
Project #2: Classes for shapes
(spheres and triangles)

A i 8/22Assign: 8/22
Due: 11:59pm 8/29
Submission: send all your java sources in a zip file and
send it to me. Note that the project is accumulated. p j
You may update files in previous projects. Thus, for
each submission, please include all files including ones p g
from previous projects.

goals

• In this project, you are asked to implement
Java classes Shape Sphere Triangle and Java classes, Shape, Sphere, Triangle and
Intersection.
Y l h ld t th f ti li t d • Your classes should support the functions listed
in the following slides. You are free to design
th i t f l t th the interface as long as you support the
operations.

Shapes

• One advantages of ray tracing is it can support
various kinds of shapes as long as we can find various kinds of shapes as long as we can find
ray-shape intersection.
C f l b t ti f t i h i k • Careful abstraction of geometric shapes is a key
component for a ray tracer. Ideal candidate for
bj t i t d d i S i object-oriented design. Scan conversion may

not have such a neat interface.
• All shape classes implement the same interface

and the other parts of the ray tracer just use
this interface without knowing the details
about this shape.

Shapes

public abstract class Shape
{{
public abstract Intersection Intersect(Ray ray);
public abstract bool IntersectP(Ray ray);public abstract bool IntersectP(Ray ray);
}

public class Intersection
{
private Point p;
private Vector n;
Private Shape s;
}

Sphere
public class Sphere extends Shape {
private Point origin;private Point origin;
private float radius;

}}

Sphere(Point p, float r);

Intersection

2222)()()(rOzOyOx zyx

 2222 2222 rOtdoOtdoOtdo zzzyyyxxx

02 CBtAt
Step 1

222
zyx dddA

)]()()([2 OodOodOodB

Step 1

)]()()([2 zzzyyyxxx OodOodOodB
2222)()()(rOoOoOoC zzyyxx

Intersection

ACBBt 42

ACBBt 42

A
t

20 A
t

21

If (B2 4AC<0) then the ray misses the sphere
Step 2
If (B2-4AC<0) then the ray misses the sphere

Step 3

Calculate t0 and test if t0<0 (actually mint, maxt)

Step 4p

Calculate t1 and test if t1<0

N l i P O h P i th i t ti d O i

h k th l d i h

Normal is P-O where P is the intersection and O is
the origin of the sphere.

check the real source code in sphere.cpp,
but mind the differences

Triangles

The most commonly used
shape shape.
Some ray tracers only

t t i l hsupport triangle meshes.

Point p1, p2, p3;
Vector n1 n2 n3;Vector n1, n2, n3;

Ray triangle intersection

1. Intersect ray with plane
2. Check if point is inside triangle

Ray plane intersection

: 0 tVPPRay
0:

0

 dNPPlane
y

Substituting for P, we get:

 0 dNtVP 00 dNtVP

Solution:

dNPt
 0

 NV
t

 tVPP 0

Ray triangle intersection I (recommended)

Ray triangle intersection I

• Normal is the linear combination of normals:

332211 NsNsNsN

Ray triangle intersection II
Algebraic Method

For each side of triangle:

PTV 011

For each side of triangle:

VVN
PTV 022

NNormalize
VVN

1

211

 dNPif
NPd

0
101

FALSEreturn

dNPif 011

end

Ray triangle intersection III

Parametric MethodCompute :

 TTTTP

Compute :,

1312

 andif 01000100
 and

andif

0.1

0.10.00.10.0

triangleinsideisPthen

Appendix

Quadric (in pbrt.h) (You can ignore this)
inline bool Quadratic(float A, float B, float C,

float *t0, float *t1) {,) {
// Find quadratic discriminant
float discrim = B * B - 4.f * A * C;
if (discrim < 0.) return false;
float rootDiscrim = sqrtf(discrim);
// Compute quadratic t values// Compute quadratic _t_ values
float q;
if (B < 0) q = -.5f * (B - rootDiscrim);() q ();
else q = -.5f * (B + rootDiscrim);
*t0 = q / A;
*t1 = C / q;
if (*t0 > *t1) swap(*t0, *t1);
return true;return true;

}

Why?

• Cancellation error: devastating loss of precision
when small numbers are computed from large when small numbers are computed from large
numbers by addition or subtraction.
double x1 = 10.000000000000004;
double x2 = 10.000000000000000;
double y1 10 00000000000004double y1 = 10.00000000000004;
double y2 = 10.00000000000000;
double z = (y1 - y2) / (x1 - x2); // 11.5(y y) / (); //

A
qt 0

 0if41 2 BACBBA
Ct 1

otherwise 41

0if 4
2

2 ACBB

BACBB
q

q1
 2

Fast minimum storage intersection

a point on
the ray

a point inside
the triangle

210)1(vVuVVvutDO
the ray the triangle

1 and 0, vuvu

t

 00201 VO
v
uVVVVD

v

Fast minimum storage intersection

t

 00201 VO
v
uVVVVD

v

O
Geometric interpretation: what is O’s coordinate
under the new coordinate system?O

D
V2

O
D

y

V1

2 D
V2 1

V0
V

V1
1

V0
translation rotation

Fast minimum storage intersection

t

 00201 VOuVVVVD

v

011 VVE 022 VVE 0VOT

 T
t

EED

 T
v
uEED

 21

v

Fast minimum storage intersection

• Cramer’s rule t

 TuEED

 21

 EETt

v

ETD
EET

u
t

,,
,,

1
2

21

 TED

EED
v ,,

,,
,,

1

2
21

ABCBCACBA)()(,,

Fast minimum storage intersection

 EETt ,,

1 21

 ETD

EED
u ,,

,,
1

2

21

21 TED
EED

v ,,
,,

1
21

2EDP 1ETQ

 EQt 21

1 division
27 multiplies

 DQ
TP

EP
v
u

1

1 27 multiplies
17 adds

 DQv

