{4\pi} \frac{\cos \theta}{r^2} = \frac{\Phi \cos^3 \theta}{4\pi h^2} \]