L WL T

. TR =
,AL ‘.--0 2 Se g ,’f -
'l .‘p:‘. el
- 4 e s
~ 4 a

Chapter 18

FIFTH EDITION

Swing Il

ABSOLUTE JAVA

WALTER SAVITCH

Slides prepared by Rose Williams,
Binghamton University

Kenrick Mock, University of Alaska
Anchorage

PEARSON

ALWAYS LEARNING

ITrrrrrrrrrerTT

Window Listeners

* Clicking the close-window button on a JFrame fires
a window event

— Window events are objects of the class WindowEvent
e The setWindowL istener method can register a
window listener for a window event

— A window listener can be programmed to respond to this
type of event

— A window listener is any class that satisfies the
WindowListener interface

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-2

| BT

Window Listeners

e Aclass that implements the
WindowL 1stener interface must have
definitions for all seven method headers in
this interface

e Should a method not be needed, it is defined
with an empty body

public void windowDeiconified(WindowEvent e)

{13}

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-3

ITrrrrrrrrrrerT

Methods in the WindowL 1stener Interface
(Part 1 of 2)

Methods in the WindowListener Interface

The WindowListener interface and the WindowEvent class are in the package java.awt.event.

public void windowOpened(WindowEvent e)

Invoked when a window has been opened.

public void windowClosing(WindowEvent e)

Invoked when a window is in the process of being closed. Clicking the close-window button causes an
invocation of this method.

public void windowClosed(WindowEvent e)

Invoked when a window has been closed.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-4

1

LI

|

Methods in the WindowL1stener Interface
(Part 2 of 2)

Methods in the WindowListener Interface

public void windowIconified(WindowEvent e)

Invoked when a window is iconified. When you click the minimize button in a JFrame, it is iconified.
public void windowDeiconified(WindowEvent e)
Invoked when a window is deiconified. When you activate a minimized window, it is deiconified.

public void windowActivated(WindowEvent e)

Invoked when a window is activated. When you click in a window, it becomes the activated window. Other
actions can also activate a window.

public void windowDeactivated (WindowEvent e)

Invoked when a window is deactivated. When a window is activated, all other windows are deactivated.
Other actions can also deactivate a window.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-5

BERREEE

|

A Window Listener Inner Class

* Aninner class often serves as a window listener for a
JFrame

— The following example uses a window listener inner class
named CheckOnExit

addWindowListener(new CheckOnExit());

e When the close-window button of the main window
is clicked, it fires a window event
— This is received by the anonymous window listener object

* This causes the windowClosing method to be
invoked

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-6

L BUE N

|

A Window Listener Inner Class

The method windowClosing creates and displays a
ConfirmWindow class object

— It contains the message ""Are you sure you want to
exit?" aswellas ""Yes' and ""No"" buttons

If the user clicks ""Yes,"" the action event fired is received by
the actionPerformed method

— It ends the program with a call to System_exit

If the user clicks ""No,"" the actionPerformed method
invokes the dispose method

— This makes the calling object go away (i.e., the small window of the
ConfirmWindow class), but does not affect the main window

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-7

A Window Listener (Part 1 of 8)

A Window Listener

1 import javax.swing.JFrame;

2 import javax.swing.JPanel;

3 import java.awt.BorderLayout;

4 import java.awt.FlowLayout;

5 import java.awt.Color;

6 import javax.swing.JLabel;

7 import javax.swing.JButton;

8 import java.awt.event.ActionListener;
9 import java.awt.event.ActionEvent;
10 import java.awt.event.WindowListener;
11 import java.awt.event.WindowEvent;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-8

| BT

A Window Listener (Part 2

A Window Listener

of 8)

12 public class WindowListenerDemo extends JFrame
13 {

14 public static final int WIDTH = 300; //for main window

15 public static final int HEIGHT = 200; //for main window

16 public static final int SMALL_WIDTH = 200; //for confirm window

17 public static final int SMALL_HEIGHT = 100;//for confirm window

18 private class CheckOnExit implements WindowListener

19 { s WindowlListener
20 public void windowOpened(WindowEvent e) class is an inner class.
21 {

22 public void windowClosing(WindowEvent e)

23 {

24 ConfirmWindow checkers = new ConfirmWindow();

25 checkers.setVisible(true);

26 }

(continued)

ITrrrrrrrrrerTT

A Window Listener (Part 3 of 8)

A Window Listener

27 public void windowClosed(WindowEvent e)

28 {3

29 public void windowIconified(WindowEvent e)

36 {3

31 public void windowDeiconified(WindowEvent e)
32 {3

33 public void windowActivated(WindowEvent e)

34 {}

A window listener must
define all the method
headings in the
WindowlListener interface,
even if some are trivial
implementations.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-9 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-10
A Window List (Part 4 of 8) A Window List (Part 5 of 8)
A Window Listener
A Window Listener

35 public void windowDeactivated(WindowEvent e)

36 {} 48 JPanel buttonPanel = new JPanel();

37 } //End of inner class CheckOnExit 49 buttonPanel.setBackground(Color.ORANGE) ;

50 buttonPanel.setLayout(new FlowLayout());

38 private class ConfirmWindow extends JFrame implements ActionListener

39 { 51 JButton exitButton = new JButton("Yes");

» i Conﬁrmmndowo\ 52 exitButton.addActionlistener(this);

41 { Another inner ¢class. 53 buttonPanel.add(exitButton);

42 setSize(SMALL_WIDTH, SMALL_HEIGHT);

43 getContentPane() .setBackground(Color.YELLOW) ; 54 JButton cancelButton = new JButton("No");

44 setLayout (new BorderLayout()); 55 cancelButton.addActionListener(this);

56 buttonPanel.add(cancelButton);

45 JLabel confirmLabel = new JLabel(

46 "Are you sure you want to exit?"); 57 add (buttonPanel, BorderLayout.SOUTH) ;

47 add(confirmLabel, BorderLayout.CENTER); 58 }
[~ -l 1
- (continued) B (continued)
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-11 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-12

1

LI BB

A Window Listener (Part 6 of 8)

A Window Listener

59 public void actionPerformed(ActionEvent e)

60 {

61 String actionCommand = e.getActionCommand();

62 if (actionCommand.equals('Yes"))

63 System.exit(0);

64 else if (actionCommand.equals("No"))

65 dispose();//Destroys only the ConfirmWindow.

66 else

67 System.out.println("Unexpected Error in Confirm Window.");

68 }

69 } //End of inner class ConfirmWindow

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-13

|ENEEEERERERE]

A Window Listener (Part 7 of 8)

A Window Listener

70

71 public static void main(String[] args)

72 {

73 WindowListenerDemo demoWindow = new WindowListenerDemo();

74 demoWindow.setVisible(true);

75 } Even if you have a window listener, you

76 normally must still invoke

77 public WindowlListenerDemo() setDefaultCloseOperation

78 {

79 setSize(WIDTH, HEIGHT);

80 setTitle("Window Listener Demonstration™);

81

82 setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

83 addwWindowListener(new CheckOnExit());

84

85 getContentPane().setBackground(Color.LIGHT_GRAY);

86 JLabel alLabel = new JLabel("I like to be sure you are sincere.");

87 add(aLabel) ;

88 }

89 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-14

1

LR R

A Window Listener (Part 8 of 8)

A Window Listener

RESULTING GUI

This window is an object of

55 ConfirmWindow.

the clas

window pu

window ap)

e

[Yos |[o |

& Window Listener Demonstration g@|®

I like to be sure you are sincere.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-15

|ENEEEERERERE]

The dispose Method

* The dispose method of the JFrame class is used
to eliminate the invoking JFrame without ending
the program

— The resources consumed by this JFrame and its
components are returned for reuse

— Unless all the elements are eliminated (i.e., in a one
window program), this does not end the program

» dispose is often used in a program with multiple
windows to eliminate one window without ending
the program

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-16

Pitfall: Forgetting to Invoke
setDefaultCloseOperation

* The behavior set by the
setDefaultCloseOperation takes place even
if there is a window listener registered to the
JFrame

— Whether or not a window listener is registered to respond
to window events, a setDefaultCloseOperation
invocation should be included

— This invocation is usually made in the JFrame constructor

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-17

Pitfall: Forgetting to Invoke
setDefaultCloseOperation

* If the window listener takes care of all of the
window behavior, then the JFrame constructor
should contain the following:

setDefaultCloseOperation(
JFrame.DO_NOTHING_ON_CLOSE)

e Ifitis notincluded, the following default action
will take place instead, regardless of whether or
not a window listener is supposed to take care
of it:

setDefaultCloseOperation(
JFrame .HIDE_ON_CLOSE);
— This will hide the JFrame , but not end the program

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-18

The WindowAdapter Class

* When a class does not give true implementations to most of
the method headings in the WindowL istener interface, it
may be better to make it a derived class of the
WindowAdapter class

— Only the method headings used need be defined
— The other method headings inherit trivial implementation from
WindowAdapter, so there is no need for empty method bodies

* This can only be done when the JFrame does not need to be

derived from any other class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-19

Using WindowAdapter

Using WindowAdapter

This requires the following import statements:

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

1 private class CheckOnExit extends WindowAdapter

2 ¢ public void windowClosing(WindowEvent e)

4

5 { ConfirmWindow checkers = new ConfirmWindow();
6 checkers.setVisible(true);

;3 3 //’ind of inner class CheckOnExit

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-20

1

ITITrrrrn

lcons

 JLabels, JButtons, and JMenultems can have
icons
— Anicon is just a small picture (usually)
— Itis not required to be small

* Anicon is an object of the Image l con class

— Itis based on a digital picture file suchas .gi T, . jpg, or
i ff

* Labels, buttons, and menu items may display a
string, an icon, a string and an icon, or nothing

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-21

ITTTTITrTe

Icons

* The class Imagelcon is used to convert a picture
file to a Swing icon
Imagelcon dukelcon = new
Imagelcon('duke_waving.gif");
— The picture file must be in the same directory as the class

in which this code appears, unless a complete or relative
path name is given

— Note that the name of the picture file is given as a string

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-22

LI BB TR

lcons

* Anicon can be added to a label using the setlcon
method as follows:
JLabel dukelLabel = new JLabel("'Mood check™);
dukelLabel .setlcon(dukelcon);

* Instead, an icon can be given as an argument to the
JLabel constructor:
JLabel dukelLabel = new JLabel(dukelcon);

* Text can be added to the label as well using the
setText method:
dukelLabel .setText(**"Mood check');

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-23

EENNNNENEE

Icons

* Icons and text may be added to JButtons
and JMenultems in the same way as they
are added to a JLabel

JButton happyButton = new
JButton(*'Happy");
Imagelcon happylcon = new
Imagelcon("'smiley.gif™);
happyButton.setlcon(happylcon);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-24

lcons

Using Icons (Part 1 of 5)

Using Icons

* Button or menu items can be created with just an icon by _ _ _
.. . 1 import javax.swing.JFrame;
giving the Image I con object as an argument to the 2 import javax.swing.IPanels
3 import javax.swing.JTextField;
JButton or JMenu ltem constructor : BT e
n = new 5 import java.awt.BorderlLayout;
! mage ! con happy ! co e _ _ 6 import java.awt.FlowLayout;
Imagelcon('smiley.gif™"); 7 import java.awt.Color;
- 8 import javax.swing.JLabel;
JButton smileButton = new JButton(happylcon); 9 import javax.swing.JButton;
= — 10 import java.awt.event.ActionListener;
‘]Menu Item happyChO ice = new 11 import java.awt.event.ActionEvent;
JMenultem(Chappylcon);
— A button or menu item created without text should use the 12 public class IconDemo extends JFrame implements ActionListener
- .. . 13 {
S'etACtlo'nCommf:md method to explicitly set the action command, . DUBTEE Statie Final the MIDTH = Sce:
- since there is no string - 15 public static final int HEIGHT = 200;
|- = 16 public static final int TEXT_FIELD_SIZE = 30;
- - 17 private JTextField message;
= [(continued)
= Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-25 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-26
Using Icons (Part 2 of 5) Using Icons (Part 3 of 5)
Using Icons Using lcons
18 public static void main(String[] args) 30 JLabel dukeLabel = new JlLabel("Mood check™);
19 { 31 Imagelcon dukeIcon = new ImageIcon('duke_waving.gif");
20 IconDemo iconGui = new IconDemo(); 32 dukeLabel.setIcon(dukeIcon);
21 iconGui.setVisible(true); 33 add(dukeLabel, BorderLayout.NORTH);
22 }
34 JPanel buttonPanel = new JPanel();
35 buttonPanel.setLayout(new FlowLayout());
23 public IconDemo() 36 JButton happyButton = new JButton(“"Happy");
24 { 37 ImageIcon happyIcon = new ImageIcon("smiley.gif");
25 super("Icon Demonstration™); 38 happyButton.setIcon(happyIcon);
26 setSize(WIDTH, HEIGHT); 39 happyButton.addActionListener(this);
27 setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE) ; 40 buttonPanel.add(happyButton) ;
41 JButton sadButton = new JButton("Sad");
28 setBackground(Color.WHITE); 42 ImageIcon sadIcon = new ImageIcon("sad.gif");
29 setLayout(new BorderLayout()); 43 sadButton.setIcon(sadIcon);
— (continued) = (continued)
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-27 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-28

| BT

Using Icons (Part 4 of 5)

Using Icons
44 sadButton.addActionListener(this);
45 buttonPanel.add(sadButton);
46 add(buttonPanel, BorderLayout.SOUTH);
47 message = new JTextField(TEXT_FIELD_SIZE);
48 add(message, BorderLayout.CENTER);
49 }
50 public void actionPerformed(ActionEvent e)
51 {
52 String actionCommand = e.getActionCommand();

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

(continued)

18-29

ITrrrrrrrrrerTT

Using Icons (Part 5 of 5)

Using Icons

62

}

if (actionCommand.equals("Happy"))

message. setText(

"Smile and the world smiles with you!");

else if (actionCommand.equals("Sad"))

message.setText(

"Cheer up. It can't be that bad.");
else
message.setText("Unexpected Error.");

RESULTING GUI'

after clicking the "Sad" button.

& |con Demonstration

,’A Mood check

(Cheer up. It cantbe that bad,

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

18-30

| BT

Some Methods in the Classes JButton,
JMenultem, and JLabel (Part 1 of 4)

Some Methods in the Classes JButton, JMenuItem, and JLabel

public JButton()
public IMenuItem()
public JLabel()

Creates a button, menu item, or label with no text or icon on it. (Typically, you will later use setText

and/or setIcon with the button, menu item, or label.)

public JButton(String text)
public IMenuItem(String text)
public JLabel(String text)

Creates a button, menu item, or label with the text on it.

public JButton(ImageIcon picture)
public JIMenuItem(Imagelcon picture)
public JLabel(ImageIcon picture)

Creates a button, menu item, or label with the icon picture on it and no text.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

(continued)

18-31

ITrrrrrrrrrrrrd

Some Methods in the Classes JButton, JMenuItem, and JLabel

Some Methods in the Classes JButton,
JMenultem, and JLabel (Part 2 of 4)

Creates a button, menu item, or label with both the text and the icon picture on it. horizontal-
Alignment is one of the constants SwingConstants.LEFT, SwingConstants.CENTER, SwingCon-

public JButton(String text, Imagelcon picture)
public JMenuIltem(String text, ImageIcon picture)
public JLabel(

String text, ImageIcon picture, int horizontalAlignment)

stants.RIGHT, SwingConstants.LEADING, or SwingConstants.TRAILING.
The interface SwingConstants is in the javax. swing package.

public void setText(String text)

Makes text the only text on the button, menu item, or label,

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

18-32

LEEETE

|

Some Methods in the Classes JButton,
JMenultem, and JLabel (Part 3 of 4)

Some Methods in the Classes JButton, JMenuItem, and JLabel

public void setIcon(Imagelcon picture)

Makes picture the only icon on the button, menu item, or label.

public void setMargin(Insets margin)

JButton and JMenuItem have the method setMargin, but JLabel does not.

The method setMargin sets the size of the margin around the text and icon in the button or menu item.
The following special case will work for most simple situations. The int values give the number of pixels
from the edge of the button or menu item to the text and/or icon.

public void setMargin(new Insets(
int top, int left, int bottom, int right))

The class Insets is in the java. awt package. (We will not be discussing any other uses for the class Insets.)

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-33

|

Some Methods in the Classes JButton,
JMenultem, and JLabel (Part 4 of 4)

Some Methods in the Classes JButton, JMenuItem, and JLabel

public void setVerticalTextPosition(int textPosition)

Sets the vertical position of the text relative to the icon. The textPosition should be one of the con-
stants SwingConstants.TOP, SwingConstants.CENTER (the default position), or SwingCon-
stants.BOTTOM.

The interface SwingConstants is in the javax.swing package.

public void setHorizontalTextPosition(int textPosition)

Sets the horizontal position of the text relative to the icon. The textPosition should be one of the con-
stants SwingConstants.RIGHT, SwingConstants.LEFT, SwingConstants.CENTER, SwingCon-
stants.LEADING, or SwingConstants.TRAILING.

The interface SwingConstants is in the javax.swing package.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-34

I BLH I

|

The Insets Class

* Objects of the class Insets are used to
specify the size of the margin in a button or
menu item

— The arguments given when an Insets class
object is created are in pixels
—The Insetsclass is in the package jJava.awt
public Insets(int top, int left,
int bottom, int right)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-35

Scroll Bars

* When a text area is created, the number of lines that
are visible and the number of characters per line are
specified as follows:

JTextArea memoDisplay = new
JTextArea(15, 30);

* However, it would often be better not to have to set
a firm limit on the number of lines or the number of
characters per line

— This can be done by using scroll bars with the text area

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-36

LEEETE

|

Scroll Bars

* When using scroll bars, the text is viewed
through a view port that shows only part of the
text at a time

— A different part of the text may be viewed by using
the scroll bars placed along the side and bottom of
the view port

* Scroll bars can be added to text areas using the
JScrol IPane class

— The JScrol IPane class is in the javax.swing
package

— An object of the class JScrol IPane is like a view
port with scroll bars

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-37

|

View Port for a Text Area

View Port for a Text Area

Text area

When using scroll bars, the text is viewed through a
view port that shows onlv part of the text at a time. You
can view 4
that are p View port
the text w
the paper
angular ¢ ou see a portion of the text.
cutout is { his is illustrated in Display 1
You then irs to move the view port so
different g ext can be seen through the
out view | brefer to think of the view po
fixed and ing. These two ways of thin
are equival bws you to add scroll bars to
text areas 1SccallPana

An obj
port with|
you give t

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

18-38

I BLH I

|

Scroll Bars

* When a JScrol IPane is created, the text area to
be viewed is given as an argument
JScrollPane scrolledText = new
JScrollPane(memoDisplay);
* The JScrol IPane can then be added to a
container, such as a JPanel or JFrame
textPanel .add(scrolledText);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-39

Scroll Bars

* The scroll bar policies can be set as follows:
scrolledText.setHorizontalScrolIBarPolicy(
JScrolIPane .HORIZONTAL_SCROLLBAR_ALWAYS);
scrolledText.setVerticalScrollBarPolicy(
JscrollPane .VERTICAL_SCROLLBAR_ALWAYS) ;
¢ If invocations of these methods are omitted, then the scroll
bars will be visible only when needed
— If all the text fits in the view port, then no scroll bars will be visible
— If enough text is added, the scroll bars will appear automatically

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

18-40

| IO

Some Methods in the Class JScrol IPane
(Part 1 of 2)

Some Methods in the Class JScrollPane

The JScrollPane class is in the javax. swing package.

public JScrollPane(Component objectToBeScrolled)

Creates a new JScrollPane for the objectToBeScrolled. Note that the objectToBeScrolled need
not be a JTextArea, although that is the only type of argument considered in this book.

public void setHorizontalScrollBarPolicy(int policy)

Sets the policy for showing the horizontal scroll bar. The policy should be one of

JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER
JScrollPane .HORIZONTAL_SCROLLBAR_AS_NEEDED

The phrase AS_NEEDED means the scroll bar is shown only when it is needed. This is explained more fully
in the text. The meanings of the other policy constants are obvious from their names.

(As indicated, these constants are defined in the class JScrollPane. You should not need to even be
aware of the fact that they have int values. Think of them as policies, not as int values.)

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-41

ITrrrrrrrrrerTT

Some Methods in the Class JScrol 1Pane
(Part 2 of 2)

Some Methods in the Class 1ScrollPane

public void setVerticalScrollBarPolicy(int policy)

Sets the policy for showing the vertical scroll bar. The policy should be one of

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS
JScrollPane.VERTICAL_SCROLLBAR_NEVER
JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED

The phrase AS_NEEDED wmeans the scroll bar is shown only when it is needed. This is explained more fully
in the text. The meanings of the other policy constants are obvious from their names.

(As indicated, these constants are defined in the class JScrol1Pane. You should not need to even be
aware of the fact that they have int values. Think of them as policies, not as int values.)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-42

| BT

A Text Area with Scroll Bars (Part 1 of 8)

A Text Area with Scroll Bars

e
H @ WoKNOWAEWNRE

import javax.swing.J]Frame;

import javax.swing.J]TextArea;
import javax.swing.JPanel;

import javax.swing.JlLabel;

import javax.swing.J]Button;

import javax.swing.J]ScrollPane;
impart java.awt.BorderLayout;
import java.awt.FlowLayout;

import java.awt.Color;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-43

ITrrrrrrrrrrerT

A Text Area with Scroll Bars (Part 2 of 8)

A Text Area with Scroll Bars

12 public class ScrollBarDemo extends JFrame

13 implements ActionListener
14 {

15 public static final int WIDTH = 600;

16 public static final int HEIGHT = 400;

17 public static final int LINES = 15;

18 public static final int CHAR_PER_LINE = 30;

19 private JTextArea memoDisplay;

20 private String memol;

21 private String memo2;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-44

A Text Area with Scroll Bars (Part 3 of 8)

A Text Area with Scroll Bars

A Text Area with Scroll Bars (Part 4 of 8)

A Text Area with Scroll Bars

i i i i . 32 JPanel buttonPanel = new JPanel();
22 public static void main(String[] args) 33 buttonPanel. setBackground(Color. LIGHT_GRAY) ;
23 { i 34 buttonPanel.setLayout(new FlowLayout());
24 SCI."ullBarDl.amo gui = new ScrollBarDemo(); 35 JButton memolButton = new JButton("Save Memo 1");
25 gui.setVisible(true); 36 memolButton.addActionListener(this);
26 } 37 buttonPanel.add(memolButton);
. 38 JButton memo2Button = new JButton("Save Memo 2");
27 public ScrollBarDemo() 39 memo2Button.addActionListener(this);
28 { \ 40 buttonPanel.add(memo2Button);
29 super("Scroll Bars Demo");
30 setSize(WIDTH, HEIGHT?: 41 JButton clearButton = new JButton("Clear");
31 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 42 clearButton. addActionlistener(this);
(continued) 43 buttonPanel.add(clearButton); ,)
- | continued,
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-45 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-46
. A Text Area with Scroll Bars
A Text Area with Scroll Bars
44 JButton getlButton = new JButton("Get Memo 1"); 53 memoD'!.splny = new JTextArea(LINES, CHAR_PER_LINE);
45 get1Button.addActionListener(this); 54 memoDisplay.setBackground(Color .WHITE) ;
46 buttonPanel.add(get1Button);
55 JScrollPane scrolledText = new JScrollPane(memoDisplay);
47 JButton get2Button = new JButton("Get Memo 2"); 56 scrolledText.setHorizontalScrollBarPolicy(
48 get2Button.addActionListener(this); 57 JScr‘olle.:me.HORIZDNTAL,S(}ROLLBAR,ALWAYS}:
49 buttonPanel .add(get2Button); 58 scrolledText.setVerticalScrollBarPolicy(
59 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS) ;
50 add(buttonPanel, BorderLayout.SOUTH);
60 textPanel.add(scrolledText);
51 JPanel textPanel = new JPanel();
52 textPanel.setBackground(Color.BLUE); 61 : add(textPanel, BorderLayout.CENTER);
62
(continued) ’ (continued)
continues
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-47 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-48

| BT

A Text Area with Scroll Bars (Part 7 of 8)

A Text Area with Scroll Bars

63 public void actionPerformed(ActionEvent e)

64 {

65 String actionCommand = e.getActionCommand();

66 if (actionCommand.equals("Save Memo 1"))

67 memol = memoDisplay.getText();

68 else if (actionCommand.equals("Save Memo 2"))

69 memo2 = memoDisplay.getText();

70 else if (actionCommand.equals("Clear"))

71 memoDisplay.setText("");

72 else if (actionCommand.equals("Get Memo 1"))

73 memoDisplay.setText(memol);

74 else if (actionCommand.equals("Get Memo 2"))

75 memoDisplay.setText(memo2);

76 else

77 memoDisplay.setText("Error in memo interface");

78 }

79 %

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-49

ITrrrrrrrrrerTT

A Text Area with Scroll Bars (Part 8 of 8)

A Text Area with Scroll Bars

RESULTING GUI

& Scroll Bars Demo

Some people can write and write and write and write and wril & |
and waite some more]

| saememot || saememo2 || ciear || GetMemot || GetMemoz |

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-50

| BT

Components with Changing Visibility

* A GUI can have components that change from visible to
invisible and back again

* |nthe following example, the label with the character Duke
not waving is shown first

— When the "Wave" button is clicked, the label with Duke not waving
disappears and the label with Duke waving appears

— When the "Stop" button is clicked, the label with Duke waving
disappears, and the label with Duke not waving returns

— Duke is Sun Microsystem's mascot for the Java Language

e A component can be made invisible without making the entire
GUl invisible

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-51

ITrrrrrrrrrrrrd

Labels with Changing Visibility (Part 1 of 6)

Labels with Changing Visibility

import javax.swing.JFrame;

import javax.swing.ImageIcon;

import javax.swing.JlPanel;

import javax.swing.JllLabel;

import javax.swing.J]Button;

import java.awt.BorderLayout;

import java.awt.FlowLayout;

import java.awt.Color;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

W0 N w W N

=
(=]

11 public class VisibilityDemo extends JFrame

12 implements ActionListener
13§

14 public static final int WIDTH = 300;

15 public static final int HEIGHT = 200;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-52

Labels with Changing Vis

Labels with Changing Visibility

bility (Part 2 of 6)

Labels with Changing Visibility (Part 3 of 6)

Labels with Changing Visibility

16 private JLabel wavinglLabel;
17 private JLabel standinglLabel; 29 JPanel picturePanel = new JPanel();
18 public static void main(String[] args) 30 picturePanel.setBackground(Color.WHITE);
19 { 31 picturePanel.setLayout(new FlowLayout());
20 VisibilityDemo demoGui = new VisibilityDemo();
21 demoGui.setVisible(true); 32 ImageIcon dukeStandingIcon =
22 } 33 new ImageIcon("duke_standing.gif");
34 standinglLabel = new JLabel(dukeStandingIcon);
23 public VisibilityDemo() 35 standinglLabel.setVisible(true);
24 { 36 picturePanel.add(standinglLabel);
25 setSize(WIDTH, HEIGHT);
26 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 37 ImageIcon dukeWavingIcon = new ImageIcon(“duke_waving.gif");
27 setTitle("Visibility Demonstration"); 38 wavinglLabel = new JLabel(dukeWavingIcon);
39 wavingLabel.setVisible(false);
28 setLayout(new BorderLayout()); 40 picturePanel.add(wavinglLabel);
— (continued) ol (continued)
E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-53 E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-54
Labels with Changing Visibility (Part 4 of 6) Labels with Changing Visibility (Part 5 of 6)
Labels with Changing Visibility
Labels with Changing Visibility 51 add(buttonPanel, BorderLayout.SOUTH);
52 }
41 add(picturePanel, BorderLayout.CENTER); 53 public void actionPerformed(ActionEvent e)
54 {
42 JPanel buttonPanel = new JPanel(); 55 String actionCommand = e.getActionCommand();
43 buttonPanel.setBackground(Color.LIGHT_GRAY) ;
44 buttonPanel.setlLayout(new FlowLayout()); 56 if (actionCommand.equals("Wave"))
57 {
45 JButton waveButton = new JButton("Wave™); 58 wavinglLabel.setVisible(true);
46 waveButton.addActionListener(this); 59 standinglLabel.setVisible(false);
47 buttonPanel.add(waveButton); 60 H
61 else if (actionCommand.equals("Stop"))
48 JButton stopButton = new JButton("Stop"); 62 {
49 stopButton.addActionListener(this); 63 standinglLabel.setVisible(true);
50 buttonPanel.add(stopButton); 64 wavinglLabel.setVisible(false);
65
I (continued) - 66 ilse
= = 67 System.out.println("Unanticipated error.");
- - 68 }
- — 69 }
H = (continued)
E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-55 E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-56

1

LI

|

Labels with Changing Visibility (Part 6 of 6)

Labels with Changing Visibility

RESULTING GUI (After clicking Stop button)

& Visibility Demonstration [[0/

RESULTING GUI (After clicking Wave button)

& Visibility Demonstration E"@

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-57

BERREEE

|

Coordinate System for Graphics Objects

* When drawing objects on the screen, Java uses a coordinate
system where the origin point (0,0) is at the upper-left corner
of the screen area used for drawing

The x-coordinate (horizontal) is positive and increasing to the right

The y- coordinate(vertical) is positive and increasing down

All coordinates are normally positive

Units and sizes are in pixels
The area used for drawing is typically a JFrame or JPanel

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-58

L BUE N

|

Coordinate System for Graphics Objects

e The point (X,Y) is located X pixels in from the left
edge of the screen, and down Y pixels from the top
of the screen

e When placing a rectangle on the screen, the location
of its upper-left corner is specified

* When placing a figure other than a rectangle on the
screen, Java encloses the figure in an imaginary
rectangle, called a bounding box, and positions the
upper-left corner of this rectangle

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-59

Screen Coordinate System

Screen Coordinate System

(o, 0)/ = positive xrdirection‘\

(200, 15@)>|< . =)
| f” ~N |

Iy M

1 1
I

I

I

Y i 2
positive y-direction

- _/

~
1

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-60

The Method paint and the Class Graphics

* Almost all Swing and Swing-related components and
containers have a method called paint

* The method paint draws the component or
container on the screen

— It is already defined, and is called automatically when the
figure is displayed on the screen

— However, it must be redefined in order to draw geometric
figures like circles and boxes

— When redefined, always include the following:
super.paint(g);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-61

The Method paint and the Class Graphics

* Every container and component that can be drawn
on the screen has an associated Graphics object
— The Graphics class is an abstract class found in the
Java.awt package
* This object has data specifying what area of the
screen the component or container covers

— The Graphics object for a JFrame specifies that
drawing takes place inside the borders of the JFrame
object

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-62

The Method paint and the Class Graphics

* The object g of the class Graphics can be
used as the calling object for a drawing method
— The drawing will then take place inside the area of
the screen specified by g
* The method paint has a parameter g of type
Graphics

— When the paint method is invoked, g is replaced
by the Graphics object associated with the
JFrame

— Therefore, the figures are drawn inside the JFrame

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-63

Drawing a Very Simple Face (part 1 of 5)

Drawing a Very Simple Face

1 import javax.swing.]Frame;
2 import java.awt.Graphics;
3 1import java.awt.Color;

public class Face extends JFrame

4

5 1

6 public static final int WINDOW_WIDTH = 400;
7 public static final int WINDOW_HEIGHT = 400;
8 public static final int FACE_DIAMETER = 200;
9 public static final int X_FACE = 100:

10 public static final int Y_FACE = 100;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-64

| IO

Drawing a Very Simple Face (part 2 of 5)

Drawing a Very Simple Face

11
12
13
14
15

16
17
18

public
public
public
public
public

public
public
public

static
static
static
static
static

static
static
static

final
final
final
final
final

final
final
final

int
int
int
int
int

int
int
int

EYE_WIDTH = 20;

X_RIGHT_EYE = X_FACE + 55;
Y_RIGHT_EYE = Y_FACE + 60;
X_LEFT_EYE = X_FACE + 130;
Y_LEFT_EYE = Y_FACE + 60;

MOUTH_WIDTH = 100;
X_MOUTH = X_FACE + 50;
Y_MOUTH = Y_FACE + 150;

(continued)

ITrrrrrrrrrerTT

Drawing a Very Simple Face (part 3 of 5)

Drawing a Very Simple Face

19
20
21
22
23

public static void main(String[] args)
{

Face drawing = new Face();
drawing.setVisible(true);

public Face()

{
super("First Graphics Demo");
setSize (WINDOW_WIDTH, WINDOW_HEIGHT);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
getContentPane().setBackground(Color.white);

}

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-65 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-66
Drawing a Very Simple Face
Drawing a Very Simple Face
RESULTING GUI
31 public void paint(Graphics g) (X_FACE, Y_FACE)
32 { # First Graphics Demo
33 super.paint(g);
34 g.drawOval (X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER); ~)
35 //Draw Eyes: The red box is not
36 g.drawLine(X_RIGHT_EYE, Y_RIGHT_EYE, shown ari the g Ie
37 X_RIGHT_EYE + EYE_WIDTH,Y_RIGHT_EYE); Is Vhffeto'”&P&@U
38 g.drawLine(X_LEFT_EYE, Y_LEFT_EYE, uﬁdﬂ}ﬁﬁpﬁthe
39 X_LEFT_EYE + EYE_WIDTH, Y_LEFT_EYE); R?aEmf5fﬁvb6vh€5ﬂ
40 //Draw Mouth: the paint method
i - code and the resulting
41 g.drawLine (X_MOUTH, Y_MOUTH, X_MOUTH + MOUTH_WIDTH, Y_MOUTH); (X_MOUTH, Y_MOUTH) —_| i
42 ¥ awing.
43}
I (continued) [~ s = _
- - —_—
B = FACE_DIAMETER
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-67 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-68

| BT

Some Methods in the Class Graphics (part1
of 4)

Some Methods in the Class Graphics

Graphics is an abstract class in the java.awt package.
Although many of these methods are abstract, we always use them with objects of a concrete descendent
class of Graphics, even though we usually do not know the name of that concrete class.

public abstract void drawLine(int x1, int yl, int x2, int y2)

Draws a line between points (x1, y1) and (x2, y2).

public abstract void drawRect(int x, int y,
int width, int height)

Draws the outline of the specified rectangle. (x, y) is the location of the upper-left corner of the rectangle.

public abstract void fillRect(int x, int y,
int width, int height)

Fills the specified rectangle. (x, y) is the location of the upper-left corner of the rectangle.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-69

ITrrrrrrrrrerTT

Some Methods in the Class Graphics (part?2
of 4)

Some Methods in the Class Graphics

public void draw3DRect(int x, int y, int width,
int height, boolean raised)

Draws the outline of the specified rectangle. (x, y) is the location of the upper-left corner. The rectangle is
highlighted to look like it has thickness. If raised is true, the highlight makes the rectangle appear to
stand out from the background. If raised is false, the highlight makes the rectangle appear to be
sunken into the background.

public void fill3DRect(int x, int y, int width,
int height, boolean raised)

Fills the rectangle specified by
draw3DRec(x, y, width, height, raised)

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-70

| BT

Some Methods in the Class Graphics (part3
of 4)

Some Methods in the Class Graphics

public abstract void drawRoundRect(int x, int y,
int width, int height, int arcWidth, int arcHeight)

Draws the outline of the specified round-cornered rectangle. (x, y) is the location of the upper-left corer
of the enclosing regular rectangle. arcWidth and arcHeight specify the shape of the round corners. See
the text for details.

public abstract void fillRoundRect(int x, int vy,
int width, int height, int arcWidth, int arcHeight)

Fills the rounded rectangle specified by
drawRoundRec(x, y, width, height, arcWidth, arcHeight)

public abstract void drawOval(int x, int y,
int width, int height)

Draws the outline of the oval with the smallest enclosing rectangle that has the specified width and height.
The (imagined) rectangle has its upper-left corner located at (x, y).

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-71

ITrrrrrrrrrrrrd

Some Methods in the Class Graphics (part4
of 4)

Some Methods in the Class Graphics

public abstract void fillOval(int x, int y,
int width, int height)

Fills the oval specified by
drawOval(x, y, width, height)
public abstract void drawArc(int x, int vy,

int width, int height,
int startAngle, int arcSweep)

Draws part of an oval that just fits inte an invisible rectangle described by the first four arguments. The
portion of the oval drawn is given by the last two arguments. See the text for details.

public abstract void fillArc(int x, int y,
int width, int height,
int startAngle, int arcSweep)

Fills the partial oval specified by
drawArc(x, y, width, height, startAngle, arcSweep)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-72

| BT

Drawing Ovals

* An oval is drawn by the method drawOval

— The arguments specify the location, width, and height of
the smallest rectangle that can enclose the oval

g.drawOval (100, 50, 300, 200):
* Acircle is a special case of an oval in which the width
and height of the rectangle are equal
g-drawOval (X_FACE, Y_FACE,
FACE_DIAMETER, FACE_DIAMETER);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-73

ITrrrrrrrrrerTT

Drawing a Happy Face (Part 1 of 5)

Drawing a Happy Face

import javax.swing.JFrame;
import java.awt.Graphics;
import java.awt.Color;

4 public class HappyFace extends JFrame

5 4

6 public static final int WINDOW_WIDTH = 400;

7 public static final int WINDOW_HEIGHT = 400;

8 public static final int FACE_DIAMETER = 200;

9 public static final int X_FACE = 100;

10 public static final int Y_FACE = 100;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-74

| BT

Drawing a Happy Face (Part 2 of 5)

Drawing a Happy Face

11 public static final int EYE_WIDTH = 20;

12 public static final int EYE_HEIGHT = 10;

13 public static final int X_RIGHT_EYE = X_FACE + 55;
14 public static final int Y_RIGHT_EYE = Y_FACE + 60;
15 public static final int X_LEFT_EYE = X_FACE + 130;
16 public static final int Y_LEFT_EYE = Y_FACE + 60;
17 public static final int MOUTH_WIDTH = 160;

18 public static final int MOUTH_HEIGHT = 50;

19 public static final int X_MOUTH = X_FACE + 50;

20 public static final int Y_MOUTH = Y_FACE + 100;
21 public static final int MOUTH_START_ANGLE = 180;
22 public static final int MOUTH_ARC_SWEEP = 180;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-75

ITrrrrrrrrrrrrd

Drawing a Happy Face (Part 3 of 5)

Drawing a Happy Face

23 public static void main(String[] args)

24 {

25 HappyFace drawing = new HappyFace();

26 drawing.setVisible(true);

27 }

28 public HappyFace()

29 {

30 super("Graphics Demonstration 2");

31 setSize (WINDOW_WIDTH, WINDOW_HEIGHT);

32 setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);

33 getContentPane().setBackground(Color.white);

34 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-76

| BT

Drawing a Happy Face (Part 4 of 5)

Drawing a Happy Face

35 public void paint(Graphics g)

36 {

37 super.paint(g);

38 g.drawOval(X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);

39 //Draw Eyes:

40 g.fillOval(X_RIGHT_EYE, Y_RIGHT_EYE, EYE_WIDTH, EYE_HEIGHT);

41 g.fillOval (X_LEFT_EYE, Y_LEFT_EYE, EYE_WIDTH, EYE_HEIGHT);

42 //Draw Mouth:

43 g.drawArc(X_MOUTH, Y_MOUTH, MOUTH_WIDTH, MOUTH_HEIGHT,

44 MOUTH_START_ANGLE, MOUTH_ARC_SWEEP) ;

45 }

46}

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-77

ITrrrrrrrrrerTT

Drawing a Happy Face (Part 5 of 5)

Drawing a Happy Face

RESULTING GUI

® Graphics Demonstration 2 [:\@

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-78

| BT

Drawing Arcs

* Arcs are described by giving an oval, and then
specifying a portion of it to be used for the arc
— The following statement draws the smile on the happy
face:
g.drawArc(X_MOUTH, Y_MOUTH, MOUTH_WIDTH,
MOUTH_HEIGHT, MOUTH_START_ANGLE,
MOUTH_ARC_SWEEP);

— The arguments MOUTH_WIDTH and MOUTH_HEIGHT
determine the size of the bounding box, while the
arguments X_MOUTH and Y_MOUTH determine its
location

— The last two arguments specify the portion made visible

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-79

ITrrrrrrrrrrrrd

Specifying an Arc (Part 1 of 2)

Specifying an Arc

g.drawArc(x, y, width, height, 0, 90);

Sweep through 90 degrees
Start at

|
|
|
| _—— =
|

) Asaress
| O degrees
|

Start at |

O degrees |

Negative direction 4]

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-80

1

ITITrrrrn

Specifying an Arc (Part 2 of 2)

Specifying an Arc

g.drawArc(x, y, width, height, 0, 360);
~——— width ——

height

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved

18-81

ITTTTITrTe

Rounded Rectangles

* A rounded rectangle is a rectangle whose corners have been
replaced by arcs so that the corners are rounded
g-drawRoundRect(x, y, width, height,
arcWidth, arcHeight)
— The arguments X, Y, Width, and he ight determine a regular
rectangle in the usual way
— The last two arguments arcWidth, and arcHe 1 ght, specify
the arcs that will be used for the corners
— Each corner is replaced with an quarter of an oval that is
arcWidth pixels wide and arcHe 1ght pixels high

— When arcWidth and arcHe ight are equal, the corners will
be arcs of circles

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-82

LI BB TR

A Rounded Rectangle

g.drawRoundRect(x, y, width, height, arcWidth, arcHeight);
produces

{x, y) - width —_—

arcWidth height

arcHeight

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

18-83

EENNNNENEE

paintComponent for Panels

* AJPanel isa JComponent, but a JFrame is a
Component, not a JComponent

— Therefore, they use different methods to paint the screen
* Figures can be drawn on a JPanel, and the
JPanel can be placed in a JFrame

— When defining a JPanel class in this way, the
paintComponent method is used instead of the paint
method

— Otherwise the details are the same as those for a JFrame

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-84

| IO

paintComponent Demonstration (Part 1 of 4)

paintComponent Demonstration

import javax.swing.JFrame;
import javax.swing.JPanel;
import java.awt.GridLayout;
import java.awt.Graphics;
import java.awt.Color;

VB W N

public class PaintComponentDemo extends JFrame
{
public static final int FRAME_WIDTH = 400;
public static final int FRAME_HEIGHT = 400;

0 e~ o

(continued)

ITrrrrrrrrrerTT

paintComponent Demonstration (Part 2 of 4)

paintComponent Demonstration

10 private class FancyPanel extends JPanel

11 {

12 public void paintComponent(Graphics g)

13 {

14 super.paintComponent(g);

15 setBackground(Color.YELLOW) ;

16 g.drawOval (FRAME_WIDTH/4, FRAME_HEIGHT/8,
17 FRAME_WIDTH/2, FRAME_HEIGHT/6);
18 }

19 }

20 public static void main(String[] args)

21 {

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-85 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-86
paintComponent Demonstration (Part 3 of 4)
paintComponent Demonstration paintComponent Demonstration
22 Pathc.:m:.JonentDemo w = new PaintComponentDemo(); RESULTING GUI
23 w.setVisible(true);
24 3 & The Oval Is in a Panel
25 public PaintComponentDemo()
26 {
27 setSize (FRAME_WIDTH, FRAME_HEIGHT);
28 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); ©
29 setTitle("The Oval Is in a Panel™);
30 setLayout(new GridLayout(2, 1));
31 FancyPanel p = new FancyPanel();
32 add(p);
33 JPanel whitePanel = new JPanel();
34 whitePanel.setBackground(Color.WHITE);
35 add(whitePanel);
36 3}
- 37} =
N (continued) =
E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-87 E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-88

[00

Action Drawings and repaint

* The repaint method should be invoked when the
graphics content of a window is changed
— The repaint method takes care of some overhead, and

then invokes the method pa
screen

int, which redraws the

— Although the repaint method must be explicitly

invoked, it is already defined

— The paint method, in contrast, must often be defined,

but is not explicitly invoked

ITTTTTTrTrTT

An Action Drawing (Part 1 of 7)

An Action Drawing

import javax.swing.JFrame;

import javax.swing.J]Button;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.BorderLayout;

import java.awt.Graphics;

import java.awt.Color;

NN R W N

& public class ActionFace extends JFrame
9 {

10 public static final int WINDOW_WIDTH = 400;

11 public static final int WINDOW_HEIGHT

= 400;
(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-89 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-90
An Action Drawing (Part 2 of 7) An Action Drawing (Part 3 of 7)
An Action Drawing
. . 21 public static final int MOUTH_WIDTH = 100;
An Action Drawing 22 public static final int MOUTH_HEIGHT = 50;
. . . . 23 public static final int X_MOUTH = X_FACE + 50;

12 public static final int FACE_DIAMETER = 200; 24 public static final int Y_MOUTH = Y_FACE + 100;

13 publ}c static f}nﬂl int X_FACE = 100; 25 public static final int MOUTH_START_ANGLE = 180;

14 public static final int Y_FACE = 100; 26 public static final int MOUTH_ARC_SWEEP = 180;

15 public static final int EYE_WIDTH = 20; 27 private boolean wink;

16 public static final int EYE_HEIGHT = 10;

17 public static final int X_RIGHT_EYE = X_FACE + 55; 28 private class WinkAction implements ActionListener

18 public static final int Y_RIGHT_EYE = Y_FACE + 60; 29 {

19 public static final int X_LEFT_EYE = X_FACE + 130; 30 public void actionPerformed(ActionEvent e)

20 public static final int Y_LEFT_EYE = Y_FACE + 60; 31 {

) 32 wink = true;
(continued) 33 repaint();
N - 34 }
35 } // End of WinkAction inner class

= — (continued)
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-91 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-92

An Action Drawing (Part 4 of 7)

An Action Drawing

An Action Drawing (Part 5 of 7)

An Action Drawing

36 public static void main(String[] args) 53 public void paint(Graphics g)
37 { 54 {
38 ActionFace drawing = new ActionFace(); 55 super.paint(g);
39 drawing.setVisible(true); 56 g.drawOval (X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);
40 1 57 //Draw Right Eye:
58 9. fi110val (X_RIGHT_EYE, Y_RIGHT_EYE, EYE_WIDTH, EYE_HEIGHT);
41 public ActionFace() 59 //Draw Left Eye:
42 { 60 if (wink)
43 setSize (WINDOW_WIDTH, WINDOW_HEIGHT); 61 g.drawLine (X_LEFT_EYE, Y_LEFT_EYE,
44 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 62 X_LEFT_EYE + EYE_WIDTH, Y_LEFT_EYE);
45 setTitle("Hello There!"); 63 else
46 setLayout(new BorderLayout()); 64 g.fill0val(X_LEFT_EYE, Y_LEFT_EYE, EYE_WIDTH, EYE_HEIGHT);
47 getContentPane().setBackground(Color.white); 65 //Draw Mouth:
66 g.drawArc (X_MOUTH, Y_MOUTH, MOUTH_WIDTH, MOUTH_HEIGHT,
I~ 48 JButton winkButton = new JButton("Click for a Wink."); o 67 MOUTH_START_ANGLE, MOUTH_ARC_SWEEP);
— 49 winkButton.addActionListener(new WinkAction()); - 68 }
ol 50 add(winkButton, BorderLayout.SQUTH); -
| 51 wink = false; o 69 1} (continued)
- 52 } -
— (continued) =l
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-93 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-94
An Action Drawing (Part 6 of 7) An Action Drawing (Part 7 of 7)
An Action Drawing An Action Drawing
RESULTING GUI (When started) RESULTING GUI (After clicking the button)
Y 1
Hello Therel & Hello There!
= Click for aWink. —
= =1 Click for a Wink.
- (continued) -
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-95 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-96

Some More Details on Updating a GUI

* With Swing, most changes to a GUI are updated automatically
to become visible on the screen

— This is done by the repaint manager object

* Although the repaint manager works automatically, there are
a few updates that it does not perform
— For example, the ones taken care of by val idate or repaint

* One other updating method is pack
— pack resizes the window to something known as the preferred size

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-97

The val 1date Method

* Aninvocation of val idate causes a container to lay out its

components again

— Itis a kind of "update" method that makes changes in the components
shown on the screen

— Every container class has the val idate method, which has no
arguments

* Many simple changes made to a Swing GUI happen

automatically, while others require an invocation of
val idate or some other "update" method

— When in doubt, it will do no harm to invoke val idate

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-98

Specifying a Drawing Color

* Using the method drawL ine inside the paint
method is similar to drawing with a pen that can
change colors
— The method setColor will change the color of the pen

— The color specified can be changed later on with another
invocation of setCollor so that a single drawing can have
multiple colors

g-setColor(Color.BLUE)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-99

Adding Color

Adding Color

1 public void paint(Graphics g)

2 {

3 super.paint(g);

4 //Default is equivalent to: g.setColor(Color.black);
i

5

g.drawOval (X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);

6 //Draw Eyes:

7 g.setColor(Color.BLUE);

8 g.fi110val (X_RIGHT_EYE, Y_RIGHT_EYE, EYE_WIDTH, EYE_HEIGHT) ;
9 g.fil10val(X_LEFT_EYE, Y_LEFT_EYE, EYE_WIDTH, EYE_HEIGHT);
10 //Draw Mouth:

11 g.setColor(Color.RED);

12 g.drawArc(X_MOUTH, Y_MOUTH, MOUTH_WIDTH, MOUTH_HEIGHT,
13 MOUTH_START_ANGLE, MOUTH_ARC_SWEEP);
14 }

If you replace the paint method in Display 18.13 with this version
then the happy face will have blue eyes and red lips.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-100

LEEETE

|

Defining Colors

» Standard colors in the class Color are already
defined in Chapter 17

* The Color class can also be used to define
additional colors

— It uses the RGB color system in which different amounts of
red, green, and blue light are used to produce any color

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-101

|

The Color Constants

The Color Constants

Color.BLACK Color.MAGENTA
Color.BLUE Color.ORANGE
Color.CYAN Color.PINK
Color.DARK_GRAY Color.RED
Color.GRAY Color.WHITE
Color.GREEN Color.YELLOW
Color.LIGHT_GRAY
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-102

I BLH I

|

Defining Colors

* Integers or floats may be used when specifying the
amount of red, green, and/or blue in a color
— Integers must be in the range 0-255 inclusive
Color brown = new Color(200, 150, 0);
— Float values must be in the range 0.0-1.0 inclusive
Color brown = new Color(
(float) (200.0/255) , (float) (150.0/255),
(float)0.0);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-103

Pitfall: Using doubles to Define a Color

* Constructors for the class Color only accept
arguments of type int or Float
— Without a cast, numbers like 200.0/255, 0.5, and 0.0 are
considered to be of type doubl e, not of type Float
* Don't forget to use a type cast when intending to use
float numbers
— Note that these numbers should be replaced by defined
constants in any final code produced

public static final float RED_VALUE =
(float)0.5;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-104

1

LI BB

Some Methods in the Class Color (Part 1 of 2)

Some Methods in the Class Color

The class Color is in the java. awt package.

public Color(int r, int g, int b)

Constructor that creates a new Color with the specified RGB values. The parameters r, g, and b must each
be in the range 0 to 255 (inclusive).

public Color(float r, float g, float b)

Constructor that creates a new Color with the specified RGB values. The parameters r, g, and b must each
be in the range 0.0 to 1.0 (inclusive).

public int getRed()

Returns the red component of the calling object. The returned value is in the range © to 255 (inclusive).

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-105

|ENEEEERERERE]

Some Methods in the Class Color (Part 2 of 2)

Some Methods in the Class Color

public int getGreen()

Returns the green component of the calling object. The returned value is in the range 0 to 255 (inclusive).

public int getBlue()

Returns the blue component of the calling object. The returned value is in the range @ to 255 (inclusive).

public Color brighter()

Returns a brighter version of the calling object color.

public Color darker()

Returns a darker version of the calling object color.

public boolean equals(Object c)

Returns true if c is equal to the calling object color; otherwise, returns false.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-106

1

LR R

The JColorChooser Dialog Window

e The class JColorChooser can be used to allow a
user to choose a color

* The showDialog method of JColorChooser
produces a color-choosing window
— The user can choose a color by selecting RGB values or
from a set of color samples
sample Color =
JColorChooser.showDialog(this,
"JColorChooser™, sampleColor);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-107

|ENEEEERERERE]

JColorChooser Dialog (Part 1 of 5)

JColorChooser Dialog

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JButton;

import javax.swing.JColorChooser;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.BorderlLayout;

import java.awt.FlowLayout;

import java.awt.Color;

W NN R W

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-108

JColorChooser Dialog (Part 2 of 5)

JColorChooser Dialog

JColorChooser Dialog (Part 3 of 5)

JColorChooser Dialog

10 public class JColorChooserDemo extends JFrame 21 public JColerChooserDemo()
11 implements ActionListener 22 {
12 { 23 setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
13 public static final int WIDTH = 400; 24 getContentPane() .setBackground(sampleColor);
14 public static final int HEIGHT = 200; 25 setlLayout(new BorderLayout());
26 setTitle("JColorChooser Demo");
15 private Color sampleColor = Color.LIGHT_GRAY; 27 setSize(WIDTH, HEIGHT);
28 JPanel buttonPanel = new JPanel();
29 buttonPanel.setBackground(Color.WHITE);
16 public static void main(String[] args) 30 buttonPanel.setlLayout(new FlowLayout());
17 { 31 JButton chooseButton = new JButton("Choose a Color");
18 JColorChooserDemo gui = new JColorChooserDemo(); 32 chooseButton.addActionListener(this);
19 gui.setVisible(true); 33 buttenPanel.add(chooseButton);
20 3} 34 add(buttonPanel, BorderLayout.SOUTH);
|- = 35 }
N (continued) [~ (continued)
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-109 - Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-110
JColorChooser Dialog (Part 4 of 5) slorchaosar islog
RESULTING GUI (Three views of one GUI)
& JColorChooser Demo [O/
JColorChooser Dialog
36 public void actionPerformed(ActionEvent e)
37 {
38 if (e.getActionCommand().equals("Choose a Color™))]
39 { Choose a Color.— EI:
40 sampleColor =
41 JColorChooser.showDialog(this, "JColorChooser"”, sampleColor);
42 if (sampleColor != null)//If a color was chosen
43 getContentPane () .setBackground(sampleColor); =
a4 } D et
45 else 8 JColorChooser]
Cocet o
46 System.out.println("Unanticipated Error"); L] cmst o= i
47 } _— g
48 3} i «-w:i--kc.su-;:____\ M G e
sl e e T
- (continued) = M, w om ma o
B [~ o AT
— — == o= ;
o [~ m ._-
N - oo | o
= Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-111 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-112

ITITTrrrrrTt

1

The drawString Method

* The method drawString is similar to the
drawing methods in the Graphics class
— Howeuver, it displays text instead of a drawing

— If no font is specified, a default font is used
g-drawString(theText, X START, Y _Start);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-113

ITTTTTTrTrTT

Using drawString (Part 1 of 7)

Using drawString

oA WN R

W0~

import
import
import
import
import
import
import
import
import

javax.swing.JFrame;
javax.swing.JPanel;
javax.swing.JButton;
java.awt.event.ActionListener;
java.awt.event.ActionEvent;
java.awt.BorderLayout;
java.awt.Graphics;
java.awt.Color;

java.awt.Font;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

(continued)

18-114

00

|

Using drawString (Part 2 of 7)

Using drawString

10 public class DrawStringDemo extends JFrame

11 implements ActionListener
12 {

13 public static final int WIDTH = 350;

14 public static final int HEIGHT = 200;

15 public static final int X_START = 20;

16 public static final int Y_START = 100;

17 public static final int POINT_SIZE = 24;

18 private String theText = "Push the button.";

19 private Color penColor = Color.BLACK;

20 private Font fontObject =

21 new Font("SansSerif", Font.PLAIN, POINT_SIZE);
22 public static void main(String[] args)

23 {

24 DrawStringDemo gui = new DrawStringDemo();

25 gui.setVisible(true);

26 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-115

ITTTTITIrrTTT

Using drawString (Part 3 of 7)

Using drawString

27
28
29
30
31

32
33

34
35
36

public DrawStringDemo()

{

setSize(WIDTH, HEIGHT);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setTitle("drawString Demonstration™);

getContentPane().setBackground(Color .WHITE);
setLayout(new BorderLayout());

JPanel buttonPanel = new JPanel();
buttonPanel.setBackground(Color.GRAY) ;
buttonPanel.setLayout(new BorderLayout());

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

(continued)

18-116

| BT

Using drawString (Part 4 of 7)

Using drawString

37 JButton theButton = new JButton("The Button");

38 theButton.addActionListener(this);

39 buttonPanel.add(theButton, BorderLayout.CENTER);

40 add (buttonPanel, BorderLayout.SOUTH);

41 }

42 public void paint(Graphics g)

43 {

44 super.paint(g);

45 g.setFont(fontObject);

46 g.setColor(penColor);

47 g.drawString(theText, X_START, Y_START);

48 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-117

ITrrrrrrrrrerTT

Using drawString (Part5 of 7)

Using drawString

49 public void actionPerformed(ActionEvent e)

50 {

51 penColor = Color.RED;

52 fontObject =

53 new Font("Serif", Font.BOLD|Font.ITALIC, POINT_SIZE);

54 theText = "Thank you. I needed that.";

55 repaint();

56 3}

57

. (continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-118

| BT

Using drawString (Part 6 of 7)

Using drawString

RESULTING GUI (Start view)

& drawString Demonstration E|@|g]

Push the button.

The Button

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-119

ITrrrrrrrrrrrrd

Using drawString (Part7 of 7)

Using drawString

RESULTING GUI (After clicking the button)

& drawstring Demonstration E\@|@

Thank you. I needed that.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-120

[LB

1

Fonts

* Afontis an object of the Font class
— The Font class is found in the Java.awt package
e The constructor for the FONt class creates a font in a
given style and size
Font fontObject = new Font(‘''SansSerif",
Font.PLAIN, POINT_SIZE);
* A program can set the font for the drawString

method within the paint method
g-setFont(fontObject);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-121

ITTTTTTrTrTT

Font Types

¢ Any font currently available on a system can be used in Java

— However, Java guarantees that at least three fonts will be available:
""Monospaced”, ""'SansSerif", and "'Serif"

e Serifs are small lines that finish off the ends of the lines in
letters
— This S has serifs, but this S does not
— A"Serif" font will always have serifs
— Sans means without, so the ""SansSeriT" font will not have serifs
— "Monospaced' means that all the characters have equal width

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-122

[0 0

Font Styles

* Fonts can be given style modifiers, such as bold or
italic
— Multiple styles can be specified by connecting them with
the | symbol (called the bitwise OR symbol)
new Font("Serif",
Font_BOLD|Font.ITALIC, POINT_SIZE);
* The size of a font is called its point size
— Character sizes are specified in units known as points
— One pointis 1/72 of an inch

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-123

ITTTTITIrrTTT

Result of Running FontDisplay. java
(Found on the Accompanying CD)

Result of Running FontDisplay.java

Fonts may look somewhat different on your system.

& Font Samples g@

Serif, Plain, 10 Potits
SansSerif, Plain, 12 Points

Monospaced, Plain, 14 Points

Serif, ftalic, 18 Pts.
SansSerif, Bold, 24 Points
Monospaced, Bold & Italic, 32 Points

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 18-124

1

LI BB

Some Methods and Constants for the Class
Font (Part1 of 2)

Some Methods and Constants for the Class Font

The class Font is in the java.awt package.
CONSTRUCTOR FORTHE CLASS Font
public Font (String fontName, int styleModifications, int size)

Constructor that creates a version of the font named by fontName with the specified
styleModifications and size

CONSTANTS INTHE CLASS Font
Font .BOLD

Specifies bold style.
Font .ITALIC

Specifies italic style.
Font . PLAIN

Specifies plain style—that is, not bold and not italic.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

18-125

|ENEEEERERERE]

Some Methods and Constants for the Class
Font (Part2 of 2)

NAMES OF FONTS (These three are guaranteed by Java.
Your system will probably have others as well as these.)

"Monospaced"

See Display 18.22 for a sample.
"SansSerif"

See Display 18.22 for a sample.
"Serif"

See Display 18.22 for a sample.

METHOD THAT USES Font
public abstract void setFont (Font fontObject)

This method is in the class Graphics. Sets the current font of the calling Graphics object to
fontObject.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 18-126

