L WL T

e .
A S ":. .
. -‘.‘“ PP
» 4 attee &
<~ & ——

Chapter 17

FIFTH EDITION

Swing |

ABSOLUTE JAVA

WALTER SAVITCH

Slides prepared by Rose Williams,
Binghamton University

Kenrick Mock, University of Alaska
Anchorage

PEARSON

ALWAYS LEARNING

ITrrrrrrrrrerTT

Introduction to Swing

A GUI (graphical user interface) is a windowing system that
interacts with the user

The Java AWT (Abstract Window Toolkit) package is the
original Java package for creating GUIs

* The Swing package is an improved version of the AWT

— However, it does not completely replace the AWT

— Some AWT classes are replaced by Swing classes, but other AWT
classes are needed when using Swing

* Swing GUIs are designed using a form of object-oriented
programming known as event-driven programming

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-2

| BT

Events

* Event-driven programming is a programming style
that uses a signal-and-response approach to
programming

* An event is an object that acts as a signal to another
object know as a listener

e The sending of an event is called firing the event

— The object that fires the event is often a GUI component,
such as a button that has been clicked

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-3

ITrrrrrrrrrrerT

Listeners

* A listener object performs some action in
response to the event

— A given component may have any number of
listeners

— Each listener may respond to a different kind of
event, or multiple listeners might may respond to
the same events

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-4

Exception Objects

* An exception object is an event

— The throwing of an exception is an example of
firing an event

* The listener for an exception object is the
catch block that catches the event

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-5

Event Handlers

e A listener object has methods that specify
what will happen when events of various
kinds are received by it
— These methods are called event handlers

e The programmer using the listener object will
define or redefine these event-handler
methods

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-6

Event Firing and an Event Listener

Event Firing and an Event Listener

P -
component l_: event)—. listener |

the event s an araument

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-7

Event-Driven Programming

e Event-driven programming is very different from
most programming seen up until now
— So far, programs have consisted of a list of statements
executed in order

— When that order changed, whether or not to perform
certain actions (such as repeat statements in a loop,
branch to another statement, or invoke a method) was
controlled by the logic of the program

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-8

Event-Driven Programming

* |n event-driven programming, objects are
created that can fire events, and listener
objects are created that can react to the
events

* The program itself no longer determines the
order in which things can happen
— Instead, the events determine the order

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 179

Event-Driven Programming

* In an event-driven program, the next thing that
happens depends on the event that occurs

* |In particular, methods are defined that will never be
explicitly invoked in any program

— Instead, methods are invoked automatically when an event
signals that the method needs to be called

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-10

A Simple Window

* A simple window can consist of an object of the JFrame class

— A JFrame object includes a border and the usual three buttons for
minimizing, changing the size of, and closing the window

— The JFrame class is found in the javax.swing package

JFrame FirstWindow = new JFrame();
* A JFrame can have components added to it, such as buttons,

menus, and text labels

— These components can be programmed for action
firstWindow.add(endButton);

— It can be made visible using the setVisible method
firstWindow.setVisible(true);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-11

A First Swing Demonstration (Part 1 of 4)

A First Swing Demonstration Program

1 import javax.swing.J]Frame;
import javax.swing.J]Button;

public class FirstSwingDemo

{
1 public static final int WIDTH = 300;
6 public static final int HEIGHT = 200;

7 public static void main(String[] args)
8 {
9 JFrame FirstWindow = new JFrame();
10 firstWindow.setSize (WIDTH, HEIGHT);
(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-12

A First Swing Demonstration (Part 2 of 4)

Display 17.2 A First Swing Demonstration Program

11 firstWindow.setDefaultCloseOperation(

12 JFrame.DO_NOTHING_ON_CLOSE) ;

13 JButton endButton = new JButton("Click to end program.");

14 EndingListener buttonEar = new EndingListener();

15 endButton.addActionListener(buttonEar);

16 firstWindow.add(endButton);

17 firstWindow.setVisible(true);

18 }

19 1} This is the file FirstSwingDemo. java.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-13

A First Swing Demonstration (Part 3 of 4)

Display 17.2 A First Swing Demonstration Program

1 import jova.owt.event.ActionListener;

2 import jova.awt.event.ActionEvent; This is the file Endinglistener.java.

3 public class EndingListener implements ActionlListener

4 {

5 public void actionPerformed(ActionEvent e)

6 {

7 System.exit(@);

8 }

9 F

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-14

A First Swing Demonstration (Part 4 of 4)

Display 17.2 A First Swing Demonstration Program

RESULTING GUI

ge window size to full

een,

Close-window button

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-15

Some Methods in the Class JFrame (Part 1 of
3)

Display 17.3 Some Methods in the Class JFrame

The class JFrame is in the javax. swing package.

public JFrame()
Constructor that creates an object of the class JFrame.

public JFrame(String title)
Constructor that creates an object of the class JFrame with the title given as the argument.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-16

| BT

Some Methods in the Class JFrame (Part 2 of
3)

Display 17.2 Some Methods in the Class IFrame

public void setDefaultCloseOperation(int operation)

Sets the action that will happen by default when the user clicks the close-window button. The argument
should be one of the following defined constants:
JFrame . DO_NOTHING_ON_CLOSE: Do nothing. The JFrame does nothing, but if there are any regis-
tered window listeners, they are invoked. (Window listeners are explained in Chapter 19.)
JFrame.HIDE_ON_CLOSE: Hide the frame after invoking any registered WindowListener objects.
JFrame .DISPOSE_ON_CLOSE: Hide and dispose the frame after invoking any registered window lis-
teners. When a window is disposed it is eliminated but the program does not end. To end the program,
you use the next constant as an argument to setDefaultCloseOperation.
IFrame . EXIT_ON_CLOSE: Exit the application using the System exit method. (Do not use this for
frames in applets. Applets are discussed in Chapter 18.)
If no action is specified using the method setDefaultCloseOperation, then the default action taken
is JFrame . HIDE_ON_CLOSE.
Throws an IllegalArgumentException if the argument is not one of the values listed above.?
Throws a SecurityException if the argument is JFrame . EXIT_ON_CLOSE and the Security Manager
will not allow the caller to invoke System.exit. (You are not likely to encounter this case.)

public void setSize(int width, int height)

Sets the size of the calling frame so that it has the width and height specified. Pixels are the units of
length used.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

(continued)
1717

ITrrrrrrrrrerTT

Some Methods in the Class JFrame (Part 3 of
3)

Display 17.3 Some Methods in the Class JFrame

public void setTitle(String title)
Sets the title for this frame to the argument string.

public void add(Component componentAdded)

Adds a component to the JFrame.

public void setlLayout(LayoutManager manager)
Sets the layout manager. Layout managers are discussed later in this chapter.

public void setIMenuBar(JMenuBar menubar)

Sets the menubar for the calling frame. (Menus and menu bars are discussed later in this chapter.)

public void dispose()

Eliminates the calling frame and all its subcomponents. Any memory they use is released for reuse. If there
are items left (items other than the calling frame and its subcomponents), then this does not end the pro-
gram. (The method dispose is discussed in Chapter 19.)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-18

| BT

Pixels and the Relationship between Resolution
and Size

e Apixel is the smallest unit of space on a screen

— Both the size and position of Swing objects are measured in
pixels

— The more pixels on a screen, the greater the screen resolution
¢ A high-resolution screen of fixed size has many pixels
— Therefore, each one is very small
* Alow-resolution screen of fixed size has fewer pixels
— Therefore, each one is much larger
e Therefore, a two-pixel figure on a low-resolution screen
will look larger than a two-pixel figure on a high-
resolution screen

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-19

ITrrrrrrrrrrrrd

Pitfall: Forgetting to Program the
Close-Window Button

* The following lines from the FirstSwingDemo
program ensure that when the user clicks the close-
window button, nothing happens

FfirstWindow.setDefaultCloseOperation(
JFrame.DO_NOTHING_ON_CLOSE);

¢ |If this were not set, the default action would be
JFrame.HIDE_ON_CLOSE

— This would make the window invisible and inaccessible, but
would not end the program

— Therefore, given this scenario, there would be no way to click
the "Click to end program" button
* Note that the close-window and other two
accompanying buttons are part of the JFrame object,
and not separate buttons

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-20

Buttons

e A button object is created from the class JButton
and can be added to a JFrame
— The argument to the JButton constructor is the string
that appears on the button when it is displayed
JButton endButton = new
JButton(*'Click to end program.');
FirstWindow.add(endButton);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-21

Action Listeners and Action Events

e Clicking a button fires an event
¢ The event object is "sent" to another object called a listener

— This means that a method in the listener object is invoked
automatically
— Furthermore, it is invoked with the event object as its argument

* Inorder to set up this relationship, a GUI program must do
two things
1. It must specify, for each button, what objects are its listeners, i.e., it
must register the listeners
2. It must define the methods that will be invoked automatically when
the event is sent to the listener

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-22

Action Listeners and Action Events

EndingListener buttonEar = new
EndingListener());
endButton.addActionListener(buttonEar);
* Above, a listener object named buttonEar is
created and registered as a listener for the button
named endButton

— Note that a button fires events known as action events,
which are handled by listeners known as action listeners

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-23

Action Listeners and Action Events

» Different kinds of components require different kinds
of listener classes to handle the events they fire

* An action listener is an object whose class
implements the ActionListener interface

— The ActionListener interface has one method
heading that must be implemented
public void actionPerformed(ActionEvent e)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-24

Action Listeners and Action Events

public void actionPerformed(ActionEvent e)

{

3
* The EndingListener class defines its
actionPerformed method as above
— When the user clicks the endButton, an action event is sent
to the action listener for that button

— The EndingListener object buttonEar is the action
listener for endButton

— The action listener buttonEar receives the action event as
the parameter e to its actionPerformed method, which is
automatically invoked

— Note that € must be received, even if it is not used

System.exit(0);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-25

Pitfall: Changing the Heading for
actionPerformed

* When the actionPerformed method is implemented in
an action listener, its header must be the one specified in the
ActionListener interface

— ltis already determined, and may not be changed
— Not even a throws clause may be added
public void actionPerformed(ActionEvent e)

* The only thing that can be changed is the name of the
parameter, since it is just a placeholder

— Whether it is called e or something else does not matter, as long as it
is used consistently within the body of the method

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-26

Tip: Ending a Swing Program

* GUI programs are often based on a kind of infinite loop
— The windowing system normally stays on the screen until the user
indicates that it should go away
* If the user never asks the windowing system to go away, it will
never go away
* Inorder to end a GUI program, System.ex it must be used
when the user asks to end the program

— It must be explicitly invoked, or included in some library code that is
executed

— Otherwise, a Swing program will not end after it has executed all the
code in the program

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-27

A Better Version of Our First Swing GUI

* A better version of Fi rstWindow makes it a derived
class of the class JFrame
— This is the normal way to define a windowing interface
* The constructor in the new FirstWindow class starts
by calling the constructor for the parent class using
super();
— This ensures that any initialization that is normally done for all
objects of type JFrame will be done

e Almost all initialization for the window FirstWindow
is placed in the constructor for the class

* Note that this time, an anonymous object is used as the
action listener for the endButton

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-28

The Normal Way to Define a JFrame (Part 1 of

4)

Display 17.4, The Normal Way to Define a JFrame

1 import jovax.swing.JFrame;
import javax.swing.JButton;

3 public class FirstWindow extends JFrame

4 q

5 public static final int WIDTH = 300;
6 public static final int HEIGHT = 200;
7 public FirstWindow()

8 {

9 super();

16 setSize(WIDTH, HEIGHT);

11 setTitle("First Window Class"):

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

(continued)

17-29

The Normal Way to Define a JFrame (Part 2 of

4)

Display 17.4, The Normal Way to Define a JFrame

12 setDefaultCloseOperation(
13 JFrame . DO_NOTHING_ON_CLOSE) ;
14 JButton endButton = new JButton("Click to end program.");
15 endButton.addActionListener(new EndinglListener());
16 add(endButton) ;
17 }
18 } -] : 2 o T e
The class Endinglistener is defined in Display
172
This is the file FirstWindow. java.
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-30

The Normal Way to Define a JFrame (Part 3 of

4)

Display 17., The Normal Way to Define a JFrame

This is the file DemoWindow. jova.

1 public class DemoWindow

2 {

3 public static void main(String[] args)
4 {

5 FirstWindow w = new FirstWindow();
6 w.setVisible(true);

7 }

8 }

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

(continued)

17-31

The Normal Way to Define a JFrame (Part 4 of

4)

Display 17.4, The Normal Way to Define a JFrame

RESULTING GUI

& First Window Class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-32

1

LI BB

Labels

* A label is an object of the class JLabell
— Text can be added to a JFrame using a label

— The text for the label is given as an argument when the
JLabel is created
— The label can then be added to a JFrame
JLabel greeting = new JLabel(""Hello™);
add(greeting);

|ENEEEERERERE]

Color

* InJava, a color is an object of the class Color
— Theclass Color is found in the java.awt package
— There are constants in the Color class that represent a number of
basic colors
e A JFrame can not be colored directly

— Instead, a program must color something called the content pane of
the JFrame
— Since the content pane is the "inside" of a JFrame, coloring the
content pane has the effect of coloring the inside of the JFrame
— Therefore, the background color of a JFrame can be set using the
following code:
getContentPane() .setBackground(Color);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-33 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-34
Display 17.5 The Color Constants Display 17.6 A JFrame with Color
Color.BLACK Color.MAGENTA 1 import javax.swing.lFrame;
Color.BLUE Color.ORANGE 2 import javax.swing.JllLabel;
Color.CYAN Color.PINK 3 import java.awt.Color;
Color.DARK_GRAY Color.RED
Color.GRAY Color.WHITE 4 public class ColoredWindow extends JFrame
Color.GREEN Color.YELLOW 5 1
Color.LIGHT_GRAY 6 public static final int WIDTH = 300;
public static final int HEIGHT = 200;
The class Color is in the java.awt package.
8 public ColoredWindow(Color theColor)
€
10 super("No Charge for Color");
11 setSize(WIDTH, HEIGHT);
12 setDefaultCloseOperation(JFrame . EXIT_ON_CLOSE);
- - (continued)
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-35 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-36

[BRE RN

A JFrame with Color (Part 2 of 4)

Display 17.6 A JFrame with Color

13 getContentPane() .setBackground(theColor);
14 JLabel alLabel = new JLabel("Close-window button works.");
15 add(aLabel) ;
16 }
17 public ColoredWindow()
19 this(Color.PINKY; =~ constructor
20 }
21 }
file ColoredwWindow. java
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-37

EEREREREREEEEE

A JFrame with Color (Part 3 of 4)

Display 17.6 A JFrame with Color

1 import java.awt.Color; e 3
the file Coloredwindow. java

public class DemoColoredwindow

3 {

public static void main(String[] args)

{
6 ColoredWindow wl = new ColoredWindow();
7 wl.setVisible(true);
8 ColoredWindow w2 = new ColoredWindow(Color.YELLOW);
9 w2.setVisible(true);
16 }
11. '}

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-38

(BRI AR

A JFrame with Color (Part 4 of 4)

Display 17.6 A JFrame with Color

RESULTING GUI

Close-window button works.

Close-window button works.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-39

ITTITTrrrrrrrer:

Containers and Layout Managers

* Multiple components can be added to the
content pane of a JFrame using the add
method

— However, the add method does not specify how
these components are to be arranged

* To describe how multiple components are to be
arranged, a layout manager is used
— There are a number of layout manager classes such

as BorderLayout, FlowLayout, and
GridLayout

— If a layout manager is not specified, a default layout
manager is used

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-40

| IO

Border Layout Managers

* ABorderLayout manager places the
components that are added to a JFrame object
into five regions

— These regions are: BorderLayout_NORTH,
BorderLayout.SOUTH, BorderLayout.EAST,
BorderLayout.WEST, and
BorderLayout.Center

* ABorderLayout manager is added to a
JFrame using the setlLayout method
— For example:
setLayout(new BorderLayout());

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-41

ITrrrrrrrrrerTT

The BorderLayout Manager (Part 1 of 4)

Display 17.7 The BorderLayout Manager

1 import javax.swing.JFrame;
2 import javax.swing.lLabel;
3 impert jova.awt.BorderlLayout;

4 public class BorderLayout]Frame extends JFrame

5 {

6 public static final int WIDTH = 508;

7 public static final int HEIGHT = 400;

8 public BorderLayoutlFrame()

9 {

16 super(“BorderLayout Demonstration");

11 setSize(WIDTH, HEIGHT);

12 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-42

| BT

The BorderLayout Manager (Part 2 of 4)

Display 17.7 The BorderLayout Manager

13 setlLayout(new BorderLayout());
14 JLabel labell = new JLabel("First label");
15 add(labell, BorderLayout.NORTH);

16 JLobel label2 = new JLabel("Second label");

17 add(label2, BorderLayout.SOUTH);

18 JLobel label3 = new JLabel("Third label");
19 add(label3, BorderLayout.CENTER);

20 }

21 }

the file BorderLayoutJFrame. java

{continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-43

ITrrrrrrrrrrerT

The BorderLayout Manager (Part 3 of 4)

Display 17.7 The BorderLayout Manager

5 |5 the file BorderLayoutDemo. java.

1 public class BorderLayoutDemo

2 i

3 public static void main(String[] args)

4 {

5 BorderLayout)Frame gui = new BorderLayoutlFrame();

6 gui.setVisible(true);

7 1

8 3

(cantinued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-44

[LB

1

The BorderLayout Manager (Part 4 of 4)

Display 17.7 The BorderLayout Manager

RESULTING GUI

& BorderLayout Demonstration r__|@|g]

First label

Third label

Second label

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-45

ITTTTTTrTrTT

BorderLayout Regions

Display 17.8 BorderLayout Regions
BorderLayout .NORTH
BorderLayout. BorderLayout.
WEST EAST
BorderLayout.CENTER
BorderLayout.SOUTH
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-46

[0 0

Border Layout Managers

The previous diagram shows the arrangement of the five
border layout regions

— Note: None of the lines in the diagram are normally visible
When using a BorderLayout manager, the location of the
component being added is given as a second argument to the
add method

add(labell, BorderLayout.NORTH);

— Components can be added in any order since their location is specified

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-47

ITTTTITIrrTTT

Flow Layout Managers

* The FlowLayout manager is the simplest layout
manager
setLayout(new FlowLayout());

— It arranges components one after the other, going from
left to right

— Components are arranged in the order in which they are
added
* Since a location is not specified, the add method has
only one argument when using the
FlowLayoutManager
add. (labell);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-48

[LB

Grid Layout Managers

* AGridLayout manager arranges components in a two-
dimensional grid with some number of rows and columns
setlLayout(new GridLayout(rows, columns));
— Each entry is the same size

— The two numbers given as arguments specify the number of rows and
columns

— Each component is stretched so that it completely fills its grid position

— Note: None of the|lines in the|diagram are normally \visible

ITTTTITrTe

Grid Layout Managers

* When using the GridLayout class, the method
add has only one argument
add(labell);
— Items are placed in the grid from left to right
— The top row is filled first, then the second, and so forth
— Grid positions may not be skipped
* Note the use of a main method in the GUI class
itself in the following example
— This is often a convenient way of demonstrating a class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-49 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-50
Display 17.9 The GridLayout Manager Display 17.9 The GridLayout Manager
1 import javax.swing.]Frame; 13 public GridLayoutl]Frame(int rows, int columns)
! import javax.swing.JlLabel; {
3 import jova.owt.GridLayout; super(};
setSize(WIDTH, HEIGHT);
public class GridLayout]Frame extends JFrame 17 setTitle("GridLayout Demonstration”);
s { 18 setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
6 public static final int WIDTH = 500; 19 setlLayout(new GridLayout(rows, columns));
7 public static final int HEIGHT = 400;
20 JLabel labell = new JlLabel("First label");
B public static void main(String[] args) 21 add(labell);
9 {
* ¥ . ; continued
10 GridLayout]Frame gui = new GridLayout]Frame(2, 3); (continued)
11 gui.setVisible(true);
}
(continued)
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-51 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-52

|

|

| BT

The GridLayout Manager (Part 3 of 4)

Display 17.9 The GridLayout Manager

22 JLabel label2 = new JLabel("Second label™);

23 add(label2);

24 JLabel label3 = new JLabel("Third label™);

25 add(label3);

26 JLabel labeld4 = new JLabel("Fourth label");

27 add(labeld);

28 JLabel label5 = new JLabel("Fifth label™);

29 add(label5);

30 }

31 3

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-53

ITrrrrrrrrrerTT

The GridLayout Manager (Part 4 of 4)

Display 17.9 The GridLayout Manager

RESULTING GUI

& GridLayout Demonstration

First label Second label Third label

Fourth label Fifth label

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-54

| BT

Some Layout Managers

Display 17.10 Some Layout Managers

These layout manager classes are in the jova.awt package.

FlowLayout Displays components from left to right in the order in
which they are added to the container.

BorderLayout Displays the components in five areas: north, south, east,
west, and center. You specify the area a component goes
into in a second argument of the add method.

GridLayout Lays out components in a grid, with each component
stretched to fill its box in the grid.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-55

ITrrrrrrrrrrrrd

Panels

e A GUIl is often organized in a hierarchical fashion,
with containers called panels inside other containers

* A panelis an object of the JPanel class that serves
as a simple container

— Itis used to group smaller objects into a larger component
(the panel)

— One of the main functions of a JPanel object is to
subdivide a JFrame or other container

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-56

Panels

e Both a JFrame and each panel in a JFrame can use
different layout managers

Using Panels (Part 1 of 8)

Display 17.11 Using Panels

import javax.swing.JlFrame;
import javax.swing.J]Panel;

PanelDemo

— Additional panels can be added to each panel, and each panel il A 155 PanelDemo
have its own lavout manager i import jova.awt.BorderlLayout; i
can Y g 4 import java.awt.GridLayout; T
— This enables almost any kind of overall layout to be used in a GUI 5 import java.awt.FlowLayout;
setLayout(new BorderLayout()); 6 lmport jgva.oar.color;
IJp 1 somePanel = new JPanel B 7 import javax.swing.JButton;
ane O = () > 8 import jova.awt.event.ActionListener;
somePanel .setLayout(new FlowLayout()): 9 import java.awt.event.ActionEvent;
o . .
No_te In the fgllowmg example that panel and bUtton 10 public class PanelDemo extends JFrame implements ActionListener
objects are given color using the setBackground 11 {
method without invoking getContentPane I pulihesinine: FUNIR (RE BN w308
. i 13 public static final int HEIGHT = 200;
N — The getContentPane method is only used when adding color -
— toa JFrame - (continued)
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-57 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-58
Display 17.01 Using Panels Display 17.11 Using Panels
14 private JPanel redPanel; 28 JPanel biggerPanel = new JPanel();
15 private JPanel whitePanel; —e—m 0 o 29 biggerPanel.setLayout(new GridLayout(l, 3));
16 private JPanel bluePanel; SO A ¢
1actionPerformed. 30 redPanel = new JPanel();
17 public static void main(String[] args) 31 redPanel.setBackground(Color. LIGHT_GRAY);
18 { 32 biggerPanel.add(redPanel);
19 PanelDemo gui = new PanelDemo();
20 gui.setVisible(true); 33 whitePanel = new JPanel();
1 } 34 whitePanel.setBackground(Color.LIGHT_GRAY);
35 biggerPanel.add(whitePanel);
21 public PanelDemo() ;
29 ¢ (continued)
24 super("Panel Demonstration™);
25 setSize(WIDTH, HEIGHT);
- 26 setDefaultCloseOperation(JIFrame . EXIT_ON_CLOSE); -
= 27 setLayout(new BorderLayout()); —
— (continued) [
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-59 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-60

Using Panels (Part 4 of 8)

Display 17.u Using Panels

Using Panels (Part 5 of 8)

Display 17.1 Using Panels

6 bluePanel = new JPanel(); 47 JButton whiteButton = new JButton("White");
37 bluePanel.setBackground(Color.LIGHT_GRAY); 48 whiteButton.setBackground(Color .WHITE);
8 biggerPanel.add(bluePanel); 49 whiteButton.addActionListener(this);
50 buttonPanel.add(whiteButton);
39 add(biggerPanel, BorderLayout.CENTER);
51 JButton blueButton = new JButton("Blue");
40 JPanel buttonPanel = new JPanel(); 52 blueButton.setBackground(Color.BLUE);
41 buttonPanel.setBackground(Color.LIGHT_GRAY); 53 blueButton.addActionListener(this);
42 buttonPanel.setlLayout(new FlowLayout()); 54 buttonPanel.add(blueButton);
43 JButton redButton = new JButton(“Red"); 55 add(buttonPanel, BorderLayout.SOUTH);
44 redButton.setBackground(Color.RED); An o the cla 56 }
45 redButton.addActionListener(this) ;—«——— p
= 46 buttonPanel.add(redButton) ; I =
B (continued) =
= Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-61 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved.
Using Panels (Part 6 of 8) Using Panels (Part 7 of 8)
Display 17.11 Using Panels
Display i7.1 Using Panels RESULTING GUI (When first run)
57 public void actionPerformed(ActionEvent e) & Panel Demonstration [_ [O1%
58 {
59 String buttonString = e.getActionCommand();
60 if (buttonString.equals("Red"))
61 redPanel.setBackground(Color.RED);
62 else if (buttonString.equals("White"))
63 whitePanel.setBackground(Color . WHITE); =y e
34 else if (buttonString.equals(“"Blue"))
65 bluePanel.setBackground(Color.BLUE); _
66 else RESULTING GUI (After clicking Red button)
7 System.out.println("Unexpected error."); & Panel Demonstration (=] _'RI
68 }
= 69 N
= (continued) -
= Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-63 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

[LB

1

Using Panels (Part 8 of 8)

Display 17.11 Using Panels

RESULTING GUI (after clicking White button)

& Panel Demonstration [| 'Em

RESULTING GUI (After clicking Blue button)

& Panel Demonstration r: r_ﬁ m

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-65

ITTTTTTrTrTT

The Contailner Class

* Any class that is a descendent class of the class Container is
considered to be a container class
— The Container class is found in the java.awt package, not in the
Swing library
¢ Any object that belongs to a class derived from the
Contalner class (or its descendents) can have components
added to it
* The classes JFrame and JPanel are descendent classes of
the class Container
— Therefore they and any of their descendents can serve as a container

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-66

[0 0

The JComponent Class

* Any descendent class of the class
JComponent is called a component class
— Any JComponent object or component can be
added to any container class object

— Because it is derived from the class Container,
a JComponent can also be added to another
JComponent

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-67

ITTTTITIrrTTT

Objects in a Typical GUI

e Almost every GUI built using Swing container
classes will be made up of three kinds of
objects:

1. The container itself, probably a panel or
window-like object

2. The components added to the container such as
labels, buttons, and panels

3. Alayout manager to position the components
inside the container

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-68

[BRE RN

Hierarchy of Swing and AWT Classes

Hierarchy of Swing and AWT Classes

o [- | [rieers J|_ srisore

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-69

EEREREREREEEEE

Tip: Code a GUI's Look and Actions Separately

e The task of designing a Swing GUI can be divided into two
main subtasks:
1. Designing and coding the appearance of the GUI on the screen
2. Designing and coding the actions performed in response to user
actions
. In particular, it is useful to implement the
actionPerformed method as a stub, until the GUI looks
the way it should
public void actionPerformed(ActionEvent e)
{3
e This philosophy is at the heart of the technique used by the
Model-View-Controller pattern

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-70

(BRI AR

The Model-View-Controller Pattern

Display 17.13 The Model-View-Controller Pattern

datal
data2

update()

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-71

ITTITTrrrrrrrer:

Menu Bars, Menus, and Menu Items

e A menuis an object of the class JMenu
¢ A choice on a menu is called a menu item, and is an
object of the class JMenul tem
— A menu can contain any number of menu items
— A menu item is identified by the string that labels it, and is
displayed in the order to which it was added to the menu
* The add method is used to add a menu item to a
menu in the same way that a component is added to
a container object

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-72

1

LI

|

Menu Bars, Menus, and Menu ltems

e The following creates a new menu, and then adds

amenuitemto it
JMenu diner = new

JMenu(*'Daily Specials™);
JMenultem lunch = new

JMenultem(*'Lunch Specials™);
lunch.addActionListener(this);
diner.add(lunch);

— Note that the this parameter has been registered as
an action listener for the menu item

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-73

BERREEE

|

Nested Menus

e The class IMenu is a descendent of the
JMenultem class

— Every JMenu can be a menu item in another
menu

— Therefore, menus can be nested

e Menus can be added to other menus in the
same way as menu items

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-74

L BUE N

|

Menu Bars and JFrame

A menu bar is a container for menus, typically placed near
the top of a windowing interface
The add method is used to add a menu to a menu bar in the
same way that menu items are added to a menu
JMenuBar bar = new JMenuBar();
bar.add(diner);
The menu bar can be added to a JFrame in two different
ways
1. Using the setJMenuBar method

setJMenuBar(bar) ;

2. Using the add method — which can be used to add a menu bar to a
JFrame or any other container

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-75

A GUI with a Menu (Part 1 of 8)

Display 1714 A GUI with a Menu

1 import javax.swing.lFrame;
’ import jovax.swing.JlPanel;
import java.awt.GridLayout;
import java.awt.Color;
import javax.swing.JMenu;
6 import jaovax.swing.JMenuItem;
import javax.swing.JMenuBar;
8 import jova.awt.event.ActionListener;
import jaova.awt.event.ActionEvent;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-76

| IO

A GUI with a Menu (Part 2 of 8)

Display 17.14 A GUI with a Menu

18 public class MenuDemo extends JFrame implements ActionListener

11 {

12 public static final int WIDTH = 300;

13 public static final int HEIGHT = 200;

14 private JPanel redPanel;

15 private JPanel whitePanel;

16 private JPanel bluePanel;

17 public static void main(String[] args)

18 {

19 MenuDemo gui = new MenuDemo();

20 gui.setVisible(true);

21 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-77

|ENENEEEERERERER

A GUI with a Menu (Part 3 of 8)

Display 17.14, A GUI with a Menu

22 public MenuDemo()

23 {

24 super("Menu Demonstration");

25 setSize(WIDTH, HEIGHT);

26 setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);

27 setLayout(new GridLayout(l, 3));

28 redPanel = new JPanel();

29 redPanel.setBackground(Color.LIGHT_GRAY);

30 add(redPanel);

31 whitePanel = new JPanel();

32 whitePanel.setBackground(Color.LIGHT_GRAY);

33 add(whitePanel);

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-78

| BT

A GUI with a Menu (Part 4 of 8)

Display 17.14, A GUI with a Menu

£ bluePanel = new JPanel();
35 bluePanel.setBackground(Color.LIGHT_GRAY);

36 add(bluePanel);

37 IMenu colorMenu = new JIMenu("Add Colors™);

38 JMenultem redChoice = new JMenuIltem("Red");

39 redChoice.addActionListener(this);

40 colorMenu.add(redChoice);

41 IMenultem whiteChoice = new IMenultem("White");
42 whiteChoice.addActionListener(this);

43 colorMenu.add(whiteChoice) ;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-79

|ENEEEEEEREREREE

A GUI with a Menu (Part 5 of 8)

Display 17.14, A GUI with a Menu

44 IMenuItem blueChoice = new IJMenultem("Blue");
45 blueChoice.addActionListener(this);

46 colorMenu.add(blueChoice);

47 JMenuBar bar = new IMenuBar();

48 bar.add(colorMenu) ;

49 setIMenuBar(bar);

50 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-80

| IO

A GUI with a Menu (Part 6 of 8)

Display 17.14 A GUI with a Menu

51 public wvoid actionPerformed(ActionEvent e)

52 {

53 String buttonString = e.getActionCommand();

54 if (buttonString.equals("Red"))

55 redPanel.setBackground(Color.RED);

56 else if (buttonString.equals(“White"))

57 whitePanel.setBackground(Color.WHITE);

58 else if (buttonString.equals("Blue"))

59 bluePanel.setBackground(Color.BLUE);

60 else

61 System.out.println("Unexpected error.");

62 }

63 }

{continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-81

ITrrrrrrrrrerTT

A GUI with a Menu (Part 7 of 8)

Display 17.14 A GUI with a Menu

RESULTING GUI

& Menu Demonstration [[OI5K

RESULTING GUI (after clicking Add Colors in the menu bar)

& Menu Demonstration [[O/K

(continued) s

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 7-82

| BT

A GUI with a Menu (Part 8 of 8)

Display 17.15 A GUI with a Menu

RESULTING GUI (after choosing Red and White on the menu)

& Menu Demonstration E r.I':l g

RESULTING GUI (after choosing all the colors on the menu)

& Menu Demonstration

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-83

ITrrrrrrrrrrerT

The AbstractButton and Dimension
Classes

* The classes JButton and JMenultem are
derived classes of the abstract class named
AbstractButton

— All of their basic properties and methods are
inherited from the class AbstractButton

* Objects of the Dimension class are used with
buttons, menu items, and other objects to
specify a size

— The Dimension class is in the package java.awt
Dimension(int width, int height)
— Note: width and height parameters are in pixels

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-84

1

LI BB

The setActionCommand Method

* When a user clicks a button or menu item, an event is fired
that normally goes to one or more action listeners

— The action event becomes an argument to an actionPerformed
method

— This action event includes a String instance variable called the
action command for the button or menu item

— The default value for this string is the string written on the button or
the menu item

— This string can be retrieved with the getActionCommand method
e.getActionCommand()

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-85

|ENEEEERERERE]

The setActionCommand Method

* The setActionCommand method can be used to
change the action command for a component
— This is especially useful when two or more buttons or
menu items have the same default action command
strings
JButton nextButton = new JButton(*'Next');
nextButton.setActionCommand(**Next Button™);

JMenultem choose = new JMenultem(*'Next');
choose.setActionCommand(*'"Next Menu Item'™);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-86

1

LR R

Some Methods in the Class AbstractButton
(Part 1 of 3)

Display 17.15 Some Methods in the Class AbstractButton

The abstract class AbstractButton is in the javax. swing package.
All of these methods are inherited by both of the classes JButton and JMenultem.

public void setBackground(Color theColor)
Sets the background color of this component.

public void addActionListener(ActionListener listener)
Adds an ActionListener.

public void removeActionListener(ActionListener listener)

Removes an ActionListener.
public void setActionCommand(String actionCommand)

Sets the action command,

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-87

|ENEEEERERERE]

Some Methods in the Class AbstractButton
(Part 2 of 3)

Display 17,15 Some Methods in the Class AbstractButton

public String getActionCommand()
Returns the action command for this component.
public void setText(String text)
Makes text the only text on this component.
public String getText()
Returns the text written on the component, such as the text on a button or the string for a menu item.
public void setPreferredSize(Dimension preferredSize)

Sets the preferred size of the button or label. Note that this is only a suggestion to the layout manager.
The layout manager is not required to use the preferred size. The following special case will work for most
simple situations. The int values give the width and height in pixels.

public void setPreferredSize(
new Dimension(int width, int height))

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-88

| BT

Some Methods in the Class AbstractButton
(Part 3 of 3)

Display 17.15 Some Methods in the Class AbstractButton

public void setMaximumSize(Dimension maximumSize)

Sets the maximum size of the button or label. Note that this is only a suggestion to the layout manager.
The layout manager is not required to respect this maximum size. The following special case will work for
most simple situations. The int values give the width and height in pixels.

public void setMaximumSize(
new Dimension(int width, int height))
public void setMinimumSize(Dimension minimumSize)

Sets the minimum size of the button or label. Note that this is only a suggestion to the layout manager.
The layout manager is not required to respect this minimum size.

Although we do not discuss the Dimension class, the following special case is intuitively clear and will
work for most simple situations. The int values give the width and height in pixels.

public void setMinimumSize(
new Dimension(int width, int height))

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-89

ITrrrrrrrrrerTT

Listeners as Inner Classes

e Often, instead of having one action listener object
deal with all the action events in a GUI, a separate
ActionListener class is created for each button
or menu item

— Each button or menu item has its own unique action
listener

— There is then no need for a multiway if-else statement

* When this approach is used, each class is usually
made a private inner class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-90

| BT

Listeners as Inner Classes (Part 1 of 6)

Display 17.16 Listeners as Inner Classes

<Import statements are the same as in Display 17.14.>

1 public class InnerlListenersDemo extends JFrame

2 {

3 public static final int WIDTH = 300;
4 public static final int HEIGHT = 200;
5 private JPanel redPanel;

6 private JPanel whitePanel;

private JPanel bluePanel;
(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-91

ITrrrrrrrrrrrrd

Listeners as Inner Classes (Part 2 of 6)

Display 17.16 Listeners as Inner Classes

8 private class RedListener implements ActionListener
9 {
16 public void actionPerformed(ActionEvent e)
1 {
12 redPanel.setBackground(Color.RED);
13 }
14 } //End of RedlListener inner class
15 private class WhitelListener implements ActionListener
16 I
17 public void actionPerformed(ActionEvent e)
18 {

whitePanel.setBackground(Color .WHITE);
20 }
21 } //End of WhiteListener inner class

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-92

Listeners as Inner Classes (Part 3 of 6)

Display 17.16 Listeners as Inner Classes

22 private class BluelListener implements ActionListener

23 {

24 public void actionPerformed(ActionEvent e)

25 i

26 bluePanel.setBackground(Color.BLUE) ;

27 }

28 } //End of BluelListener inner class

29 public static void main(String[] args)

30 {

31 InnerListenersDemo gui = new InnerListenersDemo();

32 gui.setVisible(true);

33 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-93

Listeners as Inner Classes (Part 4 of 6)

Display 17.16 Listeners as Inner Classes

43
44

423

the same &

public InnerListenersDemo()

{

super(“Menu Demonstration™);

setSize(WIDTH, HEIGHT);
setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
setlLayout(new GridLayout(l, 3));

redPanel = new JPanel();
redPanel. setBackground(Color. LIGHT_GRAY);
add(redPanel);

whitePanel = new JPanel();
whitePanel.setBackground(Color.LIGHT_GRAY);
add(whitePanel);

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Listeners as Inner Classes (Part 5 of 6)

Display 1716 Listeners as Inner Classes

46 bluePanel = new JPanel();
47 bluePanel.setBackground(Color.LIGHT_GRAY);
48 add(bluePanel);
49 IMenu colorMenu = new IJMenu("Add Colors");
50 IMenultem redChoice = new IMenuIltem("Red");
51 redChoice.addActionListener(new RedListener());
52 colorMenu.add(redChoice);
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-95

Listeners as Inner Classes (Part 6 of 6)

Display 17.16 Listeners as Inner Classes

53
54
55

56
57
58

59
]
bl
62

63

IMenuItem whiteChoice = new JMenuItem("White");
whiteChoice.addActionListener(new WhitelListener());
colorMenu.add(whiteChoice);

IMenultem blueChoice = new JIMenultem("Blue");
blueChoice.addActionlListener(new BlueListener());
colorMenu.add(blueChoice);

IMenuBar bar = new JMenuBar();
bar.add(colorMenu) ;
setIMenuBar(bar);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

| BT

Text Fields

» Atext field is an object of the class JTextField

— Itis displayed as a field that allows the user to enter a
single line of text
private JTextField name;

name = new JTextField(NUMBER_OF_CHAR);

— In the text field above, at least NUMBER_OF CHAR
characters can be visible

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-97

ITrrrrrrrrrerTT

Text Fields

* There is also a constructor with one additional String
parameter for displaying an initial SEring in the text field
JTextField name = new JTextField(
"Enter name here.'", 30);
* A Swing GUI can read the text in a text field using the
getText method
String inputString = name.getText();
¢ The method setText can be used to display a new text
string in a text field
name.setText("'This is some output'™);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-98

| BT

A Text Field (Part 1 of 7)

Display 17.17 A Text Field

1 import javax.swing.JFrame;
2 import javax.swing.JTextField;
3 import javax.swing.JPanel;
import javax.swing.JLabel;
import javax.swing.JButton;
6 import java.awt.GridlLayout;
import java.awt.BorderLayout;
8 import java.awt.FlowlLayout;
9 import java.awt.Color;
10 import java.owt.event.ActionListener;
1 import jova.owt.event.ActionEvent;
(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-99

ITrrrrrrrrrrrrd

A Text Field (Part 2 of 7)

Display 17.17 A Text Field

12 public class TextFieldDemo extends JFrame

13 implements ActionListener
14 {

15 public static final int WIDTH = 400;

16 public static final int HEIGHT = 200;

17 public static final int NUMBER_OF_CHAR = 30;

18 private JTextField name;

19 public static void main(String[] args)

21 TextFieldDemo gui = new TextFieldDemo();
22 gui.setVisible(true);

23 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-100

|ENNNENNENEREEREE

A Text Field (Part 3 of 7)

Display 17.17 A Text Field

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

public TextFieldDemo()

super("Text Field Dema"):

set5ize(WIDTH, HEIGHT);
setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
setlayout(new GridLayout(2, 1));

JPanel namePanel = new JPanel();
namePanel.setLayout(new BorderLayout());
namePanel. setBackground(Color .WHITE);

name = new JTextField(NUMBER_OF_CHAR);

(continued)

17-101

| B T

A Text Field (Part 4 of 7)

Display 17.17 A Text Field

44
45
46

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

namePanel.add(name, BorderLayout.SOUTH);
JLabel nameLabel = new JLabel("Enter your name here:");
namePanel.add(nameLabel, BorderLayout.CENTER);

add{namePanel) ;

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new FlowLayout());
buttonPanel.setBackground(Color.PINK);

JButton actionButton = new JButton("Click me");
actionButton.addActionListener(this);
buttonPanel.add(actionButton);

JButton clearButton = new JButton("Clear");
clearButton.addActionListener(this);
buttonPanel.add(clearButton);

(continued)

|ENNNENEENEREEREE

A Text Field (Part 5 of 7)

Display 17.17 A Text Field

47
48

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

add(buttonPanel);

public void actionPerformed(ActionEvent e)
{

String actionCommand = e.getActionCommand();

if (actionCommand.equals("Click me"))
name.setText("Hello " + name.getText());
else if (actionCommand.equals(“Clear"))

name.setText("");
else

name . setText("Unexpected error.");

which make

(continued)

17-103

| LT

A Text Field (Part 6 of 7)

Display 17.17 A Text Field

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

RESULTING GUI (When program is started and a name entered)

& Text Field Demo A EI Zl

Entar your name here:

iasepnine Studend

(continued)

17-102

17-104

1

ITITrrrrn

A Text Field (Part 7 of 7)

Display 17,17 A Text Field

RESULTING GUI (After clicking the “Click me” button)

& Text Field Demo r__ I':I:Ig_]

Enter your name here:

Helin Josephing Student

Chick me Clear

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-105

ITTTTITrTe

Text Areas

e Atext area is an object of the class JTextArea
— Itis the same as a text field, except that it allows multiple lines

— Two parameters to the JTextArea constructor specify the minimum
number of lines, and the minimum number of characters per line that
are guaranteed to be visible

JTextArea theText = new JTextArea(5,20);

— Another constructor has one addition String parameter for the
string initially displayed in the text area

JTextArea theText = new JTextArea(
"Enter\ntext here.”™ 5, 20);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-106

LI BB TR

Text Areas

* The line-wrapping policy for a JTextArea can be
set using the method setLineWrap
— The method takes one boolean type argument
— If the argument is true, then any additional characters at

the end of a line will appear on the following line of the
text area

— If the argument is Fal se, the extra characters will remain

on the same line and not be visible
theText.setLineWrap(true);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-107

EENNNNENEE

Text Fields and Text Areas

e AJTextFieldor JTextArea can be set so that

it can not be changed by the user
theText.setEditable(false);
— This will set theText so that it can only be edited by the
GUI program, not the user

— To reverse this, use true instead (this is the default)
theText.setEditable(true);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-108

Tip: Labeling a Text Field

* In order to label one or more text fields:
— Use an object of the class JLabell
— Place the text field(s) and label(s) in a JPanel
— Treat the JPanel as a single component

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-109

Numbers of Characters Per Line

* The number of characters per line for a
JTextFieldor JTextArea object is the number
of em spaces

* An em space is the space needed to hold one
uppercase letter M

— The letter M is the widest letter in the alphabet

— Aline specified to hold 20 M 's will almost always be able to
hold more than 20 characters

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-110

Tip: Inputting and Outputting Numbers

* When attempting to input numbers from any Swing
GUI, input text must be converted to numbers

— If the user enters the number 42 ina JTextField, the
program receives the string **42"" and must convert it to
the integer 42
* The same thing is true when attempting to output a
number

— In order to output the number 42, it must first be
converted to the string "'42""

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-111

The Class JTextComponent

* Both JTextFieldand JTextArea are derived
classes of the abstract class JTextComponent

¢ Most of their methods are inherited from
JTextComponent and have the same meanings

— Except for some minor redefinitions to account for having
just one line or multiple lines

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-112

1

LI

|

Some Methods in the Class JTextComponent
(Part 1 of 2)

Display 17.18 Some Methods in the Class JTextComponent

All these methods are inherited by the classes JTextField and JTextArea.
The abstract class JTextComponent is in the package javax.swing. text. The classes JTextField
and JTextArea are in the package javax.swing.

public String getText()

Returns the text that is displayed by this text component.

public boolean isEditable()

Returns true if the user can write in this text component. Returns false if the user is not allowed to write
in this text component.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-113

BERREEE

|

Some Methods in the Class JTextComponent
(Part 2 of 2)

Display 1718 Some Methods in the Class JTextComponent

public void setBackground(Color theColor)

Sets the background color of this text component.

public void setEditable(boolean argument)

If argument is true, then the user is allowed to write in the text component. If argument is false, then
the user is not allowed to write in the text component,

public void setText(String text)
Sets the text that is displayed by this text component to be the specified text.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-114

L BUE N

|

A Swing Calculator

* A GUI for a simple calculator keeps a running total of
numbers

— The user enters a number in the text field, and then clicks
either + or —

— The number in the text field is then added to or subtracted
from the running total, and displayed in the text field

— This value is kept in the instance variable result

— When the GUI is first run, or when the user clicks the
Reset button, the value of resul t is set to zero

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-115

A Swing Calculator

e If the user enters a number in an incorrect
format, then one of the methods throws a
NumberFormatException

— The exception is caught in the catch block inside
the actionPerformed method

— Note that when this exception is thrown, the value
of the instance variable resul t is not changed

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-116

| BT

A Simple Calculator (Part 1 of 11)

Display 17.19

A Simple Calculator

import
import
import
import
import
import
import
import
9 import
16 import

Wb W

0~ o

javax.swing.JFrame;
javax.swing.JTextField;
javax.swing.JPanel;
javax.swing.JLabel;
javax.swing.JButton;
java.awt.BorderLayout;
java.awt.FlowLayout;
java.awt.Color;
jova.awt.event.ActionListener;
java.awt.event.ActionEvent;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-117

|NENNENNEEEEEEEEN]

A Simple Calculator (Part 2 of 11)

Display 17.19 A Simple Calculator

11 ek

12 A simplified calculator.

13 The only operations are addition and subtraction.

14 %/

15 public class Calculator extends JFrame

16 implements ActionListener

17 {

18 public static final int WIDTH = 400;

19 public static final int HEIGHT = 200;

20 public static final int NUMBER_OF_DIGITS = 30;

21 private JTextField ioField;

2 private double result = 0.0;

23 public static void main(String[] args)

24 {

25 Calculator aCalculator = new Calculator();

26 aCalculator.,setVisible(true);

27 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-118

DR e

A Simple Calculator (Part 3 of 11)

Display 17.19 A Simple Calculator

28 public Calculator()

29 {

£(:] setTitle("Simplified Calculator");

31 setDefoultCloseOperation(JFrame . EXIT_ON_CLOSE);

32 setSize(WIDTH, HEIGHT);

33 setlLayout(new BorderLayout());

34 JPanel textPanel = new JPanel();

35 textPanel,setlLayout(new FlowLayout());

36 ioField =

37 new 1TextField("Enter numbers here.", NUMBER_OF_DIGITS);

38 ioField.setBackground(Color .WHITE);

39 textPanel.add(ioField);

40 add(textPanel, BorderLayout.NORTH);

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-119

T T

A Simple Calculator (Part 4 of 11)

Display 17.19 A Simple Calculator

41 JPanel buttonPanel = new JPanel();
42 buttonPanel.setBackground(Color.BLUE);
43 buttonPanel.setlayout(new FlowlLayout());

44 JButton addButton = new JButton("+");

45 addButton.addActionListener(this);

46 buttonPanel.add(addButton);

47 JButton subtractButton = new JButton("-");
48 subtractButton.addActionListener(this);
49 buttonPanel.add(subtractButton);

58 JButton resetButton = new JButton("Reset");
51 resetButton.addActionListener(this);

52 buttonPanel.add({resetButton);

53 add(buttonPanel, BorderLayout.CENTER);

54 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-120

| IO

A Simple Calculator (Part 5 of 11)

Display 17.19 A Simple Calculator

55 public void actionPerformed(ActionEvent e)
56 {
57 try
58 {
59 assumingCorrectNumberFormats(e);
6o }
61 catch (NumberFormotException e2)
62 {
63 ioField.setText("Error: Reenter Number.");
64 }
65 } . i 2 .
A NumberFormatException does not nesd to b A
ar ht in a catch Block
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-121

ITrrrrrrrrrerTT

A Simple Calculator (Part 6 of 11)

Display 17.19 A Simple Calculator

66 //Throws NumberFormatException.

67 public void assumingCorrectNumberFormats(ActionEvent e)

68 {

69 String actionCommand = e.getActionCommand();

70 if (actionCommand.equals(”+"))

71 {

72 result = result + stringToDouble(ioField.getText());

73 ioField.setText(Double.toString(result));

74 }

75 else if (actionCommand.equals("-"))

76 {

77 result = result — stringToDouble(ioField.getText());

78 ioField.setText(Double.toString(result));

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-122

| BT

A Simple Calculator (Part 7 of 11)

Display 7.9 A Simple Calculator

80 else if (actionCommond.equals("Reset"))
81 {

B2 result = 0.8;

83 ioField.setText("0.0");

84 }

85 else

86 ioField.setText("Unexpected error.");

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-123

ITrrrrrrrrrrerT

A Simple Calculator (Part 8 of 11)

Display 17.19 A Simple Calculator

88 //Throws NumberFormatException.

89 private static double stringToDouble(String stringObject)

98 {

91 return Double.parseDouble(stringObject.trim());

92 }

93 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-124

| IO

A Simple Calculator (Part 9 of 11)

Display 17.19 A Simple Calculator

RESULTING GUI (When started)

& Simplified Calculator < |
=

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-125

ITrrrrrrrrrerTT

A Simple Calculator (Part 10 of 11)

Display 17,19 A Simple Calculator

RESULTING GUI (after clicking +)

& Simplified Calculator [Z |E1/IK)

Ermor Reanter Numbor

RESULTING GUI (After entering 2000 and clicking +)

& Simplified Calculator Ql@m

2000.0

3B

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-126

| BT

A Simple Calculator (Part 11 of 11)

Display 17.19 A Simple Calculator

RESULTING GUI (After entering 42)

& Simplified Calculator [|0

(]] e]

RESULTING GUI (After clicking +)

& Simplified Calculator E|@i

10420
(£] _J s |

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-127

ITrrrrrrrrrrerT

Uncaught Exceptions

* In a Swing program, throwing an uncaught exception
does not end the GUI

— However, it may leave it in an unpredictable state

* |tis always best to catch any exception that is thrown
even if all the catch block does is output an error
message, or ask the user to reenter some input

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 17-128

