
Cameras

Digital Image Synthesis
Yung-Yu Chuang
10/25/2007

with slides by Pat Hanrahan and Matt Pharr

Camera

class Camera {
public:
virtual float GenerateRay(const Sample

&sample, Ray *ray) const = 0;
...
Film *film;

protected:
Transform WorldToCamera, CameraToWorld;
float ClipHither, ClipYon;
float ShutterOpen, ShutterClose;

};

sample position
at the image plane

corresponding
normalized ray in
the world space

return a weight, useful for simulating real lens

zhither yon

for simulating
motion blur, not
Implemented yet

Camera space

Coordinate spaces

• world space
• object space
• camera space (origin: camera position, z:

viewing direction, y: up direction)
• screen space: a 3D space defined on the image

plane, z ranges from 0(near) to 1(far)
• normalized device space (NDC): (x, y) ranges

from (0,0) to (1,1) for the rendered image, z is
the same as the screen space

• raster space: similar to NDC, but the range of
(x,y) is from (0,0) to (xRes, yRes)

Screen space

screen space

screen window

raster space

infinite image plane

NDC

Projective camera models

• Transform a 3D scene coordinate to a 2D image
coordinate by a 4x4 projective matrix

class ProjectiveCamera : public Camera {
public:
ProjectiveCamera(Transform &world2cam,

Transform &proj, float Screen[4],
float hither, float yon, float sopen,
float sclose, float lensr, float focald,
Film *film);

protected:
Transform CameraToScreen, WorldToScreen,

RasterToCamera;
Transform ScreenToRaster, RasterToScreen;
float LensRadius, FocalDistance;

};

camera to screen projection (3D to 2D)

Projective camera models
ProjectiveCamera::ProjectiveCamera(...)

:Camera(w2c, hither, yon, sopen, sclose, f) {
...
CameraToScreen=proj;
WorldToScreen=CameraToScreen*WorldToCamera;
ScreenToRaster
= Scale(float(film->xResolution),

float(film->yResolution), 1.f)*
Scale(1.f / (Screen[1] - Screen[0]),

1.f / (Screen[2] - Screen[3]), 1.f)*
Translate(Vector(-Screen[0],-Screen[3],0.f));

RasterToScreen = ScreenToRaster.GetInverse();
RasterToCamera =

CameraToScreen.GetInverse() * RasterToScreen;
}

Projective camera models

orthographic perspective

Orthographic camera
Transform Orthographic(float znear,

float zfar)
{
return Scale(1.f, 1.f, 1.f/(zfar-znear))

*Translate(Vector(0.f, 0.f, -znear));
}

OrthoCamera::OrthoCamera(...)
: ProjectiveCamera(world2cam,

Orthographic(hither, yon),
Screen, hither, yon, sopen, sclose,
lensr, focald, f) {

}

OrthoCamera::GenerateRay

float OrthoCamera::GenerateRay
(const Sample &sample, Ray *ray) const {

Point Pras(sample.imageX,sample.imageY,0);
Point Pcamera;
RasterToCamera(Pras, &Pcamera);
ray->o = Pcamera;
ray->d = Vector(0,0,1);
<Modify ray for depth of field>
ray->mint = 0.;
ray->maxt = ClipYon - ClipHither;
ray->d = Normalize(ray->d);
CameraToWorld(*ray, ray);
return 1.f;

}

Perspective camera

zyy
zxx

/'
/'

=
=

image plane

x’

x

)(
)('

nfz
nzfz

−
−

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

10100
????
0010
0001

z
y
x

f, n, z?

Perspective camera
Transform Perspective(float fov,float n,float f)
{

float inv_denom = 1.f/(f-n);
Matrix4x4 *persp =
new Matrix4x4(1, 0, 0, 0,

0, 1, 0, 0,
0, 0, f*inv_denom, -f*n*inv_denom,
0, 0, 1, 0);

float invTanAng= 1.f / tanf(Radians(fov)/2.f);
return Scale(invTanAng, invTanAng, 1) *

Transform(persp);
}

near_z far_z

PerspectiveCamera::GenerateRay
float PerspectiveCamera::GenerateRay

(const Sample &sample, Ray *ray) const
{

// Generate raster and camera samples
Point Pras(sample.imageX, sample.imageY, 0);
Point Pcamera;
RasterToCamera(Pras, &Pcamera);
ray->o = Pcamera;
ray->d = Vector(Pcamera.x,Pcamera.y,Pcamera.z);
<Modify ray for depth of field>
ray->d = Normalize(ray->d);
ray->mint = 0.;
ray->maxt = (ClipYon-ClipHither)/ray->d.z;
CameraToWorld(*ray, ray);
return 1.f;

}

Depth of field

• Circle of confusion
• Depth of field: the range of distances from the

lens at which objects appear in focus (circle of
confusion roughly smaller than a pixel)

scene filmlens

“circle of
confusion”

focal distance

depth of field

Depth of field

without depth of field

Depth of field

with depth of field

Sample the lens

image plane

pinhole

Sample the lens

image plane focal plane

?
focus point

virtual lens

In GenerateRay(…)
if (LensRadius > 0.) {

// Sample point on lens
float lensU, lensV;
ConcentricSampleDisk(sample.lensU, sample.lensV,

&lensU, &lensV);
lensU *= LensRadius;
lensV *= LensRadius;
// Compute point on plane of focus
float ft = (FocalDistance - ClipHither) / ray->d.z;
Point Pfocus = (*ray)(ft);
// Update ray for effect of lens
ray->o.x += lensU;
ray->o.y += lensV;
ray->d = Pfocus - ray->o;

}

Environment camera

πφ 2..0=

πθ ..0=

Environment camera

x=sinθcosψ
y=sinθsinψ
z=cosθ

EnvironmentCamera

EnvironmentCamera::
EnvironmentCamera(const Transform &world2cam,

float hither, float yon,
float sopen, float sclose,
Film *film)

: Camera(world2cam, hither, yon,
sopen, sclose, film)

{
rayOrigin = CameraToWorld(Point(0,0,0));

}

in world space

EnvironmentCamera::GenerateRay

float EnvironmentCamera::GenerateRay
(const Sample &sample, Ray *ray) const

{
ray->o = rayOrigin;
float theta=M_PI*sample.imageY/film->yResolution;
float phi=2*M_PI*sample.imageX/film->xResolution;
Vector dir(sinf(theta)*cosf(phi), cosf(theta),

sinf(theta)*sinf(phi));
CameraToWorld(dir, &ray->d);
ray->mint = ClipHither;
ray->maxt = ClipYon;
return 1.f;

}

Distributed ray tracing

• SIGGRAPH 1984, by Robert L. Cook, Thomas
Porter and Loren Carpenter from LucasFilm.

• Apply distribution-based sampling to many
parts of the ray-tracing algorithm.

soft shadow glossy

depth of field

Distributed ray tracing

Gloss/Translucency
• Perturb directions reflection/transmission, with

distribution based on angle from ideal ray

Depth of field
• Perturb eye position on lens

Soft shadow
• Perturb illumination rays across area light

Motion blur
• Perturb eye ray samples in time

Distributed ray tracing

DRT: Gloss/Translucency

• Blurry reflections and refractions are produced
by randomly perturbing the reflection and
refraction rays from their "true" directions.

Glossy reflection

4 rays 64 rays

Translucency

4 rays 16 rays

Depth of field

Soft shadows

Motion blur

Results

Adventures of Andre & Wally B (1986)

Realistic camera model

• Most camera models in graphics are not
geometrically or radiometrically correct.

• Model a camera with a lens system and a film
backplane. A lens system consists of a sequence
of simple lens elements, stops and apertures.

Why a realistic camera model?

• Physically-based rendering. For more accurate
comparison to empirical data.

• Seamlessly merge CGI and real scene, for
example, VFX.

• For vision and scientific applications.
• The camera metaphor is familiar to most 3d

graphics system users.

Real Lens

Cutaway section of a Vivitar Series 1 90mm f/2.5 lens
Cover photo, Kingslake, Optics in Photography

Exposure

• Two main parameters:
– Aperture (in f stop)

– Shutter speed (in fraction of a second)

Double Gauss

40.072.228-79.460
40.048.01.7176.440874.130
40.00.380-40.770
40.057.31.65812.13081.540
34.038.01.6032.360-28.990
34.29.000
36.011.41025.500
46.030.11.6996.55081.540
46.047.11.6708.05038.550
50.40.240169.660
50.447.11.6707.52058.950

apertureV-nondThick
(mm)

Radius (mm)

Data from W. Smith,
Modern Lens Design, p 312

stop

Measurement equation

Measurement equation

Solving the integral

Algorithm

Tracing rays through lens system

Ideal lens approximation

Thin lens and thick lens

Finding thick lens approximation

Applications of thick lens approximation

• Faster way to calculate the transform
• Autofocus
• Calculate the exit pupil

Exit pupil

Finding exit pupil

Integral over the exit pupil

Sampling a disk uniformly

Rejection

Another method

Ray Tracing Through Lenses

From Kolb, Mitchell and Hanrahan (1995)

200 mm telephoto

50 mm double-gauss

35 mm wide-angle

16 mm fisheye

Assignment #2

Assignment #2

Whitted’s method

Whitted’s method

Heckber’s method

Heckbert’s method

Other method

Comparisons

