Cameras

Digital Image Synthesis
Yung-Yu Chuang
10/25/2007

with slides by Pat Hanrahan and Matt Pharr

Camera

class Camera {
public: return a weight, useful for simulating real lens
virtual float GenerateRay(const Sample
&sample, Ray *ray) const = O;
- sample position corresponding
Film *Film; at the image plane normalized ray in
protected: the world space
Transform WorldToCamera, CameraToWorld,;
float ClipHither, ClipYon;
float ShutterOpen, ShutterClose;
}; for simulating
motion blur, not
Implemented yet

hither \yoh\

Camera space

NDC: (0,0,1)

NDC: (0,0,0) Q . 6
O & z =yon

NDC: (1,1,1)

Raster: (xRes,yRes, 1)

z = hither
= NDC: (1,1,0)
Camera space: (0,0,0) Raster: (xRes,yRes,0)

2

NN

Coordinate spaces

e world space

e object space

e camera space (origin: camera position, z:
viewing direction, y: up direction)

e screen space: a 3D space defined on the image
plane, z ranges from O(near) to 1(far)

e normalized device space (NDC): (X, y) ranges
from (0,0) to (1,1) for the rendered image, z Is
the same as the screen space

e raster space: similar to NDC, but the range of
(X,y) Is from (0,0) to (xRes, yRes)

Screen space

screen space
NDC

screen window

raster space

Infinite image plane

Projective camera models

e Transform a 3D scene coordinate to a 2D image

coordinate by a 4x4 projective matrix
class ProjectiveCamera : public Camera {
public: camera to screen projection (3D to 2D)
ProjectlveCameraKTransform wor ld2cam,
Transform &proj, float Screen|4],
float hither, float yon, float sopen,
float sclose, float lensr, float focald,
Fillm *Fi1lm);
protected:
Transform CameraToScreen, WorldToScreen,
RasterToCamera;
Transform ScreenToRaster, RasterToScreen;
float LensRadius, FocalDistance;

}

Projective camera models

ProjectiveCamera: :ProjectiveCamera(...)
:Camera(w2c, hither, yon, sopen, sclose,) {

CameraToScreen=proj;
WorldToScreen=CameraToScreen*Wor ldToCamera;

ScreenToRaster
= Scale(float(filIm->xResolution),
float(film->yResolution), 1.FH)*
Scale(1.f /7 (Screen[1l] - Screen|0]),
1.f /7 (Screen[2] - Screen|[3]), 1.P)*
Translate(Vector(-Screen|0],-Screen[3],0.1));

RasterToScreen = ScreenToRaster.Getlnverse();
RasterToCamera =
CameraToScreen.Getlnverse() * RasterToScreen;

Projective camera models

Orthographic camera

Transform Orthographic(float znear,
float zfar)

{
return Scale(1.f, 1.f, 1.f/(zfar-znear))
*Translate(Vector(0.f, O0.f, -znear));
}
OrthoCamera: :OrthoCamera(...)

- ProjectiveCamera(world2cam,
Orthographic(hither, yon),
Screen, hither, yon, sopen, sclose,
lensr, focald,) {

OrthoCamera: :GenerateRay

float OrthoCamera: :GenerateRay
(const Sample &sample, Ray *ray) const {
Point Pras(sample.imageX,sample.i1mageY,0);
Point Pcamera;
RasterToCamera(Pras, &Pcamera);
ray->0 = Pcamera;
ray->d = Vector(0,0,1);
<Modify ray for depth of field>
ray->mint = 0.;
ray->maxt = ClipYon - ClipHither;
ray->d = Normalize(ray->d);
CameraToWorld(*ray, ray);
return 1.T;

Perspective camera

Image |ilane/
1

== >
=0 f.n, z?
1 0 0 Ofx] ﬁ
X=x/z 010 0fy o f(z-n
' 2?2 2?2 ?|z Z(f —n
y'=y/z
0 0 1 o__1_\/

Perspective camera

Transform Perspective(float fov,float n,float T)

{ near_z far z
float 1nv_denom = 1.f/(f-n);
Matrix4x4 *persp

new Matrix4x4(i, O, 0, 0,
0, 1, 0, 0,
O, 0, f*Inv_denom, -f*n*inv_denom,
0, O, 1, 0);

float invTanAng= 1.f / tanf(Radians(fov)/2.1);
return Scale(invTanAng, InvTanAng, 1) *
Transform(persp);

PerspectiveCamera: :GenerateRay.{ |

float PerspectiveCamera: :GenerateRay
(const Sample &sample, Ray *ray) const

{

// Generate raster and camera samples

Point Pras(sample.imageX, sample.imageY, 0);

Point Pcamera;

RasterToCamera(Pras, &Pcamera);

ray->0 = Pcamera;

ray->d Vector(Pcamera.x,Pcamera.y,Pcamera.z);

<Modi1fy ray for depth of field>

ray->d = Normalize(ray->d);

ray->mint = 0._;

ray->maxt = (ClipYon-ClipHither)/ray->d.z;

CameraToWorld(*ray, ray);

return 1.T;

Depth of field

e Circle of confusion y

__I__

1

e Depth of field: the range of distances from the
lens at which objects appear in focus (circle of
confusion roughly smaller than a pixel)

E ———
o

e e—

scene
— focal distance —

— depth of field —

=—

lens

“circle of
confusion”

\\‘

film

Depth of field

without depth of field

Depth of field

with depth of field

Sample the lens

pinhole

v

Image plane

Sample the lens

virtual lens

'focus point
|

Image plane focal plane

In GenerateRay(...)

1T (LensRadius > 0.) {
// Sample point on lens
float lensU, lensV;
ConcentricSampleDisk(sample.lensU, sample.lensV,
&lensU, &lensV);
lensU *= LensRadius;
lensV *= LensRadius;
// Compute point on plane of focus
float ft = (FocalDistance - ClipHither) / ray->d.z;
Point Pfocus = (*ray)(ft);
// Update ray for effect of lens
ray->0.x += lensU;
ray->0.y += lensV;
ray->d = Pfocus - ray->0;

}

Environment camera

9=0.2x

Environment camera

& 0

e X=SIn £C0S ¢
AT sy Yy=Sin &sin ¢
Z=C0S &/

EnvironmentCamera

EnvironmentCamera::

EnvironmentCamera(const Transform &world2cam,
float hither, float yon,
float sopen, float sclose,
Film *film)

: Camera(world2cam, hither, yon,

sopen, sclose, film)
{
rayOrigin = CameraToWorld(Point(0,0,0));
P

In world space

EnvironmentCamera: :GenerateRay

float EnvironmentCamera: :GenerateRay
(const Sample &sample, Ray *ray) const

{
ray->0 = rayOrigin;
float theta=M_Pl*sample.i1mageY/fi1lmn->yResolution;
float phi=2*M_Pl*sample. 1mageX/film->xResolution;
Vector dir(sinf(theta)*cosft(pht), cosf(theta),

sinf(theta)*sinf(phi));

CameraToWorld(dir, &ray->d);
ray->mint = ClipHither;
ray->maxt = ClipYon;
return 1.T;

Distributed ray tracing

e SIGGRAPH 1984, by Robert L. Cook, Thomas
Porter and Loren Carpenter from LucasFilm.

e Apply distribution-based sampling to many

parts of the ray-tracing algorithm.

light
source

hadow ray mirroring

ray

glossy

refraction
ray

eye point

Distributed ray tracing

Gloss/Translucency

e Perturb directions reflection/transmission, with
distribution based on angle from ideal ray

Depth of field
e Perturb eye position on lens

Soft shadow
e Perturb illumination rays across area light

Motion blur
e Perturb eye ray samples in time

Distributed ray tracing

light

Random position Reflected ray
on lens

Distributedp/™
in time

Jittered in
space

[Lens

Focal point

Transmitted ray

DRT: Gloss/Translucency

 Blurry reflections and refractions are produced
by randomly perturbing the reflection and
refraction rays from their "true" directions.

Glossy reflection

iy

L e A = r——.—-l—'.'l

P [T v
N T Rt : '.___'_ bl o e
L

rays

l.-ﬂ-gﬂ- l—'\--'\-l-l-l!l'rr -\.-1"' i

e A
<y —E-l S '-_'. .

£ .
¥ -
L :. .-._-\.a’.n -

ot
[3-' -'\-:'l-'\-u"r\-'.n:-"‘"""' ﬁl‘ .-r""

Translucency

Depth of field

Soft shadows

p -
=
O
c
Q
s
e
=

Results

,'r':! ‘I
-.::?i W
N

ah

Adventures of Andre & Wally B (1986)

Realistic camera model

e Most camera models in graphics are not
geometrically or radiometrically correct.

e Model a camera with a lens system and a film
backplane. A lens system consists of a sequence
of simple lens elements, stops and apertures.

Why a realistic camera model?

Physically-based rendering. For more accurate
comparison to empirical data.

Seamlessly merge CGIl and real scene, for
example, VFX.

For vision and scientific applications.

The camera metaphor is familiar to most 3d
graphics system users.

Real Lens

Cutaway section of a Vivitar Series 1 90mm /2.5 lens
Cover photo, Kingslake, Optics in Photography

EXposure

e Two main parameters:
— Aperture (in f stop)

QO

Full aperture Medium aperture Stopped down

— Shutter speed (in fraction of a second)

o) (N Sl
«g.s J I

Blade (closing) Blade (open) Focal plane (closed) Focal plane (open)

Double Gauss

Data from W. Smith,
Modern Lens Design, p 312

Radius (mm)| Thick Ny V-no | aperture
(mm)
58.950 7.520 1.670 47.1 50.4
169.660 0.240 50.4
38.550 8.050 1.670 47.1 46.0
81.540 6.550 1.699 30.1 46.0
25.500 11.410 36.0
9.000 34.2
-28.990 2.360 1.603 38.0 34.0
81.540 12.130 1.658 57.3 40.0
-40.770 0.380 40.0
874.130 6.440 1.717 48.0 40.0
-79.460 72.228 40.0

stop

Measurement equation

‘ 1

//// (2w, A); A)S(x,t)P(x, A) cost dr dw dt dX

L: radiance 1T': image to object space transformation
S': shutter function FP: sensor response characteristics

Measurement equation

‘ 1

R = At - //))cos O dr dw

L: radiance 1: image to object space transformation

Solving the integral

Problem: given a function f and domain €2, how to calculate

| sy

Solution: Monte Carlo method:

N
f(z)dr ~ [% Zf(rz)] / dx

where 11, r9,.... 2N are uniform distributed random samples in).

Algorithm

© For each pixel on the image, generate some random samples x;
and w; uniformly.

@ For each x; and w;, calculate 1'(z;. w;).

@ Shoot the ray according to the result of 1'(z;.w;) into the scene,
and calculate the radiance.

@ Set the pixel value to the average of radiance.

‘ 1z
/(,()

Tracing rays through lens system

Q R = Ray(x;, w;)
@ Calculate the intersection point p for each lens element E; from
rear to front.

©® Return zero if p is outside the aperture of E;.
@ Compute the new direction by Snell's law if the medium is
different.

ldeal lens approximation

@ In some situations we need an ideal lens approximation.

» |deal lens: each point in object space is imaged onto a single
point in the image space.
» All points on the plane of focus map onto the image plane.

@ Thin lens approximation assumes that the thickness of lens is
zero.

@ Thick lens approximation has additional parameter of thickness.

Thin lens and thick lens

& focus

~ focal length

I
/| -
_ / r'f,_/_lf_ _Er\i IH«
.]l |II | :|'II H II| I|\
]l L. | |\ ,’ \l J| ||
\ \ H'x E awiy
lhi \ Lﬁ_/ LJ
P! f s B

F< f P

[f i'E / \ [\
e (S SR
S
lﬁ'\ \IR' H'\ \ / fIJ JJ
v\ L) avay
P! f > F'
F< f P

© Shoot a ray parallel to the axis to find the focus.

© Find the principal plane by intersecting the refracted ray and
parallel one.

© Find the secondary principal plane by tracing from another side.

Applications of thick lens approximatiof

e Faster way to calculate the transform
e Autofocus

e Calculate the exit pupil

Exit pupil

The exit pupil is the effective aperture stop in the image space which
allows ray incindence.

Finding exit pupil

@ Finding the exit pupil:
@ For each aperture stop, calculate its image by thick lens
approximation.

@ Find the aperture stop whose image subtends the smallest solid
angle.

@ You may also use the aperture of the nearest lens as the exit
pupil.

Integral over the exit pupil

|
Y |
|
|

r —

Sampling a disk uniformly

@ Now we need to obtain random samples on a disk uniformly.

@ How about uniformly sample r in [0, R| and 6 in |0, 27| and let
r=rcosf,y=rsinf?
» The result is not uniform due to coordinate transformation.

Rejection

© Uniformly sample a point in the bounding square of the disk.

@ If the sample lies outside the disk, reject it and sample another
one.

Another method

@ Sample r and # in a specific way so that the result is uniform
after coordinate transformation.

@ Let
r = \/a 0 = 2W£2

where & and & are random samples distributed in [0, 1| uniforml
uniformly.

@ This produce uniform samples on a disk after coordinate
transformation. We will prove it later in chapter 14 "Monte
Carlo integration™ .

Ray Tracing Through Lenses

50 mm double-gauss 16 mm fisheye

From Kolb, Mitchell and Hanrahan (1995)

Assignment #2

@ Write the “realistic” camera plugin for PBRT which implements
the realistic camera model.

@ T[he description of lens system will be provided.

@ GenerateRay(const Sample &sample, Ray *ray)

» PBRT generate rays by calling GenerateRay (), which is a
virtual function of Camera.

» PBRT will give you pixel location in sample.

» You need to fill the content of ray and return a value for its

weight.

Assignment #2

Q@ Sample a point on the exit pupil uniformly.
» Hint: sample.lensU and sample.lensV are two random
samples distributed in [0, 1| uniformly.

@ Trace this ray through the lens system. You can return zero if
this ray is blocked by an aperture stop.

cos? 6/

Q Fill ray with the result and return =25~ as its weight.

Whitted’s method

Ny sin By = n, sin 6,

T"=a(l’”+ N)— N for some «
I'= I/~ - N)
|’ + N| = tan 6,

:;':Zce = |’ + N| =tan 6,
. - tan 6, _ sin 6, cos 64 _ (171/1m3) cos 6,
o tan &, Sin &y Cos 6, \/ 1 — sin’ 6,
: ' _ (m/my)cose; !
Qért??’ s) \/l — 11/m3 sin” 6,) \n?sec26; — tan® 6,

o o |I’| = seco,
o=@ |l —|I'+ N

Whitted’s method

Whitted’s Method
N X +
1 n = n,/ny
3 3 2 I"=1/(-I-N)
3 J=I"+N
1 1 8 5 | a=IN2I'-I)-J-J)
3 3 T'=aJ—-N
1 3 3 2 | T=T'/T
2 8 17 15 | TOTAL

Heckber’s method

I =smé, M —cos, N

N A Lyorp I+ciN
nf&"fe Qﬂ‘“ - M = ~ o
ey o 1 perp] sin 6
sin 6,
T =— (I +c;N)—cosbo,N
S111 64
Surface a1
plane L)
2

I =nl+(ncy—cy)N

. 2
= cosf, = \/1—5111‘ 6,5

= \1-n2sin® 6, = \V1-n2(1—c3)

Heckbert’s method

Heckbert’s Method
N X +
1 n=n/n
3 2| ¢=-I-N
1 3 2 | e=N\1-n*1-cd)
7 4 | T =nl+(ncy—cy)N
| 1 13 8 | TOTAL

Other method

T = nl+(nc;—\1-n*(1—ci)N

I ci—n\1-(1-ci)in?
+(‘1 H\/ (ci)Mn N

I n

I+(c;—\n?=1+cHN
n

Other Method
N A G
1 n=1nm
3 2| ¢=-1-N
1 2 3| f=c;-\nP-1+c?
3 3 3 I'=U+pBN)n
1 4 8 8 | TOTAL

Comparisons

Whitted’s Method
- / X +
1 n=n./n
3 3 2 | I'=I-I-N)
3 | J=I'+N
1 1 8 5 | a=1Nn2I'-T''-(J-J)
3 3 | T'=al-N
1 3 3 2 | T=T/T
2 8 17 15 | TOTAL

Heckbert’s Method Other Method
v /X o+ v X+
1 n=n/n 1 n=n.m
3 2 | cg=—1I-N 3 2 ci=—1-N
1 3 2 | ca=N1-n¥1-c) || 1 2 3| f=ci-\nP-1+c]
7 4 | T=nl+(ncy—cy)N 3 3 3| T=U+FN)n
1 1 13 8 | TOTAL 1 4 8 8 TOTAL

