L WL T

e .
L S)‘:. v
5% e AP 5

) 3 . Sy

Chapter 5

FIFTH EDITION Deﬁning Classes Il

ABSOLUTE JAVA

WALTER SAVITCH

Slides prepared by Rose Williams,
Binghamton University

Kenrick Mock, University of Alaska
Anchorage

PEARSON ALWAYS LEARNING

ITrrrrrrrrrerTT

Static Methods

* A static method is one that can be used without a calling
object
e A static method still belongs to a class, and its definition is
given inside the class definition
* When a static method is defined, the keyword staticis
placed in the method header
public static returnedType myMethod(parameters)
{---12
¢ Static methods are invoked using the class name in place of a
calling object
returnedvValue = MyClass.myMethod(arguments);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-2

| BT

Pitfall: Invoking a Nonstatic Method Within a
Static Method

e A static method cannot refer to an instance variable
of the class, and it cannot invoke a nonstatic method
of the class

— A static method has no this, so it cannot use an instance
variable or method that has an implicit or explicit this for
a calling object

— A static method can invoke another static method,
however

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-3

ITrrrrrrrrrrerT

Tip: You Can Put amain in any Class

e Although the main method is often by itself in a class
separate from the other classes of a program, it can
also be contained within a regular class definition

— In this way the class in which it is contained can be used to
create objects in other classes, or it can be run as a
program

— A main method so included in a regular class definition is
especially useful when it contains diagnostic code for the
class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-4

Another Class with a main Added
(Part 1 of 4)

Display 5.3 Another Class with a main Added

import jovo.util.Scanner;

/!

Class for o temperoture (expressed in degrees Celsius).

e /

public closs Temperature

{

private double degrees; //Celsius

public Temperature()

{
degrees = 0;
}
public Temperature(double initialDegrees)
{
degrees = initialDegrees;
}
public void setDegrees(double newDegrees)
{
degrees = newDegrees;
}

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

5-5

Another Class with a main Added
(Part 2 of 4)

Display 5.3 Another Class with a main Added

20 public double getDegrees()

Z1 {

22 return degrees;

23 }

24 public String toString()

25 {

26 return (degrees + “ C"};

27 }

28

29 public boolean equals(Temperature otherTemperature)

1] {

31 return (degrees == otherTemperature.degrees);

32 1

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-6

Another Class with a main Added
(Part 3 of 4)

Display 5.3 Another Class with a main Added

42
43
44
45
46
47
48
49
58
51

JE
Returns number of Celsius degrees equal to
degreesF Fahrenheit degrees.
*f
public static double toCelsius(double degreesF)
{

return 5*(degreesF - 32)/9;
}

e this is in the

z S 7 s . class Temperature, 1
?uhllc static void main(String[] args) T O RIS IST

double degreesF, degreesC;
Scanner keyboard = new Scanner(System.in};

System.out.println("Enter degrees Faohrenheit:");
degreesF = keyboard.nextDouble();

degreesC = toCelsius(degreesF);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

equivalent to

degreesF).

(continued)

5-7

Another Class with a main Added
(Part 4 of 4)

Display 5.3 Another Class with a main Added

52 Temperature temperatureObject = new Temperature(degreesC);

53 System.out.println{"Equivalent Celsius temperature is "

54 + temperatureObject.toString(}); =
55 } 1 d, toString m have i

56 } temperatureObject.

SAMPLE DIALOGUE

Enter degrees Fahrenheit:
212
Equivalent Celsius temperature is 108.0 C

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-8

Static Variables

A static variable is a variable that belongs to the class as a
whole, and not just to one object

— There is only one copy of a static variable per class, unlike instance
variables where each object has its own copy

All objects of the class can read and change a static variable

Although a static method cannot access an instance variable,
a static method can access a static variable

A static variable is declared like an instance variable, with the
addition of the modifier static
private static int myStaticVariable;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-9

Static Variables

¢ Static variables can be declared and initialized at the same
time
private static int myStaticVariable = O;
* If not explicitly initialized, a static variable will be
automatically initialized to a default value
— boolean static variables are initialized to False
— Other primitive types static variables are initialized to the zero of their
type
— Class type static variables are initialized to nul 'l
e ltis always preferable to explicitly initialize static variables
rather than rely on the default initialization

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-10

Static Variables

e A static variable should always be defined private, unless
it is also a defined constant

— The value of a static defined constant cannot be altered,
therefore it is safe to make it public

— In addition to static, the declaration for a static defined
constant must include the modifier Final, which indicates
that its value cannot be changed

public static final int BIRTH_YEAR = 1954;

¢ When referring to such a defined constant outside its
class, use the name of its class in place of a calling object
int year = MyClass.BIRTH_YEAR;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-11

The Math Class

e The Math class provides a number of standard
mathematical methods
— Itis found in the java. lang package, so it does not
require an ImMport statement

— All of its methods and data are static, therefore they are
invoked with the class name Math instead of a calling
object

— The Math class has two predefined constants, E (¢, the
base of the natural logarithm system) and P1I (=, 3.1415 ..
)

area = Math.Pl * radius * radius;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-12

| BT

Some Methods in the Class Math
(Part 1 of 5)

Display 5.6 Some Methods in the Class Math

The Math class is in the java. lang package, so it requires no import statement.
public static double pow(double base, double exponent)

Returns base to the power exponent.
EXAMPLE
Math.pow(2.0,3.0) returns 8.0.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

5-13

|NENNENNEEEEEEEEN]

Some Methods in the Class Math
(Part 2 of 5)

Display 5.6 Some Methods in the Class Math

public static double abs(double argument)
public static float abs(float argument)
public static long abs(long argument)
public static int abs(int argument)

Returns the absolute value of the argument. (The method name abs is overloaded to produce four simi-
lar methods.)

EXAMPLE

Math.abs(-6) and Math.abs(6) both retum 6. Math. abs(=5.5) and Math.abs(5.5) both retum
5.5

public static double min(double nl, double n2)
public static fleat min(float nl, float n2)
public static long min(long nl, long n2)
public static int min(int nl, int n2)

Returns the minimum of the arguments nl and n2. (The method name min is overloaded to produce four
similar methods.)

EXAMPLE

Math.min(3, 2) returns 2.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-14

DR e

Some Methods in the Class Math
(Part 3 of 5)

Display 5.6 Some Methods in the Class Math

public static double max(double nl, double n2)
public static float max(float nl, floot n2)
public static long max(long nl, long n2)
public static int max(int nl, int n2)

Returns the maximum of the arguments n1 and n2. (The method name max is overloaded to produce four
similar methods.)

EXAMPLE

Math.max(3, 2) returns 3.

public static long round(double argument)
public static int round(float argument)

Rounds its argument.
EXAMPLE
Math.round(3.2) returns 3; Math. round(3.6) returns 4.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

5-15

T T

Some Methods in the Class Math
(Part 4 of 5)

Display 5.6 Some Methods in the Class Math

public static double ceil(double argument)

Returns the smallest whole number greater than or equal to the argument.
EXAMPLE
Math.ceil(3.2) and Math.ceil(3.9) both return 4.0.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-16

Some Methods in the Class Math
(Part 5 of 5)

Some Methods in the Class Math

public static double floor(double argument)

Returns the largest whole number less than or equal to the argument.
EXAMPLE
Math.fleor(3.2) and Math. floor(3.9) both return 3.0.

public stotic double sgqrt(double argument)

Returns the square root of its argument.
EXAMPLE
Math.sqrt(4) returns 2.0.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-17

Random Numbers

e The Math class also provides a facility to
generate pseudo-random numbers

public static double random()

— A pseudo-random number appears random but is
really generated by a deterministic function
* There is also a more flexible class named Random

o Sample use: double num = Math.random();

* Returns a pseudo-random number greater
than or equal to 0.0 and less than 1.0

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-18

Wrapper Classes

* Wrapper classes provide a class type corresponding
to each of the primitive types
— This makes it possible to have class types that behave
somewhat like primitive types

— The wrapper classes for the primitive types byte, short,
long, float, double, and char are (in order) By te,
Short, Long, Float, Double, and Character

e Wrapper classes also contain a number of useful
predefined constants and static methods

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-19

Wrapper Classes

* Boxing: the process of going from a value of a
primitive type to an object of its wrapper class
— To convert a primitive value to an "equivalent" class type
value, create an object of the corresponding wrapper class
using the primitive value as an argument

— The new object will contain an instance variable that
stores a copy of the primitive value
— Unlike most other classes, a wrapper class does not have a
no-argument constructor
Integer integerObject = new Integer(42);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-20

Wrapper Classes

e Unboxing: the process of going from an object
of a wrapper class to the corresponding value of
a primitive type
— The methods for converting an object from the
wrapper classes Byte, Short, Integer, Long,
Float, Double, and Character to their
corresponding primitive type are (in order)
bytevValue, shortValue, intValue,
longValue, floatValue, doubleValue, and
charValue

— None of these methods take an argument

int i = integerObject.intvalue();

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-21

Automatic Boxing and Unboxing

¢ Starting with version 5.0, Java can automatically do boxing
and unboxing
¢ Instead of creating a wrapper class object using the new
operation (as shown before), it can be done as an automatic
type cast:
Integer integerObject = 42;
¢ Instead of having to invoke the appropriate method (such as
intValue, doubleValue, charValue, etc.) in order to
convert from an object of a wrapper class to a value of its
associated primitive type, the primitive value can be
recovered automatically
int i = integerObject;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-22

Constants and Static Methods in Wrapper
Classes

* Wrapper classes include useful constants that
provide the largest and smallest values for any of the
primitive number types
— For example, Integer .MAX_VALUE,

Integer .MIN_VALUE, Double .MAX_VALUE,
Double_MIN_VALUE, etc.

* The Boolean class has names for two constants of
type Boolean
— Boolean.TRUE and Boolean.FALSE are the Boolean

objects that correspond to the values true and false of
the primitive type boolean

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-23

Constants and Static Methods in Wrapper
Classes

e Wrapper classes have static methods that convert a
correctly formed string representation of a number to
the number of a given type

— The methods Integer.parselnt, Long.parselLong,
Float.parseFloat, and Double.parseDouble do this
for the primitive types (in order) int, long, float, and
double

* Wrapper classes also have static methods that convert
from a numeric value to a string representation of the
value

— For example, the expression

Double.toString(123.99);
returns the string value *'123.99""

* The Character class contains a number of static
methods that are useful for string processing

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-24

| BT

Some Methods in the Class Character (Part 1
of 3)

Display 5.8 Some Methods in the Class Character

The class Character is in the java. lang package, so it requires no import statement,

public static char toUpperCase(char argument)

Returns the uppercase version of its argument. If the argument is not a letter, it is returned unchanged.
EXAMPLE

Character.toUpperCase('a') and Character.tolUpperCase("A") both retumn "A".

public stotic chor tolLowerCase(char argument)

Returns the lowercase version of its argument. If the argument is not a letter, it is returned unchanged.
EXAMPLE

Character. tolLowerCase('a') and Character.toLowerCase('A") both retumn 'a’.

public static boolean isUpperCase(chaor argument)

Returns true if its argument is an uppercase letter; otherwise returns false.

EXAMPLE

Character.isUpperCase('A") returns true. Character.isUpperCase('a") and Charac-
ter.isUpperCase('%") both return false.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-25

ITrrrrrrrrrerTT

Some Methods in the Class Character (Part 2
of 3)

Display 5.8 Some Methods in the Class Character

public stotic boolean isLowerCase(char argument)

Returns true if its argument is a lowercase letter; otherwise returns false.
EXAMPLE

Character.isLowerCase('a") returns true. Character.isLowerCase('A') and Charac-
ter.isLowerCase('%') both return false.

public static boolean isWhitespace(char argument)

Returns true if its argument is a whitespace character; otherwise returns false. Whitespace characters
are those that print as white space, such as the space character (blank character), the tab character
("%t "), and the line break character ("\n').

EXAMPLE

Character.isWhitespace(' ') returns true. Character.isWhitespace('A’) returns false.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-26

| BT

Some Methods in the Class Character (Part 3
of 3)

Display 5.8 Some Methods in the Class Character

public static boolean isLetter(char argument)

Returns true if its argument is a letter; otherwise returns false.
EXAMPLE

Character.isLetter('A') returns true. Character.isletter('%') and Character.islLet-
ter('5') both retum false.

public static boolean isDigit(char argument)
Returns true if its argument is a digit; otherwise returns false.

EXAMPLE

Character.isDigit('5") returns true. Character.isDigit('A") and Charac-
ter.isDigit('%') both return false.

public static boolean isLetterOrDigit(char argument)

Returns true if its argument is a letter or a digit; otherwise returns false.
EXAMPLE

Character.isLetterOrDigit('A') and Character.isLetterOrDigit('5"') both return true.
Character.isLetterOrDigit('&") returns false.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-27

ITrrrrrrrrrrrrd

Variables and Memory

e A computer has two forms of memory

e Secondary memory is used to hold files for
"permanent" storage

* Main memory is used by a computer when it
is running a program
— Values stored in a program's variables are kept in
main memory

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-28

Variables and Memory

* Main memory consists of a long list of numbered
locations called bytes
— Each byte contains eight bits: eight 0 or 1 digits

e The number that identifies a byte is called its address
— A data item can be stored in one (or more) of these bytes

— The address of the byte is used to find the data item when
needed

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-29

Variables and Memory

* Values of most data types require more than one
byte of storage
— Several adjacent bytes are then used to hold the data item
— The entire chunk of memory that holds the data is called
its memory location
— The address of the first byte of this memory location is
used as the address for the data item
* A computer's main memory can be thought of as a
long list of memory locations of varying sizes

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

5-30

Variables in Memory

Display 5,10 Variables in Memory
AAARAARRARA NN
AN ——variablel (3-byte location with addres:
AMMAMAMIY—
. - - variable2 (2-byte
\ '. ——— variable3 (i-byte location with address 5
———variable4

RhiL

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-31

References

* Every variable is implemented as a location in
computer memory

e When the variable is a primitive type, the value of
the variable is stored in the memory location
assigned to the variable

— Each primitive type always require the same amount of
memory to store its values

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

5-32

1

LI

|

References

* When the variable is a class type, only the memory address
(or reference) where its object is located is stored in the
memory location assigned to the variable

— The object named by the variable is stored in some other location in
memory

— Like primitives, the value of a class variable is a fixed size

— Unlike primitives, the value of a class variable is a memory address or
reference

— The object, whose address is stored in the variable, can be of any size

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-33

BERREEE

|

References

* Two reference variables can contain the same
reference, and therefore name the same object
— The assignment operator sets the reference (memory
address) of one class type variable equal to that of another

— Any change to the object named by one of theses variables
will produce a change to the object named by the other
variable, since they are the same object

variable2 = variablel;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-34

L BUE N

|

Class Type Variables Store a Reference (Part 1 of

Display 5.1z Class Type Variables Store a Reference
bli lass ToyClas A

?u reielass Toytless ToyClass sampleVariable;
private String name; : 5.a|‘.|p'lc:\:’t|.r"l€.|b'le
private int number; :

ToyClass is given in Display 5.11. \/\/\/
sampleVariable !
sampleVariable =

new ToyClass(“"Jlosephine Student", 42);

irlable sampleVariable. We

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-35

Class Type Variables Store a Reference (Part 2 of
2)

Class Type Variables Store a Reference

\/\/“x\/

sampleVarioble | 20856

/‘

N

2056 | Josephine Student
42

L

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-36

[LB

1

Assignment Operator with Class Type Variables (Part
1 of 3)

Display 5.3 Assignment Operator with Class Type Variables

ToyClass variaoblel = new ToyClass(“Joe", 42);
ToyClass varioble2;

varioblel | 4068 eference) is stored In the var

variablel. Let's say it is 4068. The
variable2 ?

new ToyClass("Joe", 42)
4068 Joe

42 ek
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-37

ITTTTTTrTrTT

Assignment Operator with Class Type Variables (Part
2 of 3)

Display 513 Assignment Operator with Class Type Variables

variable? = variablel;

variablel 4068
varioble2 4068
4068 Joe re
42 o
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-38

[0 0

Assignment Operator with Class Type Variables (Part
3 of 3)

pisplay 5,13 Assignment Operator with Class Type Variables

variable.set("Josephine”, 1);

variablel _EBEB_
variable2 4068

4068 Josephine P
1

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-39

ITTTTITIrrTTT

Class Parameters

* All parameters in Java are call-by-value
parameters

— A parameter is a local variable that is set equal to the
value of its argument

— Therefore, any change to the value of the parameter
cannot change the value of its argument
* Class type parameters appear to behave
differently from primitive type parameters

— They appear to behave in a way similar to parameters
in languages that have the call-by-reference
parameter passing mechanism

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-40

1

Class Parameters

* The value plugged into a class type parameter is
a reference (memory address)

— Therefore, the parameter becomes another name for
the argument

— Any change made to the object named by the
parameter (i.e., changes made to the values of its
instance variables) will be made to the object named
by the argument, because they are the same object

— Note that, because it still is a call-by-value parameter,
any change made to the class type parameter itself
(i.e., its address) will not change its argument (the
reference or memory address)

Parameters of a Class Type

Display 5.1, Parameters of a Class Type

1 public class ClassParameterDemo ToyClass
{

public static void main(String[] args)

5 ToyClass anObject = new ToyClass("Mr. Cellophane", @);

¢ System.out.println(anObject);

7 System.out.println(

8 "Now we call changer with anObject as argument.");
9 ToyClass.changer(anObject) ;

1@ System.out.println(anObject); :
1 } MNotice that the method changer

ect anObject
SAMPLE DIALOGUE

Mr. Cellophane @
Now we call changer with anObject as argument.

= - Hot Shot 42
E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-41 E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-42
Memory Picture for Display 5.14 Memory Picture for Display 5.14
(Part 1 of 3) (Part 2 of 3)
Display 5.15 Memory Picture for Display 5.14 Display 5,15 Memory Picture for Display 5.14
anObject is plugaed in for aParamter.
anObject and aParameter become two names for the same object
aParameter 7 eference) is st
anObject. Let's
: sumber does not matier aParameter 3078)
andbject 3078 B
anObject 3078 i
3078 Mr. Cellophane | . ,
: e : 3078 Mr. Cellophane L i/
- = 0 [
E (continued) E (continued)
= Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-43 — Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-44

1

[00

Memory Picture for Display 5.14
(Part 3 of 3)

Display 5.15 Memory Picture for Display 5.14

ToyClass. changer{anObject) ; is executed

arameter.nome = “Hot Shot";
aParon

er.number = 42;

result, anObject 1anaed
aParameter 36878
anfbject 36878
3078 | Hot Shot g
42 .
e

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

5-45

ITTTTTTrTrTT

Differences Between Primitive and Class-Type
Parameters

* A method cannot change the value of a
variable of a primitive type that is an
argument to the method

* In contrast, a method can change the values of
the instance variables of a class type that is an
argument to the method

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-46

1

[0 0

Comparing Parameters of a Class Type and a
Primitive Type (Part 1 of 2)

Display 5.6 Comparing Parameters of a Class Type and a Primitive Type

1 public closs ParametersDemo
2 1 ToyClass2
3 public static void main(String[] args) Pisplay 5.17.
4 {
ToyClass2 objectl = new ToyClass2(),
6 object? = new ToyClass2();
7 objectl.set("Scorpius"”, 1);
8 object2.set("lohn Crichton”, 2);
9 System.out.println("Value of objectZ before call to method:");
18 System.out.println(object2);
11 objectl.makeEqual(object2);
12 System.out.println("Value of object2 after call to method:");
13 System.out.println{object2);

15 int aMumber = 42;
16 System.out.println("Value of oNumber before call to method: *

17 + aNumber) ;
18 objectl.tryToMakeEqual {aNumber) ;
19 System.out.println("Value of aNumber after call to method: "

20 + aNumber);

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

5-47

ITTTTITIrrTTT

Comparing Parameters of a Class Type and a
Primitive Type (Part 2 of 2)

Display 5.6 Comparing Parameters of a Class Type and a Primitive Type

SAMPLE DIALOGUE An sraumant of 8 ¢l

Value of object2 before
John Crichton 2
Value of object2
Scorpius 1 ;
Value of aNumber before call to method: 42=——— 174
Value of aNumber after call to method: 42

r call to method:

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-48

1

ITITrrrrn

A Toy Class to Use in Display 5.16
(Part 1 of 2)

Display 5.17 A Toy Class to Use in Display 5.16

1 public class ToyClass2
2 {
private String name;
private int number;

5 public void set(String newName, int newNumber)

6 {

i name = newName;

8 number = newNumber;

9 }

16 public String toString()

11 {

12 return (nome + " " + number);

13 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-49

ITTTTITTT

A Toy Class to Use in Display 5.16
(Part 2 of 2)

Display 5,17 A Toy Class to Use in Display 5.16

14 public void makeEqual(ToyClass2 anObject)
15 {

16 anObject.name = this.name;

17 anObject.number = this.number;
18 }

19 public void tryToMakeEqual(int aNumber)

20 {

21 aNumber = this.number;

22 }

23 public boolean equals(ToyClass2 otherObject)

24 {

return { (name.equals(otherObject.name))

26 && (number == otherObject.number));
27 }

<Other methods can be the same as in Display 5.1, although no
other methods are needed or used in the current discussion.>

28}
29
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-50

1

LI LB T

Pitfall: Use of = and == with Variables of a Class

Type

e Used with variables of a class type, the assignment
operator (=) produces two variables that name the same
object

— This is very different from how it behaves with primitive type
variables

¢ The test for equality (==) also behaves differently for
class type variables

— The == operator only checks that two class type variables have
the same memory address

— Unlike the equal's method, it does not check that their
instance variables have the same values

— Two objects in two different locations whose instance variables
have exactly the same values would still test as being "not
equal"

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-51

ITTrrrrrrl

The Constant nul |

nul I is a special constant that may be assigned to a variable
of any class type
YourClass yourObject = null;
It is used to indicate that the variable has no "real value"
— Itis often used in constructors to initialize class type instance variables
when there is no obvious object to use

nul I is not an object: It is, rather, a kind of "placeholder" for
a reference that does not name any memory location

— Because it is like a memory address, use == or != (instead of equals)
to test if a class variable contains null

if (yourObject == null) . . .

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-52

1

ITITrrrrn

Pitfall: Null Pointer Exception

Even though a class variable can be initialized to nul I, this
does not mean that nul I is an object

— nul'l is only a placeholder for an object
A method cannot be invoked using a variable that is initialized
tonull

— The calling object that must invoke a method does not exist
Any attempt to do this will result in a "Null Pointer Exception"
error message

— For example, if the class variable has not been initialized at all (and is
not assigned to nul), the results will be the same

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-53

ITTTTITTT

The new Operator and Anonymous Objects

* The new operator invokes a constructor which initializes an

object, and returns a reference to the location in memory of
the object created

— This reference can be assigned to a variable of the object's class type
Sometimes the object created is used as an argument to a
method, and never used again

— In this case, the object need not be assigned to a variable, i.e., given a

name

An object whose reference is not assigned to a variable is
called an anonymous object

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-54

1

LI LB T

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

Another Approach to Keyboard Input Using
Double.parseDouble (Part 1 of 3)

isplay 5,18 Use of the method Double.parseDouble

1 import joava.util.Scanner;
2 import jova.util.StringTokenizer

public class InputExample
{
public static void main{String[] args)
[{
Scanner keyboard = new Scanner{System.in);

8 System.out.println("Enter two numbers on a line.");

2 System.out.println("Place a comma between the numbers.");
18 System.out.println("Extra blank space is OK.");

11 String inputLine = keyboard.nextLine();

12 String delimiters = ", "; //Comma and blank spoce
13 stringTokenizer numberFactory =
14 new StringTokenizer(inputline, delimiters);

(continued)

5-55

ITTrrrrrrl

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

Another Approach to Keyboard Input Using
Double.parseDouble (Part 2 of 3)

Display 518 Use of the method Double.parseDouble

15 String stringl = null;

16 String string2 = null;

17 if (numberFactory.countTokens() »>= 2)

18 {

19 stringl = numberFactory.nextToken();

20 string2 = numberFactory.nextToken();

21 }

22 else

23 {

24 System.out.println("Fatal Error.");

25 System.exit(0);

26 }

27 double numberl = Double.parseDouble(stringl);
28 double number2 = Double.parseDouble(string2);
29 System.out.print("You input ");

30 System.out.println(numberl + " and " + number2);
31 1

32 }

(continued)
556

Another Approach to Keyboard Input Using
Double.parseDouble (Part 3 of 3)

Use of the method Double.parseDouble

SAMPLE DIALOGUE

Enter two numbers on a line.
Place a comma between the numbers.
Extra blank space is OK.
41.98, 42
You input is 41.98 and 42.0

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

Using and Misusing References

* When writing a program, it is very important to

insure that private instance variables remain truly
private

* For a primitive type instance variable, just adding the

private modifier to its declaration should insure
that there will be no privacy leaks

* For a class type instance variable, however, adding

the private modifier alone is not sufficient

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-58

Designing A Person Class: Instance Variables

* Asimple Person class could contain instance variables
representing a person's name, the date on which they
were born, and the date on which they died

 These instance variables would all be class types: name
of type String, and two dates of type Date

* Asafirst line of defense for privacy, each of the instance
variables would be declared private
public class Person

{
private String name;
private Date born;
private Date died; //null is still alive

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-59

Designing a Person Class: Constructor

* In order to exist, a person must have (at least) a name
and a birth date

— Therefore, it would make no sense to have a no-argument
Person class constructor

* A person who is still alive does not yet have a date of
death

— Therefore, the Person class constructor will need to be able to
deal with a null I value for date of death

* A person who has died must have had a birth date that
preceded his or her date of death

— Therefore, when both dates are provided, they will need to be
checked for consistency

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-60

1

ITITrrrrn

A Person Class Constructor

public Person(String initialName, Date birthDate,
Date deathDate)
{
if (consistent(birthDate, deathDate))
{ name = initialName;
born = new Date(birthDate);
if (deathDate == null)

died = null;
else
died = new Date(deathDate);
}
else

{ System.out.printIn(*'Inconsistent dates.");
System.exit(0);
}
}

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-61

ITTTTITrTe

Designing a Person Class: the Class Invariant

¢ A statement that is always true for every object of the class is

called a class invariant

— A class invariant can help to define a class in a consistent and
organized way

For the Person class, the following should always be true:

— An object of the class Person has a date of birth (which is not nul'll),
and if the object has a date of death, then the date of death is equal to
or later than the date of birth

Checking the Person class confirms that this is true of every
object created by a constructor, and all the other methods
(e.g., the private method consistent) preserve the truth
of this statement

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-62

LI BB TR

Designing a Person Class: the Class Invariant

/** Class invariant: A Person always has a date of birth,
and iIf the Person has a date of death, then the date of
death is equal to or later than the date of birth.

To be consistent, birthDate must not be null. If there
is no date of death (deathDate == null), that is
consistent with any birthDate. Otherwise, the birthDate
must come before or be equal to the deathDate.

*/

private static boolean consistent(Date birthDate, Date

deathDate)

if (birthDate == null) return false;

else if (deathDate == null) return true;

else return (birthDate.precedes(deathDate ||
birthDate.equals(deathDate));

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-63

EENNNNENEE

Designing a Person Class: the equals and
datesMatch Methods

* The definition of equals for the class Person

includes an invocation of equals for the class
String, and an invocation of the method equals
for the class Date

Java determines which equal s method is being
invoked from the type of its calling object

* Also note that the di1ed instance variables are

compared using the datesMatch method instead
of the equals method, since their values may be
null

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-64

[LB

1

Designing a Person Class: the equals
Method

public boolean equals(Person otherPerson)
{
if (otherPerson == null)
return false;
else
return (name.equals(otherPerson.name) &&
born.equals(otherPerson.born) &&
datesMatch(died, otherPerson.died));

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-65

ITTTTTTrTrTT

Designing a Person Class: the matchDate
Method

/** To match datel and date2 must either be the
same date or both be null.
*/
private static boolean datesMatch(Date datel,
Date date2)
{

if (datel == null)
return (date2 == null);

else if (date2 == null) //8&& datel !'= null
return false;

else // both dates are not null.
return(datel.equals(date?));

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-66

[0 0

Designing a Person Class: the toString
Method

* Like the equals method, note that the Person class
toString method includes invocations of the Date
class toString method

public String toString()

{
String diedString;
if (died == null)
diedString = ""'; //Empty string
else
diedString = died.toString();

return (name + ", " + born + - + diedString);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-67

ITTTTITIrrTTT

Copy Constructors

* A copy constructor is a constructor with a single
argument of the same type as the class

* The copy constructor should create an object that is
a separate, independent object, but with the
instance variables set so that it is an exact copy of
the argument object

* Note how, in the Date copy constructor, the values
of all of the primitive type private instance variables
are merely copied

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-68

LEEETE

|

Copy Constructor for a Class with Primitive Type
Instance Variables

public Date(Date aDate)

{
if (abate == null) //Not a real date.

{
System.out.printIn(*'Fatal Error.');

System.exit(0);
}

month = aDate.month;
day = aDate.day;
year = aDate.year;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-69

|

Copy Constructor for a Class with Class Type
Instance Variables

¢ Unlike the Date class, the Person class contains
three class type instance variables

e If the born and died class type instance variables
for the new Person object were merely copied,
then they would simply rename the born and died
variables from the original Person object

born = original .born //dangerous
died = original.died //dangerous

— This would not create an independent copy of the original
object

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-70

I BLH I

|

Copy Constructor for a Class with Class Type
Instance Variables

* The actual copy constructor for the Person class is a "safe"
version that creates completely new and independent copies
of born and died, and therefore, a completely new and
independent copy of the original Person object

— For example:
born = new Date(original .born);

* Note that in order to define a correct copy constructor for a
class that has class type instance variables, copy constructors
must already be defined for the instance variables' classes

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-71

Copy Constructor for a Class with Class Type
Instance Variables

public Person(Person original)
{
if (original == null)
{
System.out.printin("'Fatal error.');
System.exit(0);
}
name = original.name;
born = new Date(original._born);
if (original.died == null)
died = null;
else
died = new Date(original.died);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-72

Pitfall: Privacy Leaks

e The previously illustrated examples from the Person
class show how an incorrect definition of a constructor
can result in a privacy leak

* Asimilar problem can occur with incorrectly defined
mutator or accessor methods
— For example:
public Date getBirthDate()
{

return born; //dangerous

}

— Instead of:
public Date getBirthDate()
{

return new Date(born); //correct
}

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

Mutable and Immutable Classes

* The accessor method getName from the Person class
appears to contradict the rules for avoiding privacy leaks:
public String getName()
{
return name; //lIsn"t this dangerous?

}

e Although it appears the same as some of the previous
examples, it is not: The class String contains no mutator
methods that can change any of the data in a String object

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

Mutable and Immutable Classes

* A class that contains no methods (other than
constructors) that change any of the data in an
object of the class is called an immutable class

— Objects of such a class are called immutable objects

— It is perfectly safe to return a reference to an immutable
object because the object cannot be changed in any way

— The String class is an immutable class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

Mutable and Immutable Classes

A class that contains public mutator methods or
other public methods that can change the data in its
objects is called a mutable class, and its objects are
called mutable objects

— Never write a method that returns a mutable object

— Instead, use a copy constructor to return a reference to a
completely independent copy of the mutable object

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-76

Deep Copy Versus Shallow Copy

* A deep copy of an object is a copy that, with one
exception, has no references in common with the
original

— Exception: References to immutable objects are allowed
to be shared

* Any copy that is not a deep copy is called a shallow
copy

— This type of copy can cause dangerous privacy leaks in a
program

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

Packages and Import
Statements

* Java uses packages to form libraries of classes

* A package is a group of classes that have been
placed in a directory or folder, and that can be
used in any program that includes an import
statement that names the package

— The import statement must be located at the
beginning of the program file: Only blank lines,
comments, and package statements may precede it

— The program can be in a different directory from the
package

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

Import Statements

* We have already used import statements to
include some predefined packages in Java, such
as Scanner from the java.uti I package

import java.util.Scanner;
* |tis possible to make all the classes in a package
available instead of just one class:
import java.util.*;
— Note that there is no additional overhead for
importing the entire package

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

The package Statement

* To make a package, group all the classes
together into a single directory (folder), and add
the following package statement to the
beginning of each class file:

package package name;
— Only the . class files must be in the directory or
folder, the . java files are optional

— Only blank lines and comments may precede the
package statement

— If there are both import and package statements, the
package statement must precede any import
statements

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

5-80

The Package jJava. lang

» The package java. lang contains the classes
that are fundamental to Java programming

— It is imported automatically, so no import
statement is needed

— Classes made available by Java. lang include
Math, String, and the wrapper classes

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-81

Package Names and Directories

¢ A package name is the path name for the directory or
subdirectories that contain the package classes

¢ Java needs two things to find the directory for a package: the
name of the package and the value of the CLASSPATH
variable
— The CLASSPATH environment variable is similar to the PATH
variable, and is set in the same way for a given operating system
— The CLASSPATH variable is set equal to the list of directories
(including the current directory, " .") in which Java will look for
packages on a particular computer
— Java searches this list of directories in order, and uses the first
directory on the list in which the package is found

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-82

A Package Name

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-83

Pitfall: Subdirectories Are Not Automatically
Imported

¢ When a package is stored in a subdirectory of the directory containing
another package, importing the enclosing package does not import the
subdirectory package

e Theimport statement:
import utilities.numericstuff.>;
imports the utilities.numericstufTf package only
e The import statements:
import utilities.numericstuff.>;
import utilities.numericstuff.statistical.*;
import both the utilities.numericstuffand
utilities.numericstuff.statistical packages

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-84

The Default Package

* All the classes in the current directory belong
to an unnamed package called the default
package

* As long as the current directory (.) is part of
the CLASSPATH variable, all the classes in
the default package are automatically
available to a program

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-85

Pitfall: Not Including the Current Directory in
Your Class Path

¢ |f the CLASSPATH variable is set, the current
directory must be included as one of the alternatives

— Otherwise, Java may not even be able to find the .class
files for the program itself

¢ |f the CLASSPATH variable is not set, then all the
class files for a program must be put in the current
directory

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-86

Specifying a Class Path When You Compile

e The class path can be manually specified when
a class is compiled

—Just add —classpath followed by the desired
class path

— This will compile the class, overriding any previous
CLASSPATH setting

* You should use the —classpath option
again when the class is run

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-87

Name Clashes

* |n addition to keeping class libraries organized, packages
provide a way to deal with name clashes: a situation in which
two classes have the same name

— Different programmers writing different packages may use the same
name for one or more of their classes

— This ambiguity can be resolved by using the fully qualified name (i.e.,
precede the class name by its package name) to distinguish between
each class

package_name.ClassName

— If the fully qualified name is used, it is no longer necessary to import
the class (because it includes the package name already)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-88

Introduction to Jjavadoc

* Unlike a language such as C++, Java places both the interface
and the implementation of a class in the same file

* However, Java has a program called javadoc that
automatically extracts the interface from a class definition and
produces documentation

— This information is presented in HTML format, and can be viewed with
a Web browser

— If aclass is correctly commented, a programmer need only refer to this
API (Application Programming Interface) documentation in order to
use the class

— jJavadoc can obtain documentation for anything from a single class
to an entire package

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-89

Commenting Classes for Javadoc

e The jJavadoc program extracts class headings, the
headings for some comments, and headings for all
public methods, instance variables, and static variables

— Inthe normal default mode, no method bodies or private
items are extracted

¢ To extract a comment, the following must be true:

1. The comment must immediately precede a public class or
method definition, or some other public item

2. The comment must be a block comment, and the opening /*
must containanextra™ (/** . . . */)

— Note: Extra options would have to be set in order to extract
line comments (//) and private items

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-90

Commenting Classes for javadoc

¢ In addition to any general information, the comment
preceding a public method definition should include
descriptions of parameters, any value returned, and
any exceptions that might be thrown

— This type of information is preceded by the @ symbol and is
called an @ tag

— (@ tags come after any general comment, and each one is on a
line by itself

/**
General Comments about the method . . .
@param aParameter Description of aParameter
@return What is returned

*/

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-91

@ Tags

e @ tags should be placed in the order found below

¢ If there are multiple parameters, each should have its own @param
on a separate line, and each should be listed according to its left-to-
right order on the parameter list

¢ If there are multiple authors, each should have its own @author
on a separate line

@param Parameter_Name Parameter_Description
@return Description_Of Value Returned
@throws Exception_Type Explanation
@deprecated
@see Package_Name.Class_Name
@author Author

- @version Version_Information

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 5-92

| BT

Running javadoc

* Torun javadoc on a package, give the following
command:
javadoc —d Documentation_Directory Package Name

— The HTML documents produced will be placed in the
Documentation_Directory

— Ifthe —d and Documentation_Directory are omitted,
Javadoc will create suitable directories for the
documentation

* Torun javadoc on a single class, give the following
command from the directory containing the class file:
javadoc ClassName.java

e To run javadoc on all the classes in a directory, give the
following command instead: javadoc *.java

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 5-93

ITrrrrrrrrrerTT

Options for javadoc

23 Options for java.doc

Display s.

—link Link_To_Other_Docs Provides a link to another set of documentation. Normally, this is
used with either a path name to a local version of the Java docu-
mentation or the URL of the Sun Web site with standard Java docu-

mentation.

—d Documentation_Directory Specifies a directory to hold the documentation generated.
Documentation_Directory may be a relative or absolute path
name.

-author Includes author information (from @author tags). This informa-

tion is omitted unless this option is set.

-version Includes version information (from @version tags). This infor-
mation is omitted unless this option is set.

~classpath List_of_Directories Overrides the CLASSPATH environment variable and makes
List_of_Directories the CLASSPATH for the execution of this invoca-
tion of javadoc. Does not permanently change the CLASSPATH
variable.

-private Includes private members as well as public members in the
documentation.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

5-94

