L WL T

f Chapter 19
FIFTH EDITION Java
Never Ends

ABSOLUTE JAVA

WALTER SAVITCH
Slides prepared by Rose Williams,
Binghamton University

Kenrick Mock, University of Alaska
Anchorage

PEARSON

ALWAYS LEARNING

ITrrrrrrrrrerTT

Multithreading

* InJava, programs can have multiple threads
— Athread is a separate computation process
* Threads are often thought of as computations that run in
parallel
— Although they usually do not really execute in parallel

— Instead, the computer switches resources between threads so
that each one does a little bit of computing in turn

¢ Modern operating systems allow more than one program
to run at the same time

— An operating system uses threads to do this

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 19-2

| BT

Thread.sleep

Thread.sleep is a static method in the class Thread that
pauses the thread that includes the invocation
— It pauses for the number of milliseconds given as an argument

— Note that it may be invoked in an ordinary program to insert a pause
in the single thread of that program

It may throw a checked exception,
InterruptedException, which must be caught or
declared

— Both the Thread and InterruptedException classes arein
the package java. lang

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 19-3

ITrrrrrrrrrrerT

The getGraphics Method

* The method getGraphics is an accessor

method that returns the associated
Graphics object of its calling object

— Every JComponent has an associated
Graphics object

Component.getGraphics();

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 19-4

1

ITITrrrrn

A Nonresponsive GUI

* The following program contains a simple GUI that
draws circles one after the other when the "Start"
button is clicked

- Thelre is a 1/10 of a second pause between drawing each
Circie

* |If the close-window button is clicked, nothing
happens until the program is finished drawing all its
circles

* Note the use of the Thread.sleep (in the method
doNothing) and getGraphics (in the method
Ti1ll)methods

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-5

ITTTTITrTe

Nonresponsive GUI (Part 1 of 9)

Nonresponsive GUI

import javax.swing.JFrame;

import javax.swing.J]Panel;

import javax.swing.J]Button;

import java.awt.BorderLayout;

import java.awt.FlowLayout;

import java.awt.Graphics;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

W NV R W

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-6

LI BB TR

Nonresponsive GUI (Part 2 of 9)

Nonresponsive GUI

9 X

10 Packs a section of the frame window with circles, one at a time.

11 */

12 public class FillDemo extends JFrame implements ActionListener

13 {

14 public static final int WIDTH = 300;

15 public static final int HEIGHT = 200;

16 public static final int FILL_WIDTH = 300;

17 public static final int FILL_HEIGHT = 100;

18 public static final int CIRCLE_SIZE = 10;

19 public static final int PAUSE = 100; //milliseconds

20 private JPanel box;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-7

EENNNNENEE

Nonresponsive GUI (Part 3 of 9)

Nonresponsive GUI

21 public static void main(String[] args)
22 {

23 FillDemo gui = new FillDemo();

24 gui.setVisible(true);

25 }

26 public FillDemo()

27 {

28 setSize(WIDTH, HEIGHT);

29 setTitle("FillDemo");

30 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
31 setLayout(new BorderLayout());

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-8

| BT

Nonresponsive GUI (Part 4 of 9)

Nonresponsive GUI

32 box = new JPanel();

33 add(box, "Center");

34 JPanel buttonPanel = new JPanel();

35 buttonPanel.setLayout(new FlowLayout());

36 JButton startButton = new JButton("Start");

37 startButton.addActionListener(this);

38 buttonPanel.add(startButton);

39 add(buttonPanel, "South');

40 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 19-9

ITrrrrrrrrrerTT

Nonresponsive GUI (Part 5 of 9)

Nonresponsive GUI

41 public void actionPerformed(ActionEvent e)
42 { loth somen until
43 FI1LO); -1—_____———‘ .’\InLt.ug else can happen .Am.‘. .
44 } actionPerformed returns, which
does not happen until £il1
eturns,
45 public void FillQ rerdrns
46 {
47 Graphics g = box.getGraphics();
48 for (int y = 0; y < FILL_HEIGHT; y = y + CIRCLE_SIZE)
49 for (int x = 0; x < FILL_.WIDTH; x = x + CIRCLE_SIZE)
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 19-10

| BT

Nonresponsive GUI (Part 6 of 9)

Nonresponsive GUI

50 {

51 g.fill0val(x, y, CIRCLE_SIZE, CIRCLE_SIZE);

52 doNothing (PAUSE) ;

53 }

54 }

Everything stops for 100
milliseconds (1/10 of a

second).

55 public void doNothing(int milliseconds)
56 {

57 try

58

59 Thread.sleep(milliseconds);

60 }

61 catch(InterruptedException e)

62 {

63 System.out.println("Unexpected interrupt");
64 System.exit(0);

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 19-11

ITrrrrrrrrrrrrd

Nonresponsive GUI (Part 7 of 9)

Nonresponsive GUI

RESULTING GUI (When started)

& FillDemo EHE‘

Start

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 19-12

1

LI

|

Nonresponsive GUI (Part 8 of 9)

Nonresponsive GUI

RESULTING GUI (While drawing circles)

0006000000 000000000000000000]
3500600654

|ty

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-13

BERREEE

|

Nonresponsive GUI (Part 9 of 9)

Nonresponsive GUI

RESULTING GUI (After all circles are drawn)

+
15 55008006080084 + +
0000000000000 00000000000s0

++ttttt

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-14

L BUE N

|

Fixing a Nonresponsive Program Using Threads

* This is why the close-window button does not
respond immediately:

— Because the method Fi Il is invoked in the body of the
method actionPerformed, the method
actionPerformed does not end until after the method
fill ends

— Therefore, the method actionPerformed does not
end until after the method Fi Il ends

— Until the method actionPerformed ends, the GUI
cannot respond to anything else

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-15

Fixing a Nonresponsive Program Using Threads

* This is how to fix the problem:

— Have the actionPerformed method create a new
(independent) thread to draw the circles

— Once created, the new thread will be an independent
process that proceeds on its own

— Now, the work of the actionPerformed method is
ended, and the main thread (containing
actionPerformed) is ready to respond to something
else

— If the close-window button is clicked while the new thread
draws the circles, then the program will end

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-16

1

ITITrrrrn

The Class Thread

* InJava, a thread is an object of the class Thread

* Usually, a derived class of Thread is used to
program a thread
— The methods run and start are inherited from Thread

— The derived class overrides the method run to program
the thread

— The method start initiates the thread processing and
invokes the run method

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-17

ITTTTITTT

A Multithreaded Program that Fixes a
Nonresponsive GUI

* The following program uses a main thread and a second
thread to fix the nonresponsive GUI
— It creates an inner class Packer that is a derived class of Thread
— The method run is defined in the same way as the previous method
fill
— Instead of invoking Fi I I, the actionPerformed method now

creates an instance of Packer, a new independent thread named
packerThread

— The packerThread object then invokes its start method
— The start method initiates processing and invokes run

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-18

1

LI LB T

Threaded Version of Fi 1 IDemo (Part 1 of 6)

Threaded Version of FillDemo

1 import javax.swing.JFrame;

2 import javax.swing.JPanel;

3 import javax.swing.J]Button;

4 import java.awt.BorderlLayout;

5 import java.awt.FlowLayout;

6 import java.awt.Graphics;

7 import java.awt.event.ActionListener;
8 import java.awt.event.ActionEvent;

(continued)

The GUI produced is identical to the GUI produced by Display 19.1
except that in this version the close window button works even
while the circles are being drawn, so you can end the GUI early if
you get bored.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-19

ITTrrrrrrl

Threaded Version of Fi 1 1Demo (Part 2 of 6)

Threaded Version of FillDemo

9 public class ThreadedFillDemo extends JFrame implements ActionListener

e {

11 public static final int WIDTH = 300;

12 public static final int HEIGHT = 200;

13 public static final int FILL_WIDTH = 300;

14 public static final int FILL_HEIGHT = 100;

15 public static final int CIRCLE_SIZE = 10;

16 public static final int PAUSE = 100; //milliseconds
17 private JPanel box;

18 public static void main(String[] args)

19 {

20 ThreadedFillDemo gui = new ThreadedFillDemo();
21 gui.setVisible(true);

22 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-20

| IO

Threaded Version of Fi 1 IDemo (Part 3 of 6)

Threaded Version of FillDemo

23
24
25
26
27

28

29
30

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

public ThreadedFillDemo()

{

setSize(WIDTH, HEIGHT);
setTitle("Threaded Fill Demo™);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setLayout(new BorderLayout());

box = new JPanel();
add(box, "Center");

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new FlowLayout());

(continued)

19-21

ITrrrrrrrrrerTT

Threaded Version of Fi 1 1Demo (Part 4 of 6)

Threaded Version of FillDemo

You need a th
if there are no instance

/var‘."a‘y"cs in the class

definition of Packer

33 JButton startButton = new JButton("Start™);
34 startButton.addActionlListener(this);

35 buttonPanel.add(startButton);

36 add(buttonPanel, "South");

37 }

38 public void actionPerformed(ActionEvent e)

39 {

40 Packer packerThread = new Packer();

41 packerThread.start();

42 } T

43 private class Packer extends Thread run.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

(continued)

start “starts” the thread and calls

19-22

| BT

Threaded Version of Fi 1 IDemo (Part 5 of 6)

Threaded Version of FillDemo

44 {

45 public void run() run is inherited from Thread but needs

46 { - to be overridden.

47 Graphics g = box.getGraphics();

48 for (int y = ©; y < FILL_HEIGHT; y = y + CIRCLE_SIZE)

49 for (int x = 0; x < FILL_WIDTH; x = x + CIRCLE_SIZE)

50

51 g.fillOval(x, y, CIRCLE_SIZE, CIRCLE_SIZE);

52 doNothing (PAUSE) ;

53 1

54 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

19-23

ITrrrrrrrrrrerT

Threaded Version of Fi 1 1Demo (Part 6 of 6)

Threaded Version of FillDemo

55 public void doNothing(int milliseconds)
56 {

57 try

58 {

59 Thread.sleep(milliseconds);

60 }

61 catch(InterruptedException e)

62 {

63 System.out.println("Unexpected interrupt");
64 System.exit(0);

65 }

66 }

67 } //End Packer inner class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

19-24

1

[00

The Runnabl e Interface

* Another way to create a thread is to have a class
implement the Runnab l e interface

— The Runnabl e interface has one method heading:

public void runQ);

* A class that implements Runnab I e must still be run
from an instance of Thread

— This is usually done by passing the Runnabl e object as

an argument to the thread constructor

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 19-25

ITTTTTTrTrTT

The Runnabl e Interface: Suggested
Implementation Outline

public class ClassToRun extends SomeClass implements

Runnable

{.

public void run()

// Fill this as if ClassToRun
// were derived from Thread

}

public void startThread()

{
Thread theThread = new Thread(this);
theThread.run();

}

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

19-26

1

[0 0

The Runnable Interface (Part 1 of 5)

The Runnable Interface

1 import javax.swing.JFrame;

2 import javax.swing.J]Panel;

3 1import javax.swing.J]Button;

4 import java.awt.BorderLayout;

5 import java.awt.FlowLayout;

6 import java.awt.Graphics;

7 import java.awt.event.ActionlListener;

8 import java.awt.event.ActionEvent;

9 public class ThreadedFillDemo2 extends JFrame

10 implements ActionListener, Runnable

11 {

12 public static final int WIDTH = 300;

13 public static final int HEIGHT = 200;

14 public static final int FILL_WIDTH = 300;

15 public static final int FILL_HEIGHT = 100;

16 public static final int CIRCLE_SIZE = 10;

17 public static final int PAUSE = 100; //milliseconds

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 19-27

ITTTTITIrrTTT

The Runnable Interface (Part 2 of 5)

The Runnable Interface

18 private JPanel box;

19 public static void main(String[] args)

20 {

21 ThreadedFillDemo2 gui = new ThreadedFillDemo2();
22 gui.setVisible(true);

23 1

24 public ThreadedFillDemo2()

25 {

26 setSize (WIDTH, HEIGHT);

27 setTitle("Threaded Fill Demo");

28 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
29 setLayout(new BorderLayout());

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

19-28

LEEETE

The Runnable Interface (Part 3 of 5)

The Runnable Interface

30 box = new JPanel();

31 add(box, "Center");

32 JPanel buttonPanel = new JPanel();

33 buttonPanel.setLayout(new FlowLayout());

34 JButton startButton = new JButton("Start™);

35 startButton.addActionlListener(this);

36 buttonPanel.add(startButton);

37 add(buttonPanel, "South");

38 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-29

The Runnable Interface (Part 4 of 5)

The Runnable Interface

39
40
41
42

public void actionPerformed(ActionEvent e)

{

}

startThread();

public void run()

{

Graphics g = box.getGraphics();
for (int y = 0; y < FILL_HEIGHT; y = y + CIRCLE_SIZE)

for (int x = ©; x < FILL_WIDTH; x = x + CIRCLE_SIZE)

{

}

g.fillOval(x, y, CIRCLE_SIZE, CIRCLE_SIZE);
doNothing(PAUSE) ;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

(continued)

I BLH I

The Runnable Interface (Part 5 of 5)

The Runnable Interface

53 public void startThread()
54 {
55 Thread theThread = new Thread(this);
56 theThread.start();
57 3
58 public void doNothing(int milliseconds)
59 {
60 try
61 {
62 Thread.sleep(milliseconds);
63 }
64 catch(InterruptedException e)
65 {
66 System.out.println("Unexpected interrupt™);
67 System.exit(0);
68 }
69 }
70
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-31

Race Conditions

When multiple threads change a shared

variable it is sometimes possible that the
variable will end up with the wrong (and often
unpredictable) value.

This is called a race condition because the
final value depends on the sequence in which
the threads access the shared value.

We will use the Counter class to demonstrate
a race condition.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

1

ITITrrrrn

Counter Class

Display 19.4 The Counter Class

1 public class Counter
E
3 private int counter;
4 sublic Counter()
s
[counter = 0;
7
8 public int wvalue()
s |
10 n counter;
11 1
12 public void increment ()
13 {
14 int local;
15 local = counter;
16 local++;
17 counter = local;
18 }
18
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-33

ITTTTITTT

Race Condition Example

Create a single instance of the Counter class.

Create an array of many threads (30,000 in the example)
where each thread references the single instance of the
Counter class.

Each thread runs and invokes the increment() method.

Wait for each thread to finish and then output the value of
the counter. If there were no race conditions then its value
should be 30,000. If there were race conditions then the
value will be less than 30,000.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-34

1

LI LB T

Race Condition Test Class (1 of 3)

Display 19.5 The RaceConditionTest Class

1 public class RaceConditionTest extends Thread
2
3 private Counter countObject; N R
- Stores areferencetoa
4 public RaceConditionTest (Counter ctr) single C‘cunter(.‘i‘jecL
5 {
3 countObject = ctr;
7 }

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-35

ITTrrrrrrl

Race Condition Test Class (2 of 3)

8 public void runf{)
10 countObject.increment () ; -
11 }
12 public static void main(String[] args) X
13 { e of the Counter object.
14 int i; - — Array of 30,000 threads.
15 Counter masterCounter = new Counter(); i -
16 RaceConditionTest[] threads = new RaceConditionTest [20000];
17 System.out.println("The counter is " + masterCounter.value());
18 for (1 = 0; i < threads.length; i++)
19 {
20 threads[i] = new RaceConditionTest (masterCounter);
21 threads[i] .start(); < A
22 } I each thread a reference to
le Counter object and
o .
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-36

Race Condition Test Class (3 of 3)

23 // Wait for the threads to finish

24 for (1 = 0; i1 < threads.length; i++)

25 {

26 try

27 {

28 threads[i] .join(); <= — — — Waits for the thread to complete.
23 }

30 catch (InterruptedException e)

a1 {

32 System.out.println(e.getMessage ()) ;

33 }

34 }

35 System.out.println("The counter is " + masterCounter.value());
27)

s}

Sample Dialogue (output will vary)

The counter is 0
The counter is 29998

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-37

Thread Synchronization

* The solution is to make each thread wait so
only one thread can run the code in
increment() at a time.

e This section of code is called a critical region .
Java allows you to add the keyword
synchronized around a critical region to
enforce that only one thread can run this code
at a time.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-38

Synchronized

e Two solutions:

ronized void increment () public void increment ()
{ {
int local; int local;
local = counter; synchronized (this)
local++; {
counter = local; local = counter;
local++;
counter = local;
}
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-39

Networking with Stream Sockets

e Transmission Control Protocol — TCP
— Most common network protocol on the Internet

— Called a reliable protocol because it guarantees
that data sent from the sender is received in the
same order it is sent

* Server
— Program waiting to receive input
e Client

— Program that initiates a connection to the server

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-40

Sockets

* A socket describes one end of the connection
between two programs over the network. It
consists of:

— An address that identifies the remote computer,
e.g. IP Address

— A port for the local and remote computer
* Number between 0 and 65535

* Identifies the program that should handle data received
by the network

* Only one program may bind to a port
e Ports 0 to 1024 are reserved for the operating system

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-41

Client/Server Socket Example

Display 194 Client/Server Network Communication through Sockets

1. The server listens and waits for a connection on port 7654,

Server Computer

port 0
port 1

Server —| port 7654
program

port 63535

2. The client connects to the server on port 7654, It uses a local port that is assigned
automatically, in this case, pore 20314,

Server Computer Client Computer
port 0 port 0
port 1 port 1
Network Cli

Server —| port 7654 port 20314 |«— tlient
B
- pore 63335 port 63535
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-42

Sockets Programming

e Very similar to File I/O using a
FileOutputStream but instead we
substitute a DataOutputStream

e We can use localhost as the name of the
local machine

* Socket and stream objects throw checked
exceptions
— We must catch them

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-43

Date and Time Server (1 of 2)

import java.util.Date;

import java.net.ServerSocket;
import java.net.Socket;

import java.io.DataOutputStream;
import java.io.BufferedReader;
import java.io.lnputStreamReader;
import java.io.lOException;

public class DateServer

public static void main(String[] args)

{

Date now = new Date();

try

{
System.out.printIn(*Waiting for a connection on port 7654.");
ServerSocket serverSock = new ServerSocket(7654);
Socket connectionSock = serverSock.accept();

BufferedReader clientlnput = new BufferedReader(
new InputStreamReader(connectionSock.getlnputStream()));
DataOutputStream clientOutput = new DataOutputStream(
connectionSock.getOutputStream());
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-44

Date and Time Server (2 of 2)

Date and Time Client (1 of 2)

22 System.out.printIn(’"Connection made, waiting for client " + 1 import java.net.Socket;
23 "to send their name.™); 2 import java.io.DataOutputStream;
24 String clientText = clientlnput.readLine(); 3 import java.io.BufferedReader;
25 String replyText = "Welcome, " + clientText + 4 import java.io.lnputStreamReader;
26 ", Today is " + now.toString() + "\n"; 5 import java.io.lOException;
27 clientOutput.writeBytes(replyText);
28 System.out.printIn('Sent: " + replyText); 6 public class DateClient
7
29 clientOutput.close(); 8 public static void main(String[] args)
30 clientinput.close(); 9 {
31 connectionSock.close(); 10 try
32 serverSock.close(); 11 {
33 } 12 String hostname = ""localhost";
34 catch (10Exception e) 13 int port = 7654;
35 {
System.out.println(e.getMessage()); 14 System.out.printIn(**Connecting to server on port " + port);
36 } 15 Socket connectionSock = new Socket(hostname, port);
37 }
38 3} 16 BufferedReader serverlnput = new BufferedReader(
SAMPLE DIALOGUE (AFTER CLIENT CONNECTS TO SERVER) 17 new InputStreamReader(connectionSock.getinputStream()));
Waiting for a connection on port 7654. 18 DataOutputStream serverOutput = new DataOutputStream(
Connection made, waiting for client to send their name. 19 connectionSock. getOutputStrean());
Sent: Welcome, Dusty Rhodes, Today is Fri Oct 13 03:03:21 AKDT 2006
Copyright © 2012 Pearson Addison-Wesley. All rights reserved Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-46
19-45
20 System.out.printIn(‘'‘Connection made, sending name.');
21 serverOutput._writeBytes("Dusty Rhodes\n");
22 System.out.printIn(""Waiting for reply.™); The server WaltS, or bIOCkS' at the
23 String serverData = serverlnput.readLine(); H H
24 System.out._printIn(‘'Received: " + serverData); serve rSOCk' accept() Ca“ Untll a Cllent
25 serverOutput.close(); ConneCts‘
26 serverlinput.close(); . -
27 connectionSock. close() The client and server block at the readLine()
28 } . . .
29 catch (10Exception e) calls if data is not available.
30 {
3 N System.out.printin(e.getilessage()); This can cause an unresponsive network program
3 L7 and difficult to handle connections from multiple
lients on th rver en
SAMPLE DIALOGUE (AFTER CLIENT CONNECTS TO SERVER) clients on the server e d
Connecting to server on port 7654 H : : H
Eton e The typical solution is to employ threading
Waiting for reply.
Received: Welcome, Dusty Rhodes, Today is Fri Oct 13 03:03:21 AKDT 2006
Copyright © 2012 Pearson Addison-Wesley. All rights reserved Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-48

19-47

Threaded Server

* For the server, the accept() callis typically
placed in a loop and a new thread created to
handle each client connection:

while (true)

{
Socket connectionSock = serverSock.accept();
ClientHandler handler = new ClientHandler(connectionSock);
Thread theThread = new Thread(handler);
theThread.start();

3

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-49

JavaBeans

* JavaBeans is a framework that facilitates software
building by connecting software components from
different sources

— Some may be standard
— Others may be designed for a particular application

e Components built using this framework are more

easily integrated and reused

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

The JavaBeans Model

e Software components (i.e., classes) that follow the
JavaBeans model are required to provide the
following interface services or abilities:

1. Rules to ensure consistency in writing interfaces:

— For example, all accessor methods must begin with get, and all
mutator methods must begin with set

— This is required, not optional
2. Anevent handling model:
— Essentially, the event-handling model for the AWT and Swing

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-51

The JavaBeans Model

3. Persistence:

— A component (such as a JFrame) can save its state (e.g.,
in a database), and therefore retain information about its

former use
4. Introspection:

— An enhancement of simple accessor and mutator methods
that includes means to find what access to a component is

available, as well as providing access
5. Builder support:

— Integrated Development Environments (IDEs) designed to

connect JavaBean components to produce a final
application (e.g., Sun's Bean Builder)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

JavaBeans and Enterprise JavaBeans

* A JavaBean (often called a JavaBean component or
just a Bean) is a reusable software component that
satisfies the requirements of the JavaBeans
framework

— It can be manipulated in an IDE designed for building
applications out of Beans

* The Enterprise JavaBean framework extends the
JavaBeans framework to more readily accommodate
business applications

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-53

Java and Database Connections: SQL

e Structured Query Language (SQL) is a
language for formulating queries for a
relational database
—SQL is not a part of Java, but Java has a library

(JDBC) that allows SQL commands to be
embedded in Java code

e SQL works with relational databases

— Most commercial database management systems
are relational databases

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-54

Java and Database Connections: SQL

* Arelational database can be thought of as a
collection of named tables with rows and
columns
— Each table relates together certain information,

but the same relationship is not repeated in other
tables

— However, a piece of information in one table may
provide a bridge to another

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-55

Relational Database Tables (Part 1 of 3)

Relational Database Tables

Names

Adams, Douglas 1 http:// ...
Simmons, Dan 2 http:// ...
Stephenson, Neal 3 http:// ...

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

(continued)

1

LI

Relational Database Tables (Part 2 of 3)

Relational Database Tables

Titles
Snow Crash ©-553-38095-8
Endymion 0-553-57294-6

The Hitchhiker's Guide to the 0-671-46149-4

Galaxy
The Rise of Endymion 0-553-57298-9

(continued)

BERREEE

Relational Database Tables (Part 3 of 3)

Relational Database Tables

BooksAuthors

0-553-38095-8 3
0-553-57294-6 2
0-671-46149-4 Y
0-553-57298-9 2

— Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-57 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-58
A Sample SQL Command Result of SQL Command in Text
* The following is a sample SQL command that can be
used in conjunction with the tables from the Result of SQL Command in Text
previous slide: Result
SELECT Titles.Title, Titles.ISBN,
BooksAuthors.Author_ID Sl ERE 6-553-38095-8 3
FROM Titles, BooksAuthors Endymion 0-553-57294-6 2
WHERE Titles.ISBN = BooksAuthors.1SBN The Hitchhiker's Guide to the Galaxy 0-671-46149-4 1
» The above command will produce the table shown on the TeRicsar Endyien wnperahs 2
following slide
— Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-59 — Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-60

Common SQL Statements (1 of 2) Common SQL Statements (2 of 2)

UPDATE Change the specified fields to the new UPDATE tableName

CREATE Create a new table named newtable with fields field1, CREATE TABLE newtable SET fieldl = newvalue
TABLE] - ;) (fieldl datatype, values for any rows that match the wHERE - ’
fieldz, etc. Data types are similar to Java and include: field2 datatype. ...) _ _ field2 = newvalue, ...
int, bigint, float, double, and var(size) Which is clause. op is a comparison operator such as yuere fieldName op
equivalent to a String of maximum length size. =, <> (not equal to), <, >, etc. someValue
INCERT Insert a new row into the table tableName where fietqz ~ INSERT INTO tableName SELECT Retrieve the specified fields for the rows that SELECT fieldl, field2
VALUES (fieldlvalue,

FROM tableName

WHERE fieldname Op
to retrieve all fields. Omit the WHERE clause <o cvalue

e e field2value, ...) match the wHERE clause. The * may be used

field2value, etc. The data types for the values must

match those for the corresponding fields when the table .
to retrieve all rows from the table.

was created. String values should be enclosed in single

quotes.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-61 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-62

SQL Examples JDBC

e CREATE TABLE names(author varchar(50), author _id

, * Java Database Connectivity (JDBC) allows SQL
int, url varchar(80))

commands to be inserted into Java code
e INSERT INTO names VALUES (‘Adams, Douglas', 1, — In order to use it, both JDBC and a database system

'http://www.douglasadams.com') compatible with it must be installed
« UPDATE names SET url = — A JDBC driver for the database system may need to be

'"http:// d lasad /dna/bio.html" downloaded and installed as well
O/ TWWW- OL-lg asadams.com/dna/bio-ntm * |nside the Java code, a connection to a database
WHERE author_id =1

system is made, and SQL commands are then

e SELECT author, author_id, url FROM names executed
e SELECT author, author_id, url FROM names WHERE
author_id>1

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-63 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-64

Java DB

* In the following examples we will use Java DB
— Packaged with version 6 or higher of the Java SDK

— Based on the open source database known as Apache
Derby

— See http://www.oracle.com/technetwork/java/javadb/index.html

— Installation may require some configuration

— See instructions that come with Java DB and more detail in
the book

e Runs in Network Mode or Embedded Mode
— We only use embedded mode here

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-65

Data Flow of an Embedded Derby
Application

Java Application

1. Application constructs SQL Query

and sends it to JDBC
3. Result - \

of the

SQL Query JDBC

returned

by JDBC 2. Database engine

to the i processes the query

application Data
Embedded Derby Files

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-66

Derby Database Connection and
Creation

» Steps in accessing a Derby database

— Load the driver
String driver = "org.apache.derby.jdbc.EmbeddedDriver";
Class.forName(driver).newlnstance();

— Connect to the database using a Connection String

Connection conn = null;
conn =

DriverManager .getConnection(*'jdbc:derby:BookDatabase;create=true');

— Issue SQL commands to access or manipulate the database
Statement s = conn.createStatement();
s.execute(SQLString);

— Close the connection when done

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-67

Derby Database Creation Example (1 of 3)

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;

public class CreateDB
{
private static final String driver = "org.apache.derby.jdbc.EmbeddedDriver';
private static final String protocol = "jdbc:derby:"; //ﬂ
public static void main(String[] args) -
{ Loads embedded Derby driver
try —

CIass.forName(driver).newlnstance()f?/

System.out.printIn(“'Loaded the embedded driver.");
}
| Must catch ClassNotFoundException,
catch (Exception err) < | |nstantiationException, lllegalAccessException
{

System.err._printIin("Unable to load the embedded driver.");
err.printStackTrace(System.err);
System.exit(0);

¥

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-68

Derby Database Creation Example (2 of 3)

Connection String to create the database.
Remove “;create=true” if connecting to an
existing database.

String dbName = "BookDatabase"; \
Connection conn = null; \
try \
{ \\
System.out.printIn(*"Connecting to and creating the database...™);V

conn = DriverManager.getConnection(protocol + dbName + ";create=true');
System.out.printIn(“'Database created.');

Statement s = conn.createStatement();
s.execute(""CREATE TABLE names™ +

""(author varchar(50), author_id int, url varchar(80))");
System.out.printIn(*"Created "names® table.™);

Create a table called "names" with three fields,
50 characters for an author, an integer author
ID, and 80 characters for a URL

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-69

Derby Database Creation Example (3 of 3)

33 System.out.printIn(*Inserting authors.™); /////
34 s.execute("INSERT INTO names ™ + —
35 "VALUES ("Adams, Douglas®, 1, "http://www.douglasadams.com®)");
36 s.execute("INSERT INTO names " +
37 "VALUES ("Simmons, Dan®, 2, “http://www.dansimmons.com®)");
38 s.execute("INSERT INTO names ™ +
39 "VALUES ("Stephenson, Neal®", 3, "http://www.nealstephenson.com®)");
40 System.out.printIn(*"Authors inserted.");
41 conn.close();
42 3} 77777} .
43 catch (SQLException err) < Catch SQL Error Exceptions
44
45 System.err.printIn("SQL error.");
46 err.printStackTrace(System.err); SAMPLE DIALOGUE
47 System.exit(0); Loaded the embedded driver.
48 % Connecting to and creating the database.
49 } Database created.
50 } Created 'names' table.
Inserting authors.
Authors inserted.
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-70

Retrieving Data from Derby

e The SELECT statement is used to retrieve data
from the database

— Invoke the executeQuery() method of a
Statement object.

— Returns an object of type ResultSet that
maintains a cursor to each matching row in the
database.

¢ Can iterate through the set with a loop

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-71

Processing a ResultSet

* |nitially, the cursor is positioned before the first row.

* The next() method advances the cursor to the next
row. If there is no next row, then false is returned.
Otherwise, true is returned.

* Use one of following methods to retrieve data from a
specific column in the current row :

intval = resultSet._getInt("'name of int field™);

Ingval = resultSet.getLong(''name of bigint field");
strvVal = resultSet.getString(‘'name of varchar field");
dblval = resultSet.getDouble(*'name of double field");
fltval = resultSet.getFloat("'name of float field™);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-72

Reading from a Derby Database

SOL to retrieve the ID and
Author for all records

// Code to connect to the database

Statement s = conn.createStatement(); //////
ResultSet rs = null; —
P

rs = s.executeQuery(''SELECT author, author_id FROM names');

while (rs.next) <~— —F —F7 ——

{ Loop through and
int id = rs.getInt(author_id™); print all records that
String author = rs.getString(author®); match the query
System.out.printin(id + ™ " + author);

}

rs.close();

// Above should be in a try/catch block SAMPLE DIALOGUE

1 Adams, Douglas
2 Simmons, Dan
3 Stephenson, Neal

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-73

Update Query

e Use the execute command for UPDATE queries

* Example to change the URL to the contents of
the variable newURL for author with ID 1

Statement s = conn.createStatement();
s.execute("'UPDATE names SET URL = " + newURL +
"* WHERE author_id = 1');

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-74

More SQL

* We have just scratched the surface of what is
possible to do with SQL, JDBC, Java DB, etc.

* This section covered the basics about how to
integrate a database with a Java application

— Refer to database and more advanced Java
textbooks to learn more

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-75

Web Programming with Java Server
Pages

* Many technologies exist that allow programs to run
within a web browser when visiting a website

* Applets

— Run on the client
* Servlets

— Compiled Java programs on the server
e JSP

— Dynamically compiles to Servlets and integrated with the
server

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-76

Running a Java Applet

dient Computer Server Computer
Internet

1
| Web Browser | Fequest | Web Server

@ HTML + Applet @
\»

The client’sweb browser sendsarequest to the server for aweb page
with aJava Applet.

The server sendsthe HTML for the web page and applet classfiles to the
client.

The client runsthe applet using the Java Virtual Machine and displays
itsoutput in the web browser.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

19-77

Running a Java Servlet

dient Computer Server Computer

Internet
1

Web Browser Request | Web Server |
C) HTML \(:) ‘\HTML

Servlet
Engine

The client’sweb browser sendsarequest to the server for aweb page
that runsaJava servlet.

The web server instructsthe Servlet engine to execute the requested servlet,
which consists of running precompiled Java code. The servlet outputs
HTML that isreturned to the web server.

The web server sendsthe servlet’sHTML to the client’sweb browser
to bedisplayed.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-78

Running a Java Server Page (JSP)
Program

Cient Computer Server Computer

Internet
1

Web Browser Request | Web Server |
@ HTML @ ‘\ HTML

JSP Servlet
Engine

The client’sweb browser sendsarequest to the server for aweb page
that contains JSP code.

@ The JSP Servlet engine dynamically compilesthe JSP source code into a Java serviet
if acurrent,compiled serviet doesn't exist. The servlet runsand outputs
HTML that isreturned to the web server.

@ The web server sendsthe servlet’sHTML to the client’sweb browser
to be displayed.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

19-79

JSP Requirements

* Web server capable of running JSP servlets

* Here we use the Sun GlassFish Enterprise
Server, previously known as the Sun Java
System Application Server
— Part of the Java Enterprise Edition SDK
— See instructions that come with the software for

installation

* Documents go in
<glassfish_home>\domains\domain1\docroot

 Default URL is http://localhost:8080

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-80

HTML Forms

The information you enter into an HTML formis
transmitted to the web server using a protocol called
the Common Gateway Interface (CGl)
Syntax for HTML Form

<FORM ACTION=""Path_To_CGIl_Program"™ METHOD="GET or POST">

Form_Elements
</FORM>

ACTION identifies the program to execute
— In our case, a JSP program

GET or POST identify how data is transmitted
— GET sends data as the URL, POST over the socket

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-81

Some HTML Form Elements

* Input Textbox

<INPUT TYPE="TEXT" NAME=""Textbox_Name' VALUE="Default_Text"
SI1ZE="Length_In_Characters"
MAXLENGTH=""Maximum_Number_Of_Allowable_Characters'>

e Submission Button

<INPUT TYPE="SUBMIT" NAME="'Name' VALUE="Button_Text'>

* Many others form elements exist
— E.g. radio buttons, drop down list, etc.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

19-82

Example HTML Form Document
(Display 19.16)

<html>

<head>

<title>Change Author®s URL</title>

</head>

<body>

<h1>¥hange Author*®s URL</h1> |nV_°keS the JSP ngram named
<p> EditURL.jsp. If this program does not
Enter the ID of the author you would like to change exist you will see an error message
along with the new URL. upon clicking the Submit button.
</p>

<form ACTION = "EditURL.jsp" METHOD = POST>

Author ID: Creates a TextBox named AuthorID
<input TYPE = "TEXT" NAME = “AuthorlD™ = | thatis empty, displays 4 characters at
<Zﬁ"3§ = SIZE = "4 MAXLENGTH = "4™> once, and accepts at most 4

New URL: characters.

<input TYPE = "TEXT"™ NAME = "URL"
VALUE = "http://" SIZE = "40" MAXLENGTH = *'200">

<p> { Creates a submission button
<INPUT TYPE="SUBMIT" VALUE="Submit™> o—

</p>

</form>

</body>
</html>

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-83

Browser View of HTML Form
Document

Change Author's URL

Enter the ID of the author you would like to change along with the new URL.

Author ID:
New URL: http?/

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

19-84

JSP Tags - Declarations

* Declarations

— Use to define variables and methods

— The variables and methods are accessible from any scriptlets and
expressions on the same page

— Variable declarations are compiled as instance variables for a class that
corresponds to the JSP page

— Syntax:

<!

Declarations
%>

<%!
private int count = O;
private void incrementCountQ) |

Defines an instance variable named
count and a method named

{ incrementCount that increments
count++; the count variable
}
%>
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-85

JSP Tags - Expressions

* Expressions
— Use to access variables defined in declarations

— Syntax:
<%=
Expression
%>

The value of count is <%= count %>

S—

—

| Outputs the value of the count
variable in bold type

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-86

JSP Tags - Scriptlet

e Scriptlet
— Use to embed blocks of Java Code
— Syntax:

<%
Java Code
%>

— Use out.printIn() to output to the browser

<%
incrementCount(); .
out.printin("The counter’s valwﬂm@iﬁe?‘hg incrementCount()
%> method and then outputs the value in
count

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-87

JSP Example To Display Heading
<htmi> Levels

<title>
Displaying Heading Tags with JSP

</title> JSP Declaration
<body>

<Y1 &

private static final int LASTLEVEL = 6;
%>
<p>
This page uses JSP to display Heading Tags from -
Level 1 to Level <%= LASTLEVEL %> < | JSPExpression
</p> that evaluates to 6
<% <~

int i;) 77777777_77777*******777777 JSP Scriptlet
for (i = 1; i <= LASTLEVEL; i++)
{
out.printIn("<H"™ + i + ">" +
"This text is in Heading Level ™ + i1 +
U</HTM + 0+ ST
}

%>

</body>

</html>
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-88

HTML Generated by JSP Example

<html>
<title>

Displaying Heading Tags with JSP

</title>
<body>
<p>

This page uses JSP to display Heading Tags from

Level 1 to Level 6

</p>

<H1>This
<H2>This
<H3>This
<H4>This
<H5>This
<H6>This

text
text
text
text
text
text

is
is
is
is
is
is

in
in
in
in
in
in

Heading
Heading
Heading
Heading
Heading
Heading

Level
Level
Level
Level
Level
Level

1</H1>
2</H2>
3</H3>
4</H4>
5</H5>
6</H6>

Browser View of JSP Page

This page uses JSP to display Heading Tags from Level 1 to Level 6

This text is in Heading Level 1

This text is in Heading Level 2
This text is in Heading Level 3

This text is in Heading Level 4

This text is in Heading Level S

</body>
</html>

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-89

This text is in Heading Level 6

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

19-90

Reading HTML Form Input

* The request.getParameter method takes a String
parameter as input that identifies the name of an
HTML form element and returns the value entered
by the user for that element on the form.

— For example, if there is a textbox named AuthorID then we
can retrieve the value entered in that textbox with the
scriptlet code:

String value = request.getParameter("'AuthorliD");

* |f the user leaves the field blank then getParameter
returns an empty string.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-91

JSP Program To Echo Input From
the HTML Form in Display 19.16

This file should be named “EditURL.JSP” and match the entry in the ACTION

tag of the HTML form.

<html>

<title>Edit URL: Echo submitted values</title>
<body>

<h2>Edit URL</h2>

<p>

This version of EditURL.jsp simply echoes back to the
user the values that were entered in the textboxes.
</p>

<% _—
-
String url = request.getParameter(""'URL"™);
String stringlD = request.getParameter("'AuthoriD™);
int author_id = Integer.parselnt(stringlD);

out.printIn("The submitted author ID is: " + author_id);

out.printin(
");

out.printIn("The submitted URL is: ™ + url);
%>
</body>
</html>

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

_| The getParameter

method calls return as
Strings the values entered
by the user in the URL and
AuthorlD textboxes from
Display 19.16.

19-92

Sample Dialogue for EditUrl.JSP

SUBMITTED ON THE WEB BROWSER WHEN VIEWING

DISPLAY 19.16

Author ID:

2

New URL:
http://www.dansimmons.com/about/bio.htm

WEB BROWSER DISPLAY AFTER CLICKING SUBMIT

Edit URL

This version of EditURL.jsp simply echoes back to the user
the values that were entered in the textboxes.

The submitted author ID is: 2

The submitted URL is:
http://www.dansimmons.com/about/bio.htm

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-93

JSP Tags - Directive

Directives

— Instruct the compiler how to process a JSP program.
Examples include the definition of our own tags, including
the source code of other files, and importing packages.

— Syntax:

<%@
Directives
%>

<%@
page import="java.util.*,java.sql.*"

Import libraries so we could use SQL
code. Multiple packages separated
by a comma.

%>

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-94

More JSP

* Although we have covered enough JSP to write fairly
sophisticated programs, there is much more that we
have not covered.

— For example, beans can be used as a convenient way to
encapsulate data submitted from a HTML form.

— Sessions, tag libraries, security, and numerous other topics
are important in the construction of JSP pages.

— Refer to a textbook dedicated to JSP to learn more.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-95

