
Project #1: Classes for vectors pointsProject #1: Classes for vectors, points
and raysy

Due: 5:00pm 8/24p /
Submission: send your java sources in a zip file and
send it to mesend it to me.

goals

• In this project, you are asked to implement
three Java classes Vector Point and Ray for three Java classes, Vector, Point and Ray for
geometric primitives.
Y l h ld t th f ti li t d • Your classes should support the functions listed
in the following slides. You are free to design
th i t f l t th the interface as long as you support the
operations.

• For each class, in addition to the required
functions, you should also implement
conventional member functions such as equals
and toString.

Coordinate system
• Points, vectors and normals are represented

with three floating-point coordinate values: x with three floating point coordinate values: x,
y, z defined under a coordinate system.
A coordinate system is defined by an origin p• A coordinate system is defined by an origin po
and a frame (linearly independent vectors vi).
A di i • A vector v= s1v1 +…+snvn represents a direction,
while a point p= po+s1v1 +…+snvn represents a

i i Th f l i h blposition. They are not freely interchangeable.
• We will use left-handed coordinate system.

y z
(0,1,0) (0,0,1)

ld
x(0,0,0)

(1,0,0) world space

Vectors
class Vector {
public:public:

<Vector Public Methods>
float x y z;float x, y, z;

} no need to use selector (getX) and mutator (setX)
because the design gains nothing and adds bulk to its usage

Provided operations: Vector u, v; float a;
+

because the design gains nothing and adds bulk to its usage

v+u, v-u
-v
()(v==u)
a*v, v/a

Dot and cross product
Dot(v, u)
AbsDot(v u)

cosuvuv 
AbsDot(v, u)
Cross(v, u)

Vectors v u v u

sinuvuv 

Vectors v, u, v×u
form a frame u

θ

 
 

yzzyx

uvuvuv

uvuvuv





v
θ 

  zyyxz

zxxzy

uvuvuv

uvuvuv





Normalization
a=LengthSquared(v)
a=Length(v)a=Length(v)

u=Normalize(v) return a vector, does not normalize in place

Take normalize as an example, you can implement it in the following
two forms (there are other possibilities):(p)

1. u = v.normalize(); // where normalize is a member function
// I personally prefer this one

2. u = Vector.normalize(v); // where v is a static function

Points

Points are different from vectors; given a
coordinate system (p v v v) a point p and a coordinate system (p0,v1,v2,v3), a point p and a
vector v with the same (x,y,z) essentially means

(1)[]Tp=(x,y,z,1)[v1 v2 v3 p0]T

v=(x,y,z,0)[v1 v2 v3 p0]T

Vector(Point p); //converts point to vector(p); p

Operations for points
Vector v; Point p, q, r; float a;

q
q=p+v; // q=p.add(v)
q=p v;

q

q=p-v;
v=q-p; v

r=p+q;
* / pa*p; p/a; p

(This is only for the operation αp+βq.)

Distance(p,q);
()DistanceSquared(p,q);

Rays
class Ray {
public:public:
Point o;
Vector d;Vector d;
float mint, maxt;
int depth;

Initialized as a small and a large
number respectivelyint depth;

};

number respectively

(how many times the ray has bounced, ignore for now)

maxt

Ray r(o, d);
Point p=r.at(t);

d

i t

maxt

 ttt 0)(dor
o mint)(

