= s Collections
' Chapter 16

* A Java collection is any class that holds objects and
FIFTH EDITION CO||eCti0nS, Maps implements the Col lection interface

— For example, the ArrayList<T> class is a Java collection class, and
and Iterators implements all the methods in the Col lection interface

— Collections are used along with iterators
e The Col lection interface is the highest level of Java's
framework for collection classes

— All of the collection classes discussed here can be found in package
WALTER SAVITCH java.util

ABSOLUTE JAVA

Slides prepared by Rose Williams,
Binghamton University

Kenrick Mock, University of Alaska
Anchorage

L WL T

ITrrrrrrrrrerTT

ALWAYS LEARNING Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-2

The Col lection Landscape .
i ecatonnsce Wildcards

* Classes and interfaces in the collection framework
can have parameter type specifications that do not
fully specify the type plugged in for the type
parameter

— Because they specify a wide range of argument types, they
|Gz) are known as wildcards

public void method(String argl, ArrayList<?> arg2)
[steeds ||) m!j\ — In the above example, the first argument is of type
String, while the second argument can be an
ArrayL ist<T> with any base type

I et
®
E
3
7
H
i
¥

" Apstrace Class) i
Concrate Class I

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-3 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-4

| BT
| B L

1

ITITrrrrn

Wildcards

* A bound can be placed on a wildcard specifying that
the type used must be an ancestor type or
descendent type of some class or interface

— The notation <? extends String> specifies that the
argument plugged in be an object of any descendent class
of String

— The notation <? super String> specifies that the

argument plugged in be an object of any ancestor class of
String

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-5

ITTTTITrTe

The Col lection Framework

* The Col lection<T> interface describes the basic
operations that all collection classes should
implement

— The method headings for these operations are shown on
the next several slides

* Since an interface is a type, any method can be
defined with a parameter of type Col lection<T>

— That parameter can be filled with an argument that is an
object of any class in the collection framework

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-6

LI BB TR

Method Headings in the Col lection<T>
Interface (Part 1 of 10)

Display 16.2 Method Headings in the Collection<T> Interface

The Collection<T> interface is in the jova.util package.

All the exception classes mentioned are unchecked exceptions, which means they are not required to be
caught in a catch block or declared in a throws clause

All the exception classes mentioned are in the package java. Lang and so do not reguire any import
statement.

Although not officially required by the interface, any class that implements the Collection<T> inter-
face should have at least two constructors: a no-argument constructor that creates an empty Collec—
tion<l> object. and a constructor with one parameter of type Lollection<? extends I> that
creates a Lollection«l= object with the same elements as the constructor argument. The interface does
not specify whether the copy produced by the one-argument constructor is a shallow copy or a deep copy
of its argument.

booleun isEmpty()

Returns true if the calling object is empty; otherwise retums false.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-7

EENNNNENEE

Method Headings in the Col lection<T>
Interface (Part 2 of 10)

Display 16.2 Method Headings in the Collaction<T- Interface

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target . equals to
determine if target is in the calling object.

Throws a ClassCastException if the type of target is incompatible with the calling object
{optional).

Throws a NullPointerException if torget is null and the calling object does not support null ele-
ments (optional).

(conlinued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-8

Method Headings in the Col lection<T>
Interface (Part 3 of 10)

Display 16,2 Method Headings in the Collection<T> interface

public boolean contoinsAll(Collection<?> collectionOfTargets)

Retumns true if the calling object contains all of the elements in collectionOfTargets. For an ele-
ment in collectionOfTargets, this method uses element.equals to determine if element is in the
calling object.

Throws a ClassCastException if the types of one or more elements in collection0fTargets are
incompatible with the calling object (optional).

Throws a NullPointerExceptionif collectionOfTargets contains one or more null elements
and the calling object does not support null elements (optional).

Throws a NullPointerException If collectionOfTargets Is null.

public boolean equals(Object ather)
This is the equals of the collection, not the equals of the elements in the collection. Overrides the inher-

ited method equals. Although there are no official constraints on equals for a collection, it should be
defined as we have described in Chapter 7 and also to satisfy the intuitive notion of collections being

equal.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-9

Method Headings in the Col lection<T>
Interface (Part 4 of 10)

Display 16,2 Method Headings in the Collection<T> Interface
public int size()

Returns the number of elements in the calling object. If the calling object contains more than Inte-
ger.MAX_VALUE elements, returns Integer . MAX_VALUE.

Iterator<T> iterator()
Returns an iterator for the calling object. (Iterators are discussed in Section 16.2.)

public Object[] toArray()

Returns an array containing all of the el in the calling object. If the calling object makes any guar-
antees as to what order its elements are returned by its iterator, this method must return the elements in
the same order.

The array retumed should be a new array so that the calling object has no references to the returned
array. (You might also want the elements in the array to be clones of the elements in the collection. How-
ever, this is apparently not required by the interface, since library classes, such as Vector<T>, return
arrays that contain references to the elements in the coliection.)

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-10

Method Headings in the Col lection<T>
Interface (Part 5 of 10)

Display 16,2 Method Headings in the Collection<T> Interface

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not be the
type T in Collection<Ts. For example, E might be an ancestor type of T.

Returns an array containing all of the elements in the calling object. The argument a is used primarily to
specify the type of the array returned. The exact details are as follows:

The type of the returned array is that of a. If the elements in the calling object fit in the array a, then a is
used to hold the elements of the returned array; otherwise a new array is created with the same type as a.
If @ has more elements than the calling object, the el tinai diately following the end of the cop-
ied elements is set to null.

If the calling object makes any guarantees as to what order its elements are returned by its iterator, this
method must return the elements in the same order. (Iterators are discussed in Section 16.2.)

Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.

Throws a NullPointerException if ais null.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-11

Method Headings in the Col lection<T>
Interface (Part 6 of 10)

Display 16.2 Method Headings in the Collection<T> Interface

public int hashCode()

Returns the hash code value for the calling object. Neither hash codes nor this method are discussed in this
book. This entry is only here to make the definition of the Collection<T> interface complete. You can
safely ignore this entry until you go on to study hash codes in a more advanced book. In the meantime, if
you need to implement this method, have the method throw an UnsupportedOperationException.

The following methods are optional, which means they still must be impl ted, but the impl t
tion can simply throw an UnsupportedOperationException if, for some reason, you do not want to
give them a “real” implementation. An UnsupportedOperationException is a RunTimeException

and so is not required to be caught or declared in a throws clause.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-12

Method Headings in the Col lection<T>
Interface (Part 7 of 10)

Display 16.2 Method Headings in the Collection<T> Interface

public boolean add(T element) (Optional)

Ensures that the calling object contains the specified element. Returns true if the calling object
changed as a result of the call. Returns false if the calling object does not permit duplicates and already
contains element; also returns false if the calling object does not change for any other reason.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the class of element prevents it from being added to the calling object.
Throws a NullPointerException if element is null and the calling object does not support null
elements.

Throws an I1legalArgumentException if some other aspect of element prevents it from being
added to the calling object.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-13

Method Headings in the Col lection<T>
Interface (Part 8 of 10)

Display 16,2 Method Headings in the Collection<T> Interface

public boolean addAll(Collection<? extends T> collectionToAdd) (Optional)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true if the call-
ing object changed as a result of the call; returns false otherwise. If the calling object changes during
this operation, its behavior is unspecified; in particular, its behavior is unspecified if collectionToAdd
is the calling object.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the class of an element of collectionToAdd prevents it from being
added to the calling object.

Throws a NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an I1legalArgumentException if some aspect of an element of collectionToAdd prevents
it from being added to the calling object.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-14

Method Headings in the Col lection<T>
Interface (Part 9 of 10)

Display 16,2 Method Headings in the Collection<T> Interface

public boolean remove(Object element) (Optional)

Removes a single instance of the element from the calling object, if it is present. Returns true if the call-
ing object contained the element; returns false otherwise.

Throws an UnsupportedOperationException if this metheod is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the type of element is incompatible with the calling object (optional),
Throws a NullPointerException if element is null and the calling object does not support null
elements (optional).

public boolean removeAll(Collection<7?> collectionToRemove) (Optional)

Removes all the calling object’s elements that are also contained in collectionToRemove. Retums
true if the calling object was changed; otherwise returns false,

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the types of one or more elements in collectionToRemove are
incompatible with the calling collection (optional).

Throws a NullPointerException if collectionToRemove contains one or more null elements and
the calling object does not support null elements (optional).

Throws a NullPointerException if collectionToRemove is null.

{continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-15

Method Headings in the Col lection<T>
Interface (Part 10 of 10)

Display 16,2 Method Headings in the Collection<T> Interface

public void clear() (Optional)

Removes all the elements from the calling object.
Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

public boolean retainAll(Collection<?> saveElements) (Opﬁzmeu

Retains only the elements in the calling object that are also contained in the collection saveElements. In
other words, removes from the calling object all of its elements that are not contained in the collection
saveElements. Returns true if the calling object was changed; otherwise retums false.

Throws an UnsupportedOperationException if this methed is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the types of one or more elements in saveElements are incompati-
ble with the calling object (optional).

Throws a NullPointerException if saveElements contains one or more null elements and the call-
ing object does not support null el (optional).

Throws a NullPointerException if saveElements is null.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-16

Collection Relationships

* There are a number of different predefined classes that

implement the Col lection<T> interface
— Programmer defined classes can implement it also

* A method written to manipulate a parameter of type
Collection<T> will work for all of these classes, either
singly or intermixed

e There are two main interfaces that extend the
Collection<T>interface: The Set<T> interface and the
List<T> interface

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-17

Collection Relationships

* Classes that implement the Set<T> interface do not
allow an element in the class to occur more than
once

— The Set<T> interface has the same method headings as

the Col lection<T> interface, but in some cases the
semantics (intended meanings) are different

— Methods that are optional in the Col lection<T>
interface are required in the Set<T> interface

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-18

Collection Relationships

* Classes that implement the LisSt<T> interface have their
elements ordered as on a list
— Elements are indexed starting with zero

— Aclass that implements the L1 ST<T> interface allows elements to
occur more than once

— The List<T> interface has more method headings than the
Collection<T> interface

— Some of the methods inherited from the Col lection<T> interface
have different semantics in the LisSt<T> interface

— The ArrayList<T> class implements the LiSt<T> interface

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-19

Methods in the Set<T>

¢ The Set<T> interface has the same method headings as the
Collection<T> interface, but in some cases the semantics
are different. For example the add methods:

The Set<T> interface is in the java.uti I package.

The Set<T> interface extends the Col lection<T> interface and has all the same method
headings given in Display 16.2. However, the semantics of the add methods vary as described
below.

public boolean add(T element) (Optional)
If element is not already in the calling object, element is added to the calling object and true is
returned. If element is in the calling object, the calling object is unchanged and false is returned.

public boolean addAll(Collection<? extends T> collectionToAdd)
(Optional)

Ensures that the calling object contains all the elements in col lectionToAdd. Returns true if
the calling object changed as a result of the call; returns false otherwise. Thus, if
collectionToAdd isa Set<T>, then the calling object is changed to the union of itself
with col lectionToAdd.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-20

|ENNNENNENEREEREE

Methods in the LISt<T> Interface
(Part 1 of 16)

The List<T> interface has more method headings than the Collection<T> interface.

Display 16,5, Methods in the List<T> Interface

The List<Ts interface is in the java.util package.

The List<T> interface extends the Collection<T> interface.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

All the exception classes mentioned are in the package java. lang and so do not require any import
statement.

Although not officially required by the interface, any class that implements the List<T> interface should
have at least two constructors: a no-argument constructor that creates an empty List<T> object, and a
constructor with one parameter of type Collection<? extends T> thatcreatesa List<T> object
with the same elements as the constructor argument. If the argument imposes an ordering on its ele-
ments, then the List<T> created should preserve this ordering.

boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-21

| B T

Methods in the L1St<T> Interface (Part
2 of 16)

Display 16,4, Methods in the List<T> Interface

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.equals to
determine if target is in the calling object.

Throws a ClassCastException if the type of target is incompatible with the calling object
(optional).

Throws a NullPointerExceptionif target is null and the calling object does not support null ele-
ments (optional).

public boolean containsAll(Collection<?> collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets. Foran ele-
ment in collectionOfTargets, this method uses element . equals to determine if element is in the
calling object. The elements need not be in the same order or have the same multiplicity in collection-
OfTargets and in the calling object.

Throws a ClassCastException if the types of one or more elements in collectionOfTargets are
incompatible with the calling object (optional).

Throws a NullPointerException if collectionOfTargets contains one or more null elements
and the calling object does not support null elements (optional).

Throws a NullPointerException if collectionOfTargets is null.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-22

|ENNNENEENEREEREE

Methods in the LISt<T> Interface (Part
3 of 16)

Display 16.4, Methods in the List<T> Interface

public boolean equals(Object other)

If the argument is a List<T>, returns true if the calling object and the argument contain exactly the same
elements in exactly the same order; otherwise returns false. If the argument is not a List<T>, falseis
returned.

public int size()

Returns the number of elements in the calling object. If the calling object contains more than Inte-
ger.MAX_VALUE elements, returns Integer.MAX_VALUE.

Iterator<T> iterator()

Returns an iterator for the calling object. (Iterators are discussed in Section 16.2.)

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-23

| LT

Methods in the LISt<T> Interface
(Part 4 of 16)

Display 16.4, Methods in the List<T> Interface

public Object[] toArray()

an array containing all of the el in the calling object. The elements in the returned array
are in the same order as in the calling object. A new array must be returned so that the calling object has
no references to the returned array.

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not be the
type Tin Collection<T>. for example, E might be an ancestor type of T.

an array containing all of the el ts in the calling object. The elements in the returned array
are in the same order as in the calling object. The arg a is used primarily to specify the type of the
array returned. The exact details are described in the table for the Collection<T> interface (Display
16.2).
Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.
Throws a NullPointerException if ais null.

{continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-24

|ENNNENNENEREEREE

Methods in the LISt<T> Interface
(Part 5 of 16)

Display 16,4, Methods in the List<T> Interface

public int hashCode()

Returns the hash code value for the calling object. Neither hash codes nor this method are discussed in
this book. This entry is here only to make the definition of the list interface complete. You can safely
ignore this entry until you go on to study hash codes in a more advanced book. In the meantime, if you
need to implement this method, have it throw an UnsupportedOperationException.

As with the Collection<T> interface, the following methods are optional, which means they still must
be impl ted, but the impl ion can simply throw an UnsupportedOperationException if
for some reason you do not want to give them a "real” implementation. An UnsupportedOperation-
Exception is a RunTimeException and so is not required to be caught or declared in a throws

clause.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-25

| B T

Methods in the LISt<T> Interface
(Part 6 of 16)

Display 16,4, Methods in the List<T> Interface

public boolean addAll(Collection<? extends T> collectionToAdd) (Optional)

Adds all of the elements in collectionToAdd to the end of the calling object’s list. The elements are
added in the order they are produced by an iterator for collectionToAdd.

Throws an UnsupportedOperationException if the addAll method is not supported by the calling
object,

Throws a ClassCastException if the class of an element in collectionToAdd prevents it from being
added to the calling object.

Throws a NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an I1legalArgumentException if some aspect of an element in collectionToAdd prevents
it from being added to the calling object.

public boolean remove(Object element) (Optional)

Removes the first occurrence of element from the calling object’s list, if it is present, Returns true if the
calling object contained the element; returns false otherwise.

Throws a ClassCastException if the type of element is incompatible with the calling object (optional).
Throws a NullPointerException if element is null and the calling object does not support null
elements (optional).

Throws an UnsupportedOperationException if the remove method is not supported by the calling

object. (continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-26

|ENNNENEENEREEREE

Methods in the LIST<T> Interface
(Part 7 of 16)

Display 16,4, Methods in the List<T> Interface

public boolean add(T element) (Optional)

Adds element to the end of the calling object’s list. Normally returns true. Returns false if the opera-
tion failed, but if the operation failed, something is seriously wrong and you will probably get a run-time
EITOT anyway.

Throws an UnsupportedOperationException if the add method is not supported by the calling object.
Throws a ClassCastException if the class of element prevents it from being added to the calling
object.

Throws a NullPointerException if element is null and the calling object does not support null
elements.

Throws an I1legalArgumentException if some aspect of element prevents it from being added to
the calling object.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-27

| LT

Methods in the L1St<T> Interface (Part
8 of 16)

Display 16.4, Methods in the List<T> Interface

public boolean removeAll(Collection<?> collectionToRemove) (Optional)

Removes all the calling object’s elements that are also in collectionToRemove. Returns true if the
calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if the removeAll method is not supported by the call-
ing object.

Throws a ClassCastException if the types of one or more elements in the calling object are incompat-
ible with collectionToRemove (optional).

Throws a NullPointerException if the calling object contains one or more null elements and col-
lectionToRemove does not support null elements (optional).

Throws a NullPointerException if collectionToRemove is null.

public void clear() (Optional)

Removes all the elements from the calling object.
Throws an UnsupportedOperationException if the clear method is not supported by the calling object.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-28

| BT

Methods in the LISt<T> Interface
(Part 9 of 16)

Display 16.4 Methods in the List<T> Interface

public boolean retainAll(Collection<?> saveElements) (Optional}

Retains only the elements in the calling object that are also in the collection saveElements. In other
words, removes from the calling object all of its elements that are not contained in the collection
saveElements. Returns true if the calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if the retainAll method is not supported by the calling
object.

Thinws aClassCastException if the types of one or more elements in the calling object are incompat-
ible with saveE lements (optional).

Throws a NullPointerException if the calling object contains one or more null elements and
saveElements does not support null elements (optional).

Throws a NullPointerException if the saveElements is null.

The following methods are in the List<T> interface but were not in the Collection<T> interface.
Those that are optional are noted.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

16-29

|NENNENNEEEEEEEEN]

Methods in the LISt<T> Interface
(Part 10 of 16)

Display 16,4 Methods in the List<T> Interface

public void add(int index, T newElement) (Optional)

Inserts newE lement in the calling object’s list at location index. The old elements at location index
and higher are moved to higher indices.
Throws an IndexOutOfBoundsException if the index is not in the range:

B <= index <= size()

Throws an UnsupportedOperationException if this add method is not supported by the calling object.
Throws a ClassCastException if the class of newE lement prevents it from being added to the calling
object.

Throws a NullPointerException if newElement is null and the calling object does not support
null elements.

Throws an I1legalArgumentException if some aspect of newElement prevents it from being added
to the calling object.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-30

DR e

Methods in the LISt<T> Interface
(Part 11 of 16)

Display 16., Methods in the List<T> Interface

public boolean addAll(int index,
Collection<? extends T> collectionToAdd) (optional)

Inserts all of the elements in collectionToAdd to the calling object's list starting at location index.
The old elements at location index and higher are moved to higher indices. The elements are added in
the order they are produced by an iterator for collectionToAdd.

Throws an IndexQutOfBoundsException if the index is not in the range:

0 <= index <= size()

Throws an UnsupportedOperationException if the addA1l method is not supported by the calling
object.

Throws a ClassCastException if the class of one of the elements of collectionToAdd prevents it
from being added to the calling object.

Throws a NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an I1legalArgumentException if some aspect of one of the elements of collectionToAdd
prevents it from being added to the calling object.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

16-31

T T

Methods in the L1St<T> Interface (Part
12 of 16)

Display 16,4, Methods in the List<T> Interface

public T get(int index)

Returns the object at position index.
Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index < size()

public T set(int index, T newElement) (Optional)

Sets the element at the specified index to newElement. The element previously at that position is
returned.
Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index < size()

Throws an UnsupportedOperationException if the set method is not supported by the calling object.
Throws a ClassCastException if the class of newElement prevents it from being added to the calling
object.

Throws a NullPointerException if newElement is null and the calling object does not support
null elements,

Throws an IllegalArgumentException if some aspect of newElement prevents it from being added
to the calling object.

{continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-32

Methods in the LISt<T> Interface
(Part 13 of 16)

Display 16.4, Methods in the List<T> Interface

public T remove(int index) (Optional)

Removes the element at position index in the calling object. Shifts any subsequent elements to the left
(subtracts one from their indices). Returns the element that was removed from the calling object.
Throws an UnsupportedOperationException if the remove method is not supported by the calling
object.

Throws an IndexOutOfBoundsException if index does not satisfy:

B <= index < size()

(continued)

Methods in the L1St<T> Interface (Part
14 of 16)

Display 16., Methods in the List<T> Interface

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

Throws a ClassCastException if the type of target is incompatible with the calling object
(optional).

Throws a NullPointerExceptionif targetis null and the calling object does not support null ele-
ments (optional).

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

Throws a ClassCastException if the type of target is incompatible with the calling object
(optional).

- - Throws a NullPointerException if target is null and the calling object does not support null ele-
- = ments (optional),
- [~ (continued)
[-
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-33 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-34
Methods in the LISt<T> Interface (Part Methods in the LISt<T> Interface (Part
Display 16.4 Methods in the List<T> Interface Display 16,4, Methods in the List<T> Interface
public List<T> subList(int fromIndex, int toIndex) ListIterator<T> listIterator()
Returns a view of the elements at locations fromIndex to toIndex of the calling object; the object at R it i ; : ; ; ;
eturns a list iterator for the calling object. (Iterators are discussed in Section 16.2.

fromIndex is included; the object, if any, at toIndex is not included. The view uses references into the f g sbject. {)

calling object; so, changing the view can change the calling object. The returned object will be of type . s : ;

List<T> but need not be of the same type as the calling object. Returns an empty List<T> if fromIn- Li-tIterdtoralo Lo tIteratonnt ncex)

dex equals toIndex. . Returns a list iterator for the calling object starting at index. The first element to be returned by the iter-

Throws an IndexOutOfBoundsException if fromIndex and teIndex da not satisfy: ator is the one at index. (Iterators are discussed in Section 16.2.)

B Froalnidex smitalndex = aize(Throws an IndexOutOfBoundsException if index does not satisfy:

Ceontinued) 0 <= index <= size()

- o
- -
N =
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-35 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-36

Pitfall: Optional Operations

* When an interface lists a method as "optional," it
must still be implemented in a class that implements
the interface
— The optional part means that it is permitted to write a

method that does not completely implement its intended
semantics

— However, if a trivial implementation is given, then the
method body should throw an
UnsupportedOperationException

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-37

Tip: Dealing with All Those Exceptions

* The tables of methods for the various collection
interfaces and classes indicate that certain exceptions are
thrown

— These are unchecked exceptions, so they are useful for
debugging, but need not be declared or caught

* In an existing collection class, they can be viewed as run-
time error messages

* |n a derived class of some other collection class, most or
all of them will be inherited

* |n a collection class defined from scratch, if it is to
implement a collection interface, then it should throw the
exceptions that are specified in the interface

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-38

Concrete Collections Classes

* The concrete class HashSet<T> implements the
Set<T> interface, and can be used if additional
methods are not needed

— The HashSet<T> class implements all the methods in the
Set<T> interface, and adds only constructors

— The HashSet<T> class is implemented using a hash table

* The ArrayList<T>and Vector<T> classes
implement the L1St<T> interface, and can be used if
additional methods are not needed

— Both the ArrayL ist<T> and Vector<T> interfaces
implement all the methods in the interface L1st<T>

— Either class can be used when a L ist<T> with efficient
random access to elements is needed

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-39

Concrete Collections Classes

The concrete class LinkedList<T> is a concrete derived

class of the abstract class

AbstractSequentialList<T>

— When efficient sequential movement through a list is needed, the

LinkedList<T> class should be used

The interface SortedSet<T> and the concrete class

TreeSet<T> are designed for implementations of the

Set<T> interface that provide for rapid retrieval of elements

— The implementation of the class is similar to a binary tree, but with
ways to do inserting that keep the tree balanced

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-40

ITITTrrrrrTt

1

Methods in the HashSet<T> Class Methods in the HashSet<T> Class
(Part 1 of 2) (Part 2 of 2)

5.5 Methods in the HashSet<T> Class Display 16.5 Methods in the HashSet<T> Class

. . public HashSet(Collection<? extends T> c)
The HashSet<T> class is in the java.util package.

The HashSet<T> class extends the AbstractSet<T> class and implements the Set<T> interface. Creates a new set that contains all the elements of c.

The HashSet<T> class implements all of the metheds in the Set<T> interface (Display 16.3). The only Throws a NullPointerException if cisnull.

other methods in the Hash5et<T> class are the constructors. The three constructors that do not involve

concepts beyond the scope of this book are given below. public HashSet(int initialCapacity)

All the exception classes mentioned are the kind that are not required to be caught in a catch block or

declared in a throws clause. Creates a new, empty set with the specified capacity.

All the exception classes mentioned are in the package java. lang and so do not require any import Throws an I1legalArgumentException if initialCapacity is less than zero.
statement.

The methods are the same as those described for the Set<T> interface (Display 16.3.)
public HashSet()

Creates a new, empty set.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-41 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-42

ITTTTTTrTrTT

[0 0

HashSet<T> Class Demo (1 of 4) HashSet<T> Class Demo (2 of 4)

1 import java.util_HashSet; 25 System.out._printIn(‘'Contents of set round: ™);

2 import java.util.lterator; 26 outputSet(round);

3 public class HashSetDemo 27 System.out.printIn("\nContents of set green: ™);

4 { 28 outputSet(green);

5 private static void outputSet(HashSet<String> set)

6 { 29 System.out.printIin(C"\nball in set “round®? " +

7 Iterator<String> i = set.iterator(); 30 round.contains('ball™));

8 while (i.hasNext()) 31 System.out.printIin(ball in set “green"? " +

9 System.out.print(i.next() + " "); 32 green.contains(“'ball™));

10 System.out.printin(Q);

11 } 33 System.out._printIn(""\nball and peas in same set? " +
34 ((round.contains(ball') &&

12 public static void main(String[] args) 35 (round.contains('peas'™))) ||

13 { 36 (green.contains(ball') &&

14 HashSet<String> round = new HashSet<String>(); 37 (green.contains('peas'™)))));

15 HashSet<String> green = new HashSet<String>(); 38 System.out.printIn("pie and grass in same set? " +
39 ((round.contains('pie’™) &&

16 // Add some data to each set - 40 (round.contains(*'grass™))) ||

17 round.add(*'peas™); — 41 (green.contains('pie’™) &&

18 round.add("'ball'); - 42 (green.contains(''grass')))));

19 round.add(*'pie'); -

20 round.add("'grapes’); =

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-43 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-44

HashSet<T> Class Demo (3 of 4)

43 // To union two sets we use the addAll method.

44 HashSet<String> setUnion = new HashSet<String>(round);
45 round.addAll(green);

46 System.out.printIn(C\nUnion of green and round:");

47 outputSet(setUnion);

48 // To intersect two sets we use the removeAll method.
49 HashSet<String> setlnter = new HashSet<String>(round);
50 setinter.removeAll(green);

51 System.out.printIin(C"\nIntersection of green and round:
52 outputSet(setinter);

53 System.out._printinQ);

54 3}

55 }

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-45

HashSet<T> Class Demo (4 of 4)

SAMPLE DIALOGUE

Contents of set round:
grapes pie ball peas

Contents of set green:
grass garden hose grapes peas

ball in set round? true
ball in set green? false

ball and peas in same set? true
pie and grass in same set? false

Union of green and round:
garden hose grass peas ball pie grapes

Intersection of green and round:
peas grapes

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-46

Using HashSet with your own Class

* |f you intend to use the HashSet<T> class with
your own class as the parameterized type T,
then your class must override the following
methods:

— public int hashCode();
* Ideally returns a unique integer for this object

— public boolean equals(Object obj);

¢ Indicates whether or not the reference object is the
same as the parameter obj

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-47

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 1 of 15)

Display 16.6 Methods in the Classes ArraylList<T> and Vector<T>

The ArraylList<T> and Vector<T> classes and the Iterator<T> and ListIterator<T> interfaces
are in the java.util package.

All the exception classes mentioned are unchecked exceptions, which means they are not required to be
caught in a catch block or declared in a throws clause. (If you have not yet studied exceptions, you can
consider the exceptions to be run-time error messages.)
NoSuchElementException is in the java.util package, which requires an import statement if your
code mentions the NoSuchElementException class. All the other exception classes mentioned are in
the package java.lang and so do not require any import statement.

In some situations where we specify throwing an IndexOutOfBoundsException, the class Vector<T>
actually throws an ArrayIndexOutOfBoundsException.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-48

| IO

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 2 of 15)

Display 16.6 Methods in the Classes Arraylist<T> and Vector<T>

public ArraylList(Collection<? extends T> c)

Creates a ArrayList<T> that contains all the elements of the collection ¢ in the same order as they have
in c. In other words, the elements have the same index in the ArrayList<T> created as they doin c. This
is not quite a true copy constructor because it does not preserve capacity. The capacity of the created list
will be c.size(), not c.capacity.

The ArrayList<T> created is only a shallow copy of the collection argument. The ArrayList<T> cre-
ated contains references to the elements in c (not references to clones of the elements in c).

Throws a NullPointerException if cis null.

public Vector(int initialCapacity)

Creates an empty vector with the specified initial capacity. When the vector needs to increase its capacity,
the capacity doubles.
Throws an IllegalArgumentException if initialCapacity is negative.

public Vector()

Creates an empty vector with an initial capacity of 10. When the vector needs to increase its capacity, the
capacity doubles.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-49

|ENENEEEERERERER

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 3 of 15)

Display 16.6 Methods in the Classes ArrayList<T> and Vector<T>

public ArraylList(int initialCapacity)
Creates an empty ArrayList<T> with the specified initial capacity. When the ArrayList<T> needs to

increase its capacity, the capacity doubles.
Throws an IllegalArgumentException if initialCapacity is negative.

public ArrayList()

Creates an empty ArrayList<T> with an initial capacity of 10. When the ArrayList<T> needs to
increase its capacity, the capacity doubles.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-50

| BT

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 4 of 15)

Display 16.6 Methods in the Classes ArrayList<T> and Vector<T>

public Vector(Collection<? extends T> c)

Creates a vector that contains all the elements of the collection c in the same order as they have in c. In
other words, the elements have the same index in the vector created as they do in c. This is not quite a

true copy constructor because it does not preserve capacity. The capacity of the created vector will be

c.size(), not c.capacity.

The vector created is only a shallow copy of the collection argument. The vector created contains refer-
ences to the elements in ¢ (not references to clones of the elements in c).

Throws a NullPointerException if cisnull.

public Vector(int initialCapacity, int capacityIncrement)

Constructs an empty vector with the specified initial capacity and capacity increment. When the vector
needs to grow, it will add room for capacityIncrement more items.

Throws an I1legalArgumentException if initialCapacity is negative.

(ArrayList<T> does not have a corresponding constructor.)

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-51

|ENEEEEEEREREREE

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 5 of 15)

Display 16.6 Methods in the Classes ArraylList<T> and Vector<T>

public T set(int index, T newElement)

Sets the element at the specified index to newElement. The element previously at that position is
returned. If you draw an analogy to an array a, this is analogous to setting a[index] to the value new—
Element. The index must be a value greater than or equal to 8 and strictly less than the current size of
the list.

Throws an IndexOutOfBoundsException if the index is not in this range.

public T get(int index)
Returns the element at the specified index. This is analogous to returning a[index] for an array a. The
index must be a value greater than or equal to © and less than the current size of the calling object.
Throws an IndexOut0fBoundsException if the index is not in this range.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-52

| BT

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 6 of 15)

Display 16.6 Methods in the Classes ArrayList<T> and Vector<T>

public boolean add(T newElement)

Adds newElement to the end of the calling object's list and increases its size by 1. The capacity of the
calling object is increased if that is required. Returns true if the add was successful. This method is often
used as if it were a void method.

public void add(int index, T newElement)

Inserts newElement as an element in the calling object at the specified index and increases the size of
the calling object by one. Each element in the calling object with an index greater than or equal to index
is shifted upward to have an index that is one greater than the value it had previously.

The index must be a value greater than or equal to © and less than or equal to the size of the calling
object (before this addition).

Throws an IndexOutOfBoundsException if the index is not in the prescribed range.

Note that you can use this method to add an element after the last current element. The capacity of the
calling object is increased if that is required.

(continued)

16-53

|NENNENNEEEEEEEEN]

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 7 of 15)

Display 16.6 Methods in the Classes ArrayList<T> and Vector<T>

public boolean addAl1(Collection<? extends T> c)

Appends all the elements in c to the end of the elements in the calling object in the order that they are
enumerated by a c iterator. The behavior of this method is not guaranteed if the collection c is the calling
object or any collection including the calling object either directly or indirectly.

Throws an NullPointerException if ¢ is null.

public boolean addA1l1(int index, Collection<? extends T> c)

Inserts all the elements in c into the calling object starting at position index. Elements are inserted in the
order that they are enumerated by a c iterator. Elements previously at positions index or higher are
shifted to higher numbered positions.

Throws an IndexOutOfBoundsException if index is not both greater than or equal to zero and less
than size().

Throws an NullPointerException if ¢ is null

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-54

DR e

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 8 of 15)

Display 16.6 Methods in the Classes ArrayList<T> and Vector<T>

public T remove(int index)

Deletes the element at the specified index and returns the element deleted. The size of the calling object is
decreased by 1. The capacity of the calling object is not changed. Each element in the calling object with an
index greater than or equal to index is decreased to have an index that is | less than the value it had previ-
ously.

The {ndex must be a value greater than or equal to & and less than the size of the calling object (before this
removal).

Throws an IndexOutOfBoundsException if the index is not in this range.

(continued)

16-55

T T

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 9 of 15)

Display 16.6 Methods in the Classes ArrayList<T> and Vector<T>

public boolean remove(Object theElement)

Removes the first occurrence of theElement from the calling object. If theElement is found in the call-
ing object, then each element in the calling object with an index greater than or equal to theElement’s
index is decreased to have an index that is one less than the value it had previously. Returns true if
theElement was found (and removed). Returns false if theElement was not found in the calling
object. If the element was removed, the size is decreased by one. The capacity is not changed.

protected void removeRange(int fromIndex, int toIndex)

Removes all elements with index greater than or equal to fromIndex and strictly less than toIndex. Be
sure to note that this method is protected, not public.

public void clear()

Removes all elements from the calling object and sets its size to zero.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-56

| IO

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 10 of 15)

Display 16.6 Methods in the Classes ArrayList<T> and Vector<T>

public boolean isEmpty()

Returns true if the calling object is empty (that is, has size 8); otherwise returns false.

public boolean contains{Object target)

Returns true if target is an element of the calling object; otherwise returns false. Uses the method
equals of the object target to test for equality.

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-57

ITrrrrrrrrrerTT

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 11 of 15)

Display 16.6 Methods in the Classes ArrayList<T> and Vector<T>

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

public Iterator<T> iterator()

Returns an iterator for the calling object. Iterators are discussed in Section 16.2.

public ListIterator<T> listIterator()
Returns a ListIterator<T> for the calling object. ListIterator<T> is discussed in Section 16.2.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-58

| BT

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 12 of 15)

Display 16.6 Methods in the Classes ArraylList<T> and Vector<T>

ListIterator<T> listIterator(int index)

Returns a list iterator for the calling object starting at index. The first element to be returned by the iter-
ator is the one at index. (Iterators are discussed in Section 16.2.)
Throws an IndexOutOfBoundsException if index does not satisfy:

B <= index <= size()

public Object[] toArray()

Returns an array containing all of the elements in the calling object. The elements of the array are indexed
the same as in the calling object.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-59

ITrrrrrrrrrrerT

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 13 of 15)

Display 16.6 Methods in the Classes ArrayList<T> and Vector<T»

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not be the
type T in Collection<T>. For example, E might be an ancestor type of T.

Returns an array containing all of the elements in the calling object. The elements of the array are indexed
the same as in the calling object.

The argument a is used primarily to specify the type of the array returned. The exact details are as fol-
lows:

The type of the returned array is that of a. If the cellection fits in the array a, then a is used to hold the
elements of the returned array; otherwise a new array is created with the same type as a.

If @ has more elements than the calling object, then the element in a immediately following the end of the
elements copied from the calling object are set to null.

Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.

Throws a NullPointerExceptionifaisnull.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-60

LEEETE

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 14 of 15)

& Methods in the Classes ArraylList<T> and Vector<T>

public int size()
Returns the number of elements in the calling object.
public int capacity()
Returns the current capacity of the calling object.
public void ensureCapacity(int newCapacity)
Increases the capacity of the calling abject ta ensure that it can hald at least newCapacity elements

Using ensureCapacity can sometimes increase efficiency, but its use is not needed for any other rea-
son.

public void trimToSize()
Trims the capacity of the calling object to be the calling object’s current size. This is used to save storage.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-61

Methods in the Classes ArrayL1st<T> and
Vector<T> (Part 15 of 15)

Display 16.6 Methods in the Classes ArrayList<T> and Vector<T>

public Object clone()

Returns a shallow copy of the calling object.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-62

I BLH I

Differences Between ArrayL1st<T> and
Vector<T>

* For most purposes, the ArrayL ist<T> and

Vector<T> are equivalent

— The Vector<T> class is older, and had to be retrofitted
with extra method names to make it fit into the collection
framework

— The ArrayL ist<T> class is newer, and was created as
part of the Java collection framework

— The ArrayL ist<T> class is supposedly more efficient
than the Vector<T> class also

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-63

Pitfall: Omitting the <T>

When the <T> or corresponding class name is
omitted from a reference to a collection class, this is
an error for which the compiler may or may not issue
an error message (depending on the details of the
code), and even if it does, the error message may be
quite strange

— Look for a missing <T> or <ClassName> when a

program that uses collection classes gets a strange error
message or doesn't run correctly

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-64

1

[00

The Map Framework

* The Java map framework deals with collections of ordered
pairs
— For example, a key and an associated value
* Objects in the map framework can implement mathematical
functions and relations, so can be used to construct database
classes

* The map framework uses the Map<T> interface, the
AbstractMap<T> class, and classes derived from the
AbstractMap<T> class

ITTTTTTrTrTT

The Map Landscape

SortedMap<KV> J AbstractMap<K\>)

sawa|dw

TreeMap<K\V> | HashMap<K\V> |

Interface l
Abstract Class l
Concrete Class |

Asingle line between two boxes means
the lower class or interface is derived
from (extends) the higher one.

Kand Vare type parameters for the type of
the keysand elementsstored in the map.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-65 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-66
The Map<K,V> Interface (1 of 3) The Map<K,V> Interface (2 of 3)
Display 16.9 Method Headings in the Map<K, V> Interface public boolean equals(Object other)
. e . . This is the equals of the map, not the equals of the elements in the map. Overrides the inher

The Map<K,V> interface is in the java.util package. ited method equals.

CONSTRUCTORS public int size()

Although not officially required by the interface, any class that implements the Map<K, V> interface Pl (i Ty G s el e in i el ot

should have at least two constructors: a no-argument constructor that creates an emptyMap<K, V>

object, and a constructor with one Map<K, V> parameter that creates a Map<K, V> object with the public int hashCode()

same elements as the constructor argument. The interface does not specify whether the copy pro- . .

duced by the one-argument constructor is a shallow copy or a deep copy of its argument. Returns the hash code value for the calling object.

METHODS public Set<Map.Entry<K,V>> entrySet()

boolean isEmpty() Returns a set view consisting of (key, value) mappings for all entries in the map. Changes to the
map are reflected in the set and vice-versa.
Returns true if the calling object is empty; otherwise returns false.
public Collection<V> values()
ublic boolean containsValue(Object value
P (0bj 2 Returns a collection view consisting of all values in the map. Changes to the map are reflected in

Returns true if the calling object contains at least one or more keys that map to an instance of the collection and vice-versa.
= value. o
N - public V get(Object key)
E public boolean containskey(Object key) E Returns the value to which the calling object maps key. If key is not in the map, then nu1lis
- Returns true if the calling object contains key as one of its keys. o returned. Note that this does not always mean that the key is not in the map since it is possible to
= — map a key to null. The containsKey method can be used to distinguish the two cases.
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-67 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-68

The Map<K,V> Interface (3 of 3)

OPTIONAL METHODS

The following methods are optional, which means they still must be implemented, but the imple-
mentation can simply throw an UnsupportedOpe rationException if, for some reason, you do
not want to give the methods a “real” implementation. An UnsupportedOperationException is
a RunTimeException and so is not required to be caught or declared in a throws clause.

public V put(K key, V value) (Optional)

Associates key to value in the map. If key was associated with an existing value then the old
value is overwritten and returned. Otherwise nul1 is returned.

public void putAll(Map<? extends K,? extends V> mapToAdd) (Optional)
Adds all mappings of mapToAdd into the calling object’s map.
public V remove(Object key) (Optional)

Removes the mapping for the specified key. If the key is not found in the map then null is
returned; otherwise the previous value for the key is returned.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-69

Concrete Map Classes

* Normally you will use an instance of a Concrete Map
Class
* Here we discuss the HashMap<K, V> Class

— Internally, the class uses a hash table similar to what was
discussed in Chapter 15.

— No guarantee as to the order of elements placed in the
map.

— If you require order then you should use the
TreeMap<K,V> class or the LinkedHashMap<K, V>
class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-70

HashMap<K,V> Class

The initial capacity specifies how many “buckets” exist in the
hash table.

— This would be analogous to the size of the array of the hash table
covered in Chapter 15.

— Alarger initial capacity results in faster performance but uses more
memory

The load factor is a number between 0 and 1.

— This variable specifies a percentage such that if the number of
elements added to the hash table exceeds the load factor then the
capacity of the hash table is automatically increased.

The default load factor is 0.75 and the default initial capacity
is 16

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-71

The HashMap<K,V> Class (1 of 2)

Display 16.10 Methods in the HashMap<K, V> Class

The HashMap<K, V> class is in the java. util package.

The HashMap<K, V> class extends the AbstractMap<K, V> class and implements the Map<K,V>
interface.

The HashMap<K, V> class implements all of the methods in the Map<K, V> interface (Display 16.9).
The only other methods in the HashMap<K,V> class are the constructors.

All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause.

All the exception classes mentioned are in the package java. lang and so do not require any
import statement.

public HashMap()
Creates a new, empty map with a default initial capacity of 16 and load factor of 0.75.

public HashMap(int initialCapacity)
Creates a new, empty map with a default capacity of initialCapacity and load factor of 0.75.
Throws a I1legalArgumentException if initialCapacity is negative.

public HashMap(int initialCapacity, float loadFactor)

Creates a new, empty map with the specified capacity and load factor.

Throws a I1legalArgumentException if initialCapacity is negative or loadFactor nonpos-
itive.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-72

The HashMap<K,V> Class (2 of 2)

public HashMap(Map<? extends K,? extends V> m)

Creates a new map with the same mappings asm. The initialCapacity is set to the same size
as mand the loadFactor to 0.75.

Throws a NullPointerException if m is null.

public Object clone()

Creates a shallow copy of this instance and returns it. The keys and values are not cloned.

The remainder of the methods are the same as those described for the Map<K, V> interface
(Display 16.9.)

All of the Map Interface methods are supported, such as get
and put

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-73

HashMap Example (1 of 3)

1 // This class uses the Employee class defined in Chapter 7.
2 import java.util.HashMap;
3 import java.util.Scanner;
4 public class HashMapDemo
5
6 public static void main(String[] args)
7 {
8 // First create a hashmap with an initial size of 10 and
9 // the default load factor
10 HashMap<String,Employee> employees =
11 new HashMap<String,Employee>(10);
12 // Add several employees objects to the map using
13 // their name as the key
14 employees.put(**Joe",
15 new Employee(*'Joe' ,new Date(*'September™, 15, 1970)));
16 employees.put("'Andy",
17 new Employee("'Andy",new Date(*'August’, 22, 1971)));
18 employees.put(*"'Greg",
19 new Employee(''Greg',new Date('March, 9, 1972)));
20 employees.put("Kiki",
21 new Employee("'Kiki",new Date(*'October™, 8, 1970)));
. 22 employees._put("'Antoinette",
23 new Employee('Antoinette" ,new Date(“'May", 2, 1959)));
24 System.out.print(*’Added Joe, Andy, Greg, Kiki, ");
25 System.out._printIn(*"and Antoinette to the map.");
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-74

HashMap Example (2 of 3)

26 // Ask the user to type a name. If found in the map,
27 // print it out.
28 Scanner keyboard = new Scanner(System.in);
29 String name = ";
30 do
31 {
32 System.out.print(""\nEnter a name to look up in the map. ");
33 System.out.printIn("'Press enter to quit.");
34 name = keyboard.nextLine();
35 iT (employees.containsKey(name))
36
37 Employee e = employees.get(name);
38 System.out.printIn(""Name found: " + e.toString());
39
40 else if (!name.equals(''"))
41 {
42 System.out.printIn(**"Name not found.');
43
44 } while ('name.equals('™"));
45 3}
46 }
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-75

HashMap Example (3 of 3)

SAMPLE DIALOGUE

Added Joe, Andy, Greg, Kiki, and Antoinette to the map.

Enter a name to look up in the map. Press enter to quit.
Joe
Name found: Joe September 15, 1970

Enter a name to look up in the map. Press enter to quit.
Andy
Name found: Andy August 22, 1971

Enter a name to look up in the map. Press enter to quit.
Kiki

Name found: Kiki October 8, 1970

Enter a name to look up in the map. Press enter to quit.

Myla
Name not found.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-76

Using HashMap with your own
Class

 Just like the HashSet class, If you intend to use
the HashMap<K,V> class with your own class
as the parameterized type K, then your class
must override the following methods:
— public int hashCode();
* Ideally returns a unique integer for this object

— public boolean equals(Object obj);

¢ Indicates whether or not the reference object is the
same as the parameter obj

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-77

Ilterators

* Aniterator is an object that is used with a
collection to provide sequential access to the
collection elements

— This access allows examination and possible
modification of the elements

* An iterator imposes an ordering on the
elements of a collection even if the collection
itself does not impose any order on the
elements it contains
— If the collection does impose an ordering on its

elements, then the iterator will use the same
ordering

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-78

The lterator<T> Interface

* Java provides an Iterator<T> interface
— Any object of any class that satisfies the 1 terator<T>
interface is an Iterator<T>
* An lIterator<T> does not stand on its own

— It must be associated with some collection object using the
method Iterator

— If cis an instance of a collection class (e.g.,
HashSet<String>), the following obtains an iterator
for c:

Iterator iteratorForC = c.iterator();

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-79

Methods in the 1terator<T> Interface (Part
1 of 2)

Methods in the Iterator<T> Interface

The Iterator<T> interface is in the java.util package.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or

declared in a throws clause.

NoSuchElementException isin the java.util package, which requires an import statement if your
code mentions the NoSuchElementException class. All the other exception classes mentioned are in

the package java.lang and so do not require any import statement.

public T next()

Returns the next element of the collection that produced the iterator.
Throws a NoSuchElementException if there is no next element.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-80

[LB

1

Methods in the 1terator<T> Interface (Part
2 of 2)

Methods in the Iterator<T> Interface

public boolean hasNext()

Retuns true if next() has not yet returned all the elements in the collection; returns false otherwise.

public void remove() (Optional)

Removes from the collection the last element returned by next.

This method can be called only once per call to next. If the collection is changed in any way, other than
by using remove, the behavior of the iterator is not specified (and thus should be considered unpredict-
able).

Throws IllegalStateException if the next method has not yet been called, or the remove method
has already been called after the last call to the next method.

Throws an UnsupportedOperationException if the remove operation is not supported by this
Iterator<T>.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-81

ITTTTITrTe

I

Using an Iterator with a HashSet<T> Object

* AHashSet<T> object imposes no order on the
elements it contains

* However, an iterator will impose an order on the
elements in the hash set
— That is, the order in which they are produced by next()

— Although the order of the elements so produced may be
duplicated for each program run, there is no requirement
that this must be the case

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-82

LI BB TR

|

An lterator (Part 1 of 3)

An Iterator

1 import java.util.HashSet;
2 import java.util.Iterator;

3 public class HashSetIteratorDemo

4

5 public static void main(String[] args)

6 {

7 HashSet<String> s = new HashSet<String>();

8 s.add("health");

9 s.add("love");
10 s.add("money");
11 System.out.println("The set contains:");

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-83

EENNNNENEE

|

An Iterator (Part 2 of 3)

An Iterator

12 Iterator<String> i = s.iterator();

13 while (i.hasNext())

14 System.out.println(i.next());

15 i.remove();

16 System.out.println();

17 System.out.println("The set now contains:");
18 i = s.iterator(); *=—mm
19 while (i.hasNext())

20 System.out.println(i.next());

21 System.out.println("End of program.");

22 }

23 3}

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-84

1

LI

|

An Iterator (Part 3 of 3)

An Iterator

SAMPLE DIALOGUE

The set contains:
money

love

health

The set now contains:
money

love

End of program.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

16-85

BERREEE

|

Tip: For-Each Loops as Iterators

e Although it is not an iterator, a for-each loop
can serve the same purpose as an iterator

— A for-each loop can be used to cycle through each
element in a collection

e For-each loops can be used with any of the
collections discussed here

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-86

L BUE N

|

For-Each Loops as Iterators (Part 1 of 2)

For-Each Loops as Iterators

1 dimport java.util.HashSet;

2 import java.util.Iterator;

3 public class ForEachDemo

4

5 public static void main(String[] args)

6 {

7 HashSet<String> s = new HashSet<String>();
8 s.add("health");

9 s.add("love");

10 s.add("money");

11 System.out.println("The set contains:");

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

(continued)

16-87

For-Each Loops as Iterators (Part 2 of 2)

For-Each Loops as Iterators

12 String last = null;

13 for (String e : s)

14 {

15 last = e;

16 System.out.println(e);

17 }

18 s.remove(last);

19 System.out.println();

20 System.out.println("The set now contains:");
21 for (String e : s)

22 System.out.println(e);

23 System.out.println("End of program.");

24

5 3 ¥ same as in Display 16.8.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-88

[00

The Listlterator<T>

Interface

 The Listlterator<T> interface extends the
I terator<T> interface, and is designed to work
with collections that satisfy the Li1St<T> interface
— AListlterator<T> has all the methods that an
I terator<T> has, plus additional methods

— AListlterator<T> can move in either direction along
a list of elements

— AListlterator<T> has methods, such as set and
add, that can be used to modify elements

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-89

ITTTTTTrTrTT

Methods in the Listlterator<T> Interface
(Part 1 of 4)

Methods in the ListIterator<T> Interface

The ListIterator <T> interface is in the java.util package.

The cursor position is explained in the text and in Display 16.11.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

NoSuchElementExceptionisinthe java.util package, which requires an import statement if your
code mentions the NoSuchElementException class. All the other exception classes mentioned are in
the package java. lang and so do not require any import statement.

public T next()
Returns the next element of the list that produced the iterator. More specifically, returns the element
immediately after the cursor position.
Throws a NoSuchElementException if there is no next element.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-90

[0 0

Methods in the Listlterator<T> Interface
(Part 2 of 4)

Methods in the ListIterator<T> Interface

public T previous()

Retums the previous element of the list that produced the iterator. More specifically, returns the element
immediately before the cursor position.
Throws a NoSuchElementException if there is no previous element.

public boolean hasNext()

Returns true if there is a suitable element for next () to return; returns false otherwise.

public boolean hasPrevious()

Returns true if there is a suitable element for previous() to return; returns false otherwise.

public int nextIndex()

Returns the index of the element that would be returned by a call to next (). Returns the list size if the
cursor position is at the end of the list.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-91

ITTTTITIrrTTT

Methods in the Listlterator<T> Interface
(Part 3 of 4)

Methods in the ListIterator<T> Interface

public int previousIndex()

Returns the index that would be returned by a call to previous (). Retums —1if the cursor position is at
the beginning of the list.

public void add(T newElement) (Optional)

Inserts newE lement at the location of the iterator cursor (that is, before the value, if any, that would be
returned by next () and after the value, if any, that would be returned by previous()).

Cannot be used if there has been a call to add or remove since the last call to next() or previous().
Throws I1legalStateException if neither next() nor previous () has been called, or the add or
remove method has already been called after the last call to next () or previous().

Throws an UnsupportedOperationException if the remove operation is not supported by this Itera—
tor<T>.

Throws a ClassCastException if the class of newElement prevents it from being added.

Throws an I1legalArgumentException if some property other than the class of newElement pre-
vents it from being added.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-92

Methods in the Listlterator<T> Interface
(Part 4 of 4)

Methods in the ListIterator<T> Interface

public void remove() (Optional)

Removes from the collection the last element returned by next() or previous().

This method can be called only once per call to next () or previous().

Cannot be used if there has been a call to add or remove since the last call to next() or previous().
Throws I1legalStateException if neither next () nor previous() has been called, or the add or
remove method has already been called after the last call to next () or previous().

Throws an UnsupportedOperationException if the remove operation is not supported by this
Iterator<T>.

public void set(T newElement) (Optional)

Replaces the last element returned by next () or previous () with newElement.

Cannot be used if there has been a call to add or remove since the last call to next() or previous().
Throws an UnsupportedOperationException if the set operation is not supported by this Itera-
tor<T>.

Throws I1legalStateException if neither next () nor previous() has been called, or the add or
remove method has been called since the last call to next() or previous().

Throws an ClassCastException if the class of newElement prevents it from being added.

Throws an I1legalArgumentException if some property other than the class of newElement pre-
vents it from being added.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-93

The Listlterator<T> Cursor

e Every Listlterator<T> has a position marker known as
the cursor
— If the list has n elements, they are numbered by indices 0 through n-1,
but there are n+1 cursor positions

— When next() is invoked, the element immediately following the
cursor position is returned and the cursor is moved forward one cursor
position

— When previous() is invoked, the element immediately before the
cursor position is returned and the cursor is moved back one cursor
position

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-94

Listlterator<T> Cursor Positions

ListIterator<T> Cursor Positions

Celement 0 element 1 element 2 element n-1

Cursor positions

List

The default initial cursor position is the leftmost one.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-95

Pitfall: next and previous Can Return a
Reference

* Theoretically, when an iterator operation returns an
element of the collection, it might return a copy or
clone of the element, or it might return a reference
to the element

* |terators for the standard predefined collection
classes, such as ArrayL1st<T>and
HashSet<T>, actually return references

— Therefore, modifying the returned value will modify the
element in the collection

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-96

| IO

An lterator Returns a Reference (Part 1

of 4)

An Iterator Returns a Reference

1 import java.util.ArraylList;
2 import java.util.Iterator;

example.
3 public class IteratorReferenceDemo
4 {
5 public static void main(String[] args)
6 {
7 ArraylList<Date> birthdays = new ArraylList<Date>();
8 birthdays.add(new Date(1l, 1, 1990));
9 birthdays.add(new Date(2, 2, 1990));
10 birthdays.add(new Date(3, 3, 1990));
11 System.out.println("The list contains:");

The class Date is defined in Display 4.13, but you can
easily guess all you need to know about Date for this

(continued)

ITrrrrrrrrrerTT

An lterator Returns a Reference (Part
2 of 4)

An Iterator Returns a Reference

12 Iterator<Date> i = birthdays.iterator();

13 while (i.hasNext())

14 System.out.println(i.next());

15 i = birthdays.iterator();

16 Date d = null; //To keep the compiler happy.
17 System.out.println("Changing the references.");
18 while (i.hasNext())

19 {

20 d = i.next();

21 d.setDate(4, 1, 1990);

22 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-97 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-98
An lterator Returns a Reference (Part An lterator Returns a Reference (Part 4
3 of 4) of 4)
An Iterator Returns a Reference An Iterator Returns a Reference
23 System.out.println("The list now contains:"); S (RO
The list contains:
24 i = birthdays.iterator(); January 1, 1990
25 while (i.hasNext()) February 2, 1990
26 System.out.println(i.next()); March 3, 1990
Changing the references.
The list now contains:
27 System.out.println("April fool!"); April 1, 1990
28 3} April 1, 1990
29 3} April 1, 1990
(continued) April fool!
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-99 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 16-100

Tip: Defining Your Own lterator Classes

* There is usually little need for a programmer defined
Iterator<T>orListlterator<T> class

e The easiest and most common way to define a collection class
is to make it a derived class of one of the library collection
classes

— By doing this, the iterator() and listlterator() methods
automatically become available to the program

* If a collection class must be defined in some other way, then
an iterator class should be defined as an inner class of the
collection class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 16-101

