L WL T

e <
: s:‘. AN
B ST B 5
&4

Chapter 15

FIFTH EDITION

Linked Data
Structures

ABSOLUTE JAVA

WALTER SAVITCH

Slides prepared by Rose Williams,
Binghamton University

Kenrick Mock, University of Alaska
Anchorage
<A

PEARSON

ALWAYS LEARNING

ITrrrrrrrrrerTT

Introduction to Linked Data Structures

A linked data structure consists of capsules of data known as
nodes that are connected via links

— Links can be viewed as arrows and thought of as one way passages
from one node to another

In Java, nodes are realized as objects of a node class
The data in a node is stored via instance variables

The links are realized as references

— Avreference is a memory address, and is stored in a variable of a class
type
— Therefore, a link is an instance variable of the node class type itself

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-2

| BT

Java Linked Lists

* The simplest kind of linked data structure is a
linked list

e Alinked list consists of a single chain of nodes,
each connected to the next by a link
— The first node is called the head node
— The last node serves as a kind of end marker

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-3

ITrrrrrrrrrrerT

Nodes and Links in a Linked List

Display 15,1 Nodes and Links in a Linked List

head

—— "rolls”
-

end marker

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-4

1

B0

A Simple Linked List Class

In a linked list, each node is an object of a node class

— Note that each node is typically illustrated as a box containing one or
more pieces of data

Each node contains data and a link to another node

— A piece of data is stored as an instance variable of the node

— Datais represented as information contained within the node "box"

— Links are implemented as references to a node stored in an instance
variable of the node type

— Links are typically illustrated as arrows that point to the node to which
they "link"

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-5

ITTTTTTrTrTT

A Node Class (Part 1 of 3)

Display 15.2 A Node Class

public class Nodel

{
private String item;
private int count;

private Nodel link; —

public Nodel()
{

link = null; W f node classes so we
item = null; s fn Nodel

count = 8;

1

public Nodel(String newItem, int newCount, Nodel linkValue)
i

setData(newItem, newCount);

link = linkValue;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-6

1

[0 0

A Node Class (Part 2 of 3)

Display 15.2 A Node Class
public void setData(String newItem, int newCount)
{
item = newltem;
count = newCount;
}

public void setlLink(Nodel newlLink)
{

}

link = newlLink;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-7

ITTTTITIrrTTT

A Node Class (Part 3 of 3)

Display 15.2 A Node Class

public String getItem()

{
return item;
1
public int getCount()
{
return count;
}
public Nodel getlLink()
{
return link;
1
}
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-8

A Simple Linked List Class

* The first node, or start node in a linked list is called
the head node

— The entire linked list can be traversed by starting at the
head node and visiting each node exactly once

* There is typically a variable of the node type (e.g.,
head) that contains a reference to the first node in
the linked list

— However, it is not the head node, nor is it even a node
— It simply contains a reference to the head node

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 159

A Simple Linked List Class

e Alinked list object contains the variable head as an
instance variable of the class

* Alinked list object does not contain all the nodes in
the linked list directly

— Rather, it uses the instance variable head to locate the
head node of the list

— The head node and every node of the list contain a link
instance variable that provides a reference to the next
node in the list

— Therefore, once the head node can be reached, then every
other node in the list can be reached

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-10

An Empty List Is Indicated by nul |

* The head instance variable contains a reference to
the first node in the linked list

— If the list is empty, this instance variable is set to nul |
— Note: This is tested using ==, not the equal s method

e The linked list constructor sets the head instance
variable to nul |

— This indicates that the newly created linked list is empty

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-11

A Linked List Class (Part 1 of 6)

Display 15.3 A Linked List Class

1 public class LinkedListl

{
private Nodel head;

public LinkedListl()
{
head = null;

}

16 Adds o node at the start of the list with the specified data.

18 added node will be the first node in the list

public void addToStart(String itemName, int itemCount)
{

head = new Nodel(itemName, itemCount, head);
}

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-12

A Linked List Class (Part 2 of 6)

Display 15.2 A Linked List Class

17 F it
18 Removes the head node and returns true if the list contained at least
19 one node. Returns false if the list was empty.
20 */
21 public boolean deleteHeadNode()
22 {
23 if (head != null)
24
25 head = head.getLink();
26 return true;
27 }
28 else
29 return false;
£l }
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-13

A Linked List Class (Part 3 of 6)

Display 15.3 A Linked List Class

31 fEE

32 Returns the number of nodes in the list

33 */

34 public int size()

35 {

36 int count = 0;

37 Nodel position = head;

38

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-14

A Linked List Class (Part 4 of 6)

Display 15.3 A Linked List Class

39 while (position != null)

48

41 count++;

42 position = position.getLink()};

43 }

44 return count;

45 }

46 public boolean contains(String item)

47 {

48 return (find(item) != null):

49 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-15

A Linked List Class (Part 5 of 6)

Display 15.3 A Linked List Class

50
51
52

J,f.r.?
Finds the first node containing the target item, and returns a
reference to that node. If torget is not in the list, null is returned.
*/
private Nodel find(String target)
{

Nodel position = head;

String itemAtPosition;

while (position != null)

{

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-16

1

ITITrrrrn

A Linked List Class (Part 6 of 6)

isplay 1s.3 A Linked List Class

60 itemAtPosition = position.getItem();
61 if (itemAtPosition.equals(target))
62 return position;

position = position.getLink();

64 }
65 return null; //target wos not found
66 }
67 public void outputlist()
68 {
69 Nodel position = head;
76 while (position != null)
71 {
72 System.out.println(position.getItem() + " "
+ position.getCount());
74 position = position.getLink();
}
€ }
7}
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-17

ITTTTITrTe

Indicating the End of a Linked List

* The last node in a linked list should have its
link instance variable set to nul |

— That way the code can test whether or not a node
is the last node

— Note: This is tested using ==, not the equals
method

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-18

LI BB TR

Traversing a Linked List

* [f a linked list already contains nodes, it can be
traversed as follows:

— Set a local variable equal to the value stored by the head
node (its reference)

— This will provides the location of the first node

— After accessing the first node, the accessor method for the
link instance variable will provide the location of the next

node
— Repeat this until the location of the next node is equal to
null
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-19

EENNNNENEE

Traversing a Linked List

Display 15.4 Traversing a Linked List

head
"rolls”

== o
- 10

position 1

"jam"
'_] 3

¥ ™~ position.getlink(}.

"milk"

1

Y) When position is at this last node,
"tea" position.getLink() == null.

null j/

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-20

LEEETE

|

Adding a Node to a Linked List

e The method add adds a node to the start of the
linked list
— This makes the new node become the first node on the list
* The variable head gives the location of the current
first node of the list

— Therefore, when the new node is created, its 1 1nk field is
set equal to head

— Then head is set equal to the new node

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-21

|

Adding a Node at the Start

isplay 15.5 Adding a Node at the Start

new _.'\:nd.m beer”, &, ’\P.:Iﬂ. ! “beer"

head !
head = new Node("beer", 6, heod) . & | rolls
! head to the new node I G

null

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

I BLH I

|

Deleting the Head Node from a Linked
List

* The method delleteHeadNode removes the first
node from the linked list

— It leaves the head variable pointing to (i.e., containing a
reference to) the old second node in the linked list

* The deleted node will automatically be collected and
its memory recycled, along with any other nodes that
are no longer accessible

— In Java, this process is called automatic garbage collection

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-23

A Linked List Demonstration
(Part 1 of 3)

Display 15.6 A Linked List Demonstration

1 public class LinkedListlDemo
2

3 public static void main(String[] args)

LinkedListl list = new LinkedListl();
list.oddToStart("Apples”, 1);

list.addToStart("Bananas”, 2); _‘,__.a—-—-'-"C‘”m"m“pe iB.now It tné nead

1list.addToStart("Cantaloupe"”, 3);
System.out.println("List has " + list.size()

10 + " nodes.");

11 list.outputList();

12 if (list.contains("Cantaloupe”))

13 System.out.println("Cantaloupe is on list.");

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

(continued)

15-24

A Linked List Demonstration
(Part 2 of 3)

Display 15.6 A Linked List Demonstration

14 else
15 System.out.println("Cantaloupe is NOT on list.");

16 1list.deleteHeadNode(); —e———— FRemoves the head

17 if (list.contains("Cantaloupe"))

18 System.out.println("Cantaloupe is on list.");

19 else

20 System.out.println("Cantaloupe is NOT on list.");

2 while (list.deleteHeadNode()) -~ Empties the list. There is n

; //Empty loop body ecause the r

deleteHeadNode bot
23 System.out.println("Start of list:"); fon bhe
24 list.outputList();

25 System.out.println("End of list.");

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-25

A Linked List Demonstration
(Part 3 of 3)

ay 15.6 A Linked List Demonstration

SAMPLE DIALOGUE

List has 3 entries.
Cantaloupe 3

Bananas 2

Apples 1

Cantaloupe is on list.
Cantaloupe is NOT on list.
Start of list:

End of list.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-26

Node Inner Classes

* Note that the linked list class discussed so far is dependent on
an external node class

* Alinked list or similar data structure can be made self-
contained by making the node class an inner class

* A node inner class so defined should be made private, unless
used elsewhere

— This can simplify the definition of the node class by eliminating the
need for accessor and mutator methods

— Since the instance variables are private, they can be accessed directly
from methods of the outer class without causing a privacy leak

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-27

Pitfall: Privacy Leaks

* The original node and linked list classes examined so
far have a dangerous flaw

— The node class accessor method returns a reference to a
node

— Recall that if a method returns a reference to an instance
variable of a mutable class type, then the private
restriction on the instance variables can be easily defeated

— The easiest way to fix this problem would be to make the
node class a private inner class in the linked list class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-28

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

A Linked List Class with a Node Inner Class (Part
1 of 6)

Display 15.7 A Linked List Class with a Node Inner Class

1 public class LinkedList2

2 {

3 private class Node

4 {

5 private String item;

6 private Node link; ——10 [E1 e e
make the ii e varia Node

7 public Node() public or private.

8 i

9 item = null;

16 link = null;

11 }

12 public Node(String newItem, Node linkValue)

13 {

14 item = newltem;

15 link = linkValue; An inner c for the node class

16 }

17 }//End of Node inner class

(continued)
15-29

A Linked List Class with a Node Inner Class (Part
2 of 6)

Display 1s.7 A Linked List Class with a Node Inner Class

18 private Node head;

19 hern cl
20 c ¢ equals 1d 4 clone
21 le includes these items.

22

2 3 r.n’ %

24 Adds a node at the start of the list with the specified daota.

Eé The added node will be the first node in the list.

2 #f

27 public void addToStart(String itemName)

28 {

29 head = new Node(itemName, head);

30 }

elnod, &

31 e
32 Removes the head node ond returns true if the list contoined ot least
33 one node. Returns false if the list wos empty.
34 */
(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-30

A Linked List Class with a Node Inner Class (Part
3 of 6)

Display 15.7 A Linked List Class with a Node Inner Class

35 public boolean deleteHeadNode()

36 {

37 if (head != null)

i8 {

39 head = head.link;

40 return true;

41 }

42 else

43 return false;

44 }

45 JE

4 Returns the number of nodes in the list.

47 %/

48 public int size()

49 {

56 int count = @;

51 Node position = head;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-31

A Linked List Class with a Node Inner Class (Part
4 of 6)

Display 15.7 A Linked List Class with a Node Inner Class

52 while (position != null)

53 {

54 count++; /
55 position = position.link;

56 }

57 return count;

58 }

50 public boolean contains(String item)
60 {

61 return (find(item) != null);

62 ¥

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-32

1

LI BB

A Linked List Class with a Node Inner Class (Part
5 of 6)

Display 15.7 A Linked List Class with a Node inner Class

Finds the first node containing the target item, and returns a

reference to that node. If target is not in the list, null is returned.

private Node find(String target)
{
Node position = head;
String itemAtPosition;
while (position != null)

{

itemAtPosition = position.item;

if (itemAtPosition.equals(target))
75 return position;

6 position = position.link;

/ }

78 return null; //target was not found

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-33

|ENEEEERERERE]

A Linked List Class with a Node Inner Class (Part
6 of 6)

Display 1s.7 A Linked List Class with a Node Inner Class
80 public void outputList()
81 {
82 Node position = head;
83 while (position != null)
84 {
85 System.out.println(position.item);
86 position = position.link;
87 }
B8 }
89 public boolean isEmpty()
1) {
91 return (head == null);
92 }
93 public void clear()
94 {
95 head = null;
6 }
97 }
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-34

1

| LB

A Generic Linked List

A linked list can be created whose Node class has a type
parameter T for the type of data stored in the node
— Therefore, it can hold objects of any class type, including types that
contain multiple instance variable
— The type of the actual object is plugged in for the type parameter T
For the most part, this class can have the same methods,
coded in basically the same way, as the previous linked list
example
— The only difference is that a type parameter is used instead of an
actual type for the data in the node
Other useful methods can be added as well
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-35

|ENEEEERERERE]

A Generic Linked List Class
(Part 1 of 9)

Display 15.5 A Generic Linked List Class

public class LinkedList3<T>

1
2 {
3 private class Node<T>
4 { e T
5 private T data;
6 private Node<T> link; equals and toString mathe
7 public Node()
8 {
9 data = null;
16 link = null;
11 }
12 public Node(T newData, Node<T> linkValue)
13 {
data = newData;
15 link = linkValue;
16 }
7 }//End of Node<T> inner class

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-36

A Generic Linked List Class

(Part 2 of 9)

Display 15.6 A Generic Linked List Class

A Generic Linked List Class

(Part 3 of 9)

Display 15.8 A Generic Linked List Class

18 private Node<T> head; i1 L
32 Removes the head node and returns true if the list contoined at least
19 public LinkedList3() i3 one node. Returns false if the list was empty.
34
20 { y
1 TR 35 public boolean deleteHeadNode()
2 H
22 } 36 {
37 if (head != null)
- o 32 ¥ head. Link;
24 Adds a node at the start of the list with the specified dota. jﬁ gad = Heg ink;
25 The added node will be the first node in the list. i Returntene;
7 e/ 41 }
27 public void addToStart(T itemData) 42 else
28 { 43 return false;
29 head = new Node<T>(itemData, head); 44 } i
| 30 } | (continued)
B (continued) o
- =
N =
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-37 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-38
AG ic Linked List Cl AG ic Linked List Cl
Display 15.8 A Generic Linked List Class Display 15,8 A Generic Linked List Class
45 / 63 P ok
16 eturns the number of nodes in the list. b4 Finds the first node containing the target item, and returns a
47 */ 65 reference to that node. If target is not in the list, null is returned.
48 public int size() 66 */
49 { 67 private Node<T> find(T target)
58 int count = 8; 68 { 2
51 Node<T> position = head; 69 Node<T> position = head; m efined equals
52 while (position != null) 78 T itemAtPosition; a
53 { 71 while (position != null)
54 count++; 72 {
55 position = position.link; 73 itemAtPosition = position.data;
56 } 74 if (itemAtPosition.equals(target))
57 return count; 75 return pOS‘i.t"lOn:
58 } 76 position = position.link;
B L 77 }
— 59 public boolean contains(T item) I~ 78 return null; //target was not found
: £ { R 9}
- 61 return (find(item) != null); -
= 62 } [~ (continued)
= (continued) B
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-39 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-40

| BT

A Generic Linked List Class
(Part 6 of 9)

Display 15.8 A Generic Linked List Class

Finds the first node contoining the target and returns a reference
to the doto in that node. If target is not in the list, null is returned.

..l.,'
public T findData(T target)
{
return find(target).data;

}

public void outputList()

{
Node<T> position = head;
while (position != null)
{
System.out.println{position.data);
position = position.link;
}
}

I-defined toString

|NENNENNEEEEEEEEN]

A Generic Linked List Class
(Part 7 of 9)

Display 15.8 A Generic Linked List Class
97 public boolean isEmpty()
98 {

99 return (head == null);
100 }

101 public void clear()

102 {

103 head = null;

104 }

(continued)

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-41 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-42
Display 15.8 A Generic Linked List Class Display 15.8 A Generic Linked List Class
105 1 i i 1= i i
106 For two lists to be equal they must contain the same dato items in :]ﬁ i (oieet) = othertiztisycald)
167 the same order. The equals method of T is used to compaore data items. 119 return false;
108 3 . . 1208 Node<T> position = head;
1609 public boolean equals(Object otherObject) 121 Node<T> otherPosition = otherlList.head;
116 122 while (position != null)
111 if (otherObject == null) 123 {
112 return false; 124 if (!(position.dota.equals(otherPosition.data)))
113 else if (getClass() != otherObject.getClass()) 125 return false;
114 return false; 126 position = position.link;
115 else 127 otherPosition = otherPosition.link;
116 { 128 }
117 LinkedList3<T> otherList = (LinkedList3<T>)otherObject; 129 return true; //no mismatch was not found
(continued) 130 }
131 }
o - 132 }
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-43 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-44

| BT

A Sample Class for the Data in a
Generic Linked List (Part 1 of 2)

Display 1s.9 A Sample Class for the Data in a Generic Linked List

1 public class Entry

2 {

3 private String item:

4 private int count;

5 public Entry(String itemData, int countData)
6 {

7 item = itemData;

8 count = countData;

9 }

10 public String toString()

11 {

12 return (item + " " + count);
13 }

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

(continued)

15-45

ITrrrrrrrrrerTT

A Sample Class for the Data in a
Generic Linked List (Part 2 of 2)

Display 15.9 A Sample Class for the Data in a Generic Linked List

14 public boolean equals(Object otherObject)

15 {

16 if (otherObject == null)

17 return false;

18 else if (getClass() != otherObject.getClass())
19 return false;

20 else

21 {

22 Entry otherEntry = (Entry)otherObject;

23 return (item.equals(otherEntry.item)

24 && (count == otherEntry.count));
25 }

26 }

<There should be other constructors and methods, including accessor and
mutator methods, but we do not use them in this demonstration.>

27}

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

15-46

| BT

A Generic Linked List Demonstration

(Part 1 of 2)

Display 15.10 A Generic Linked List Demonstration

+ " nodes.");

1 public closs GenericLinkedlListDemo

2 {

3 public static void main(String[] args)

4 {

5 LinkedList3<Entry> list = new LinkedList3<Entry=();
G

7 Entry entryl = new Entry("Apples", 1);

8 list.addToStart{entryl);

9 Entry entry2 = new Entry("Bananas", 2);

18 list.addToStart(entry2);

11 Entry entry3 = new Entry("Cantaloupe”, 3);
12 list.addToStart(entry3);

13 System.out.println("List has " + list.size()
14

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

(continued)

15-47

ITrrrrrrrrrrrrd

A Generic Linked List Demonstration

(Part 2 of 2)

Display 15.10 A Generic Linked List Demonstration

15 list.outputList();

16 System.out.println("End of list.");
17 }

18 }

SAMPLE DIALOGUE

List has 3 nodes.
Cantaloupe 3
Bananas 2

Apples 1

End of list.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

15-48

Pitfall: Using Node instead of Node<T>

* Note: This pitfall is explained by example —any names can
be substituted for the node Node and its parameter <T>

* When defining the LinkedL ist3<T> class, the type for a
node is Node<T>, not Node

— If the <T>is omitted, this is an error for which the compiler may or
may not issue an error message (depending on the details of the
code), and even if it does, the error message may be quite strange

— Look for a missing <T> when a program that uses nodes with type
parameters gets a strange error message or doesn't run correctly

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-49

A Generic Linked List: the equals Method

e Like other classes, a linked list class should normally have an
equals method

* The equals method can be defined in a number of
reasonable ways
— Different definitions may be appropriate for different situations

e Two such possibilities are the following:
1. They contain the same data entries (possibly in different orders)
2. They contain the same data entries in the same order

e Of course, the type plugged in for T must also have redefined
the equals method

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-50

An equals Method for the Linked List
in Display 15.7 (Part 1 of 2)

Display 15.1 An equals Method for the Linked List in Display 15.7

lists to be equal they must contain the same data items in
e order.

public boolean equals(Object otherObject)
{
if (otherObject == null)
8 return false;
else if (getClass() != otherObject.getClass())
10 return false;
else

{
LinkedList2 otherList = (LinkedList2)otherObject:;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-51

An equals Method for the Linked List
in Display 15.7 (Part 2 of 2)

Display 15.11 An equals Method for the Linked List in Display 5.7

if (size() != otherlList.size())

15 return false;

16 Node position = head;

17 Node otherPosition = otherList.head;

18 while (position != null)

19 {
20 if ((!(position.item.equals(otherPosition.item))))

1 return false;

position = position.link;

23 otherPosition = otherPosition.link;
}
25 return true; //A mismatch was not found
f }
1
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-52

Simple Copy Constructors and clone
Methods

* There is a simple way to define copy constructors and the
clone method for data structures such as linked lists

— Unfortunately, this approach produces only shallow copies
* The private helping method copyOT is used by both the copy
constructor and the clone method

* The copy constructor uses copyOT to create a copy of the list
of nodes

* The clone method first invokes its superclass clone

method, and then uses copyOT to create a clone of the list of
nodes

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

A Generic Linked List: the private method
copyOf

* The private helping method copyOT takes an argument that
is a reference to a head node of a linked list, and returns a
reference to the head node of a copy of that list

— It goes down the argument list one node at a time and makes a copy
of each node

— The new nodes are added to the end of the linked list being built

e However, although this produces a new linked list with all new

nodes, the new list is not truly independent because the data
object is not cloned

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

A Copy Constructor and clone Method
for a Generic Linked List (Part 1 of 6)

Display 15,12 A Copy Constructor and clone Method for a Generic Linked List

1 public class LinkedList3<T> implements Cloneable
2 |
private class Node<T>
{
private T data;

1d this clone met
private Node<T> link; .

public Node() sz 5 Tove Paramster-Bound for u Pebter clone.
{

data = null;
16 link = null;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-55

A Copy Constructor and clone Method for
a Generic Linked List (Part 2 of 6)

A Copy Constructor and clone Method for a Generic Linked List

public Node(T newData, Node<T> linkValue)

12

13 {

14 data = newData;

15 link = linkValue;

16 }

17 }//End of Node<T> inner class
18 private Node<T> head;

<All the methods from Display 15.8 are in the class definition,

but they are not repeated in this display.>

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-56

| BT

A Copy Constructor and clone Method for

a Generic Linked List (Part 3 of 6)

A Copy Constructor and clone Method for a Generic Linked List

19 e

26 " Produces a new linked list, but it is not a true deep copy.

2k Throws a NullPointerException if other is null.

22 %/

23 public LinkedList3(LinkedList3<T> otherList)

24 {

25 if (otherList == null)

26 throw new NullPointerException();

27 if (otherList.head == null)

28 head = null;

29 else

30 head = copyOf(otherList.head);

31 }

32

33

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-57

ITrrrrrrrrrerTT

A Copy Constructor and clone Method for

a Generic Linked List (Part 4 of 6)

Display 15,12 A Copy Constructor and clone Method for a Generic Linked List

34 public LinkedList3<T> clone()

35 {

36 try

37 {

38 LinkedList3<T> copy =

39 (LinkedList3<T>)super.clone();

40 if (head == null)

41 copy.head = null;

42 else

43 copy.head = copyOf(head);

44 return copy;

45 }

46 catch(CloneNotSupportedException e)

47 {//This should not happen.

48 return null; //To keep the compiler happy.

49 }

58 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-58

| BT

A Copy Constructor and clone Method for

a Generic Linked List (Part 5 of 6)

Display 1512 A Copy Constructor and clone Method for a Generic Linked List

c1

52 Precondition: otherHead != null

53 Returns a reference to the head of a copy of the list

54 headed by otherHead. Does not return a true deep copy.

55

6 private Node<T> copyOf(Node<T> otherHead)

7 {

58 Node<T> position = otherHead;//moves down other's list.

59 Node<T> newHead; //will point to head of the copy list.

60 Node<T> end = null; //positioned at end of new growing list.
(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-59

ITrrrrrrrrrrrrd

A Copy Constructor and clone Method for

a Generic Linked List (Part 6 of 6)

Display 15,12 A Copy Constructor and clone Method for a Generic Linked List

61
62
63
64

65

(147
67
68

69

g clone with position.data would be

//Create first node:
newHead =

new Node<T=(position.data, null);
end = newHead;
position = position.link;

while (position != null)
{//copy node at position to end of new list.
end.link =
new Node<T>(position.data, null);

end = end.link;
position = position.link; \

ing clone with position.data would be

return newHead;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-60

Pitfall: The clone Method Is Protected in
Object

* It would have been preferable to clone the data
belonging to the list being copied in the copyOf
method as follows:

nodeReference = new
Node((T)(position.data).clone(), null);

¢ However, this is not allowed, and this code will not

compile
— The error message generated will state that clone is protected
inObject

— Although the type used is T, not Ob ject, any class can be
plugged in for T

— When the class is compiled, all that Java knows is that T is a
descendent class of Object

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-61

Exceptions

A generic data structure is likely to have methods that throw
exceptions

Situations such as a nul I argument to the copy constructor
may be handled differently in different situations

— If this happens, it is best to throw a Nul IPointerException, and
let the programmer who is using the linked list handle the exception,
rather than take some arbitrary action

— ANullPointerException is an unchecked exception: it need not
be caught or declared in a throws clause

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-62

Tip: Use a Type Parameter Bound for a Better
clone

e One solution to this problem is to place a
bound on the type parameter T so that it
must satisfy a suitable interface

— Although there is no standard interface that does
this, it is easy to define one

* Forexample,a PubliclyCloneable
interface could be defined

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-63

Tip: Use a Type Parameter Bound for a Better
clone

e Any class that implements the
PubliclyCloneable interface would
have these three properties:

1. It would implement the Cloneable interface
because PubliclyCloneable extends

Cloneable
2. It would have to implement a public clone
method
3. Its clone method would have to make a deep
copy
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-64

| BT

The PubliclyCloneable Interface

Display 15,13 The PubliclyCloneable Interface

1

2 The programmer who defines a class implementing this interface
3 has the responsibility to define clone so it makes o deep copy
4 (in the officially sectioned way.)

& wy

6 public interface PubliclyCloneable extends Cloneable

71
8 public Object clone();
9 }
\ Any ¢ £ 1t PubliclyCloneable
its Cloneable.
Any class that impler
PubliclyCloneable r 7 |
clone method.
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-65

ITrrrrrrrrrerTT

A Generic Linked List with a Deep Copy
clone Method (Part 1 of 8)

Display 15.14 A Generic Linked List with a Deep Copy clone Method

1 public class LinkedList<T extends PubliclyCloneable>

2 implements PubliclyCloneable
i {

4 private class Node<T>

5 {

6 private T data;

7 private Node<T> link;
8 public Node()

9 {

10 data = null;

11 link = null;

12 }

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

(continued)

15-66

| BT

A Generic Linked List with a Deep Copy

clone Method (Part 2 of 8)

Display 15,14, A Generic Linked List with a Deep Copy clone Method
13 public Node(T newData, Node<T> linkValue)
1 {

data = newData;

link = linkValue;

}
}//End of Node<T> inner class

19 private Node<T> head;
20 public LinkedList()
21 {
22 head = null;
23 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

15-67

ITrrrrrrrrrrrrd

A Generic Linked List with a Deep Copy
clone Method (Part 3 of 8)

Display 15,14 A Generic Linked List with a Deep Copy clone Method

24 /
25 ’roduces a new linked list, but it is not
26 Throws a NullPointerException if other is
27 w7

28 public LinkedList(LinkedList<T> otherList)
29 i

30 if (otherList == null)

31 throw new NullPointerException();
32 if (otherList.head == null)

33 head = null;

34 else

35 head = copyOf(otherList.head);

36 }

37

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

o true deep copy.
null.

(continued)

15-68

| BT

A Generic Linked List with a Deep Copy
clone Method (Part 4 of 8)

Display 15,14, A Generic Linked List with a Deep Copy clone Method

38 public LinkedList<T> clone()

39 {

40 try

41 {

42 LinkedList<T> copy =

43 (LinkedList<T>)super.clone(J;
44 if (head == null)

45 copy.head = null;

6 else

copy.head = copyOf(head);

o -

4 return copy,;

49 }

50 catch(CloneNotSupportedException e)

51 {//This should not happen.

52 return null: //To keap the compiler happy.

53 3}

54 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-69

ITrrrrrrrrrerTT

A Generic Linked List with a Deep Copy
clone Method (Part 5 of 8)

Display 15,14, A Generic Linked List with a Deep Copy clone Method

55
56 Precondition: otherHead != null

57 Returns a reference to the head of a copy of the list

58 headed by otherHead. Returns a true deep copy.

59 /

60 p'rivute Node<T> copyOf(Node<T> otherHead)

61 {

62 Node<T> position = otherHead;//moves down other's list.

63 Node<T> newHead; //will point to head of the copy list.

64 Node<T> end = null: //positioned at end of new growing list.
65 //Create first node:

66 newHead =

67 new Node<T=((T)(position.data).clone(), null);

68 end = newHead;

69 position = position.link;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-70

| BT

A Generic Linked List with a Deep Copy
clone Method (Part 6 of 8)

Display 15.14, A Generic Linked List with a Deep Copy clone Method

70 while (position != null)

71 {//copy node at position to end of new list.

72 end.link =

73 new Node<T>((T)(position.data).clone(), null);
74 end = end.link;

75 position = position.link;

76 }

77 return newHead;

78 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-71

ITrrrrrrrrrrrrd

A Generic Linked List with a Deep Copy
clone Method (Part 7 of 8)

Display 15,14, A Generic Linked List with a Deep Copy clone Method

80 public boolean equals(Object otherObject)

81 {

82 if (otherObject == null)

83 return false;

84 else if (getClass() != otherObject.getClass())

5 return false;

86 else

87 {

88 LinkedList<T> otherList = (LinkedlList<T>)otherObject;

<The rest of the definition is the same as in Display 15.8. The only difference
between this definition of equals and the one in Display 15.8 is that we
have replaced the class name LinkedList3<T> with LinkedList<T>.>

89 }
(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-72

1

LI BB

A Generic Linked List with a Deep Copy
clone Method (Part 8 of 8)

Display 15,14, A Generic Linked List with a Deep Copy clone Method

<All the other methods from Display 15.8 are in the class definition,
but are not repeated in this display. >

90 public String toString()
91 {
92 Node<T> position = head;
93 String theString = "";
94 while (position != null)
95 {
96 theString = theString + position.data + "\n";
97 position = position.link;
98 }
99 return theString; 3 toString method so LinkedList<T> would
161 }
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-73

|ENEEEERERERE]

A Linked List with a Deep Copy clone Method

¢ Some of the details of the clone method in the previous
linked list class may be puzzling, since the following code
would also return a deep copy:
public LinkedList<T> clone()
{
return new LInkedList<T>(this);
}
¢ However, because the class implements
PubliclyCloneable which, in turn, extends
Cloneable, it must implement the Cloneable
interface as specified in the Java documentation

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-74

1

LR R

A PubliclyCloneable Class (Part 1 of 4)

Display 15,15 A PubliclyCloneable Class

1 public class StockItem implements PubliclyCloneable

2 {

3 private String name;

4 private int number;

5 public StockItem()

6 {

7 name = null;

8 number = 0;

9 }

10 public StockItem(String nameData, int numberData)

11 {

12 name = nameData;

13 number = numberData;

14 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-75

|ENEEEERERERE]

A PubliclyCloneable Class (Part 2 of 4)

Display 15,15 A PubliclyCloneable Class

15 public void setNumber{int newNumber)
16 {

17 number = newNumber;

18 3}

19 public void setName(5tring newName)
20 {

21 name = newName;

22 }

23 public String toString()

24 {

25 return (name + " " & number);
26 }

{continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-76

| IO

A PubliclyCloneable Class (Part 3 of 4)

Display 15,15 A PubliclyCloneable Class

27 public Object clone()

28 {

29 try

ie {

31 return super.clone();

32 1

i3 catch(CloneNotSupportedException e)

34 {//This should not happen.

35 return null; //To keep compiler happy.

36 }

37 }

38 (continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-77

ITrrrrrrrrrerTT

A PubliclyCloneable Class (Part 4 of 4)

Display 15,15 A PubliclyCloneable Class

39 public boolean equals(Object otherObject)
40 {
41 if (otherObject == null)
42 return false;
43 else if (getClass() != otherObject.getClass())
44 return false;
45 else
46 {
47 StockItem otherItem = (StockItem) otherObject;
48 return (name.equalsIgnoreCase(otherItem.name)
49 && number == otherItem.number);
50 1
51 }
52 1
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-78

| BT

Demonstration of Deep Copy clone
(Part 1 of 3)

Display 15,16 Demonstration of Deep Copy clone

1 public class DeepDemo

2 {

3 public stotic void main(String[] args)

4 {

5 LinkedList<StockItem> originallList =

6 new LinkedList<StockItem>();

7 originallList.addToStart(new StockItem("red dress", 1));
8 originallist.addToStart(new StockItem("black shoe", 2));
9 LinkedList<StockItem> copyList = originallList.clone();
10 if (originalList.equals{copyList))

11 System.out.println("0K, Lists are equal.”);

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-79

ITrrrrrrrrrrerT

Demonstration of Deep Copy clone
(Part 2 of 3)

Display 15,16 Demonstration of Deep Copy clone

12 System.out.println("Now we change copylList.");

13 StockItem dataEntry =

14 copyList.findData(new StockItem("red dress", 1));
15 dataEntry.setName("orange pants");

16 System.out.println("originallist:");

17 originalList.outputList();

18 System.out.println{“copylList:");

19 copylList.outputList();

20

21 System.out.println("Only one list is changed.");

22 1

23 3

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-80

Demonstration of Deep Copy clone
(Part 3 of 3)

Demonstration of Deep Copy clone

Tip: Cloning is an "All or Nothing"
Affair

* If aclone method is defined for a class, then
SAMPLE DIALOGUE . .« . . .
6 st il it should follow the official Java guidelines
Now we change copylist. . . .
Cidginalliats — In particular, it should implement the
black shoe 2 .
red dress 1 Cloneable interface
copyList:
b‘tzik sioe 2
orange pants 1
Only one list is changed.
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-81 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-82
Iterators Iterators

¢ A collection of objects, such as the nodes of a linked list,
must often be traversed in order to perform some action
on each object
— An jterator is any object that enables a list to be traversed in this
way
¢ Alinked list class may be created that has an iterator inner
class

— If iterator variables are to be used outside the linked list class, then
the iterator class would be made public

— The linked list class would have an iterator method that
returns an iterator for its calling object

— Given a linked list named i St this can be done as follows:
LinkedList2.List2lterator 1 = list.iterator();

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-83

* The basic methods used by an iterator are as

follows:
— restart: Resets the iterator to the beginning of
the list
— hasNext: Determines if there is another data item
on the list

— next: Produces the next data item on the list

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-84

A Linked List with an Iterator
(Part 1 of 6)

Display 15,17 A Linked List with an Iterator

1 import java.util.NoSuchElementException;

A Linked List with an Iterator
(Part 2 of 6)

Display 15.17 A Linked List with an Iterator

9 Vi i
16 If the list is altered any iterators should invoke restart or
2 public class LinkedlList2 11 the iterator's behavior may not be as
12 rs for Li is
3 An it ! rLinkedList2
13 ubli lass List2Iterator
4 private class Node 1; I{J ¢ class List2Iterator _—
5 e
{ 5 4 ; 15 private Node position;
[private String item; s : T P s Tre
i s i 16 private Node previous;//previous value of position
7 private Node link;
17 public List2Iterator()
<The rest of the definition of the Node inner class is given in Display 15.7.> 18 {
19 position = head; //Instance variable head of outer class.
8 }//End of Node inner class By Z i
20 previous = null;
(continued) 21 }
= = 22 public void restart()
N R 23 t
- - 24 position = head; //Instance variable head of outer class.
B - 25 previous = null;
= -l 26 }
- -l (continued)
= Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-85 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-86
A Linked List with an Iterat A Linked List with an Iterat
Display 15.17 A Linked List with an Iterator Display 15,7 A Linked List with an Iterator
27 public String next() 40
28 { 41 Returns the next value to be returned by next().
25 z 42 Throws an IllegalStateExpression if hasNext() is false.
29 if (!hasNext()) 43 - PESSSE -
36 throw new NoSuchElementException(); 44 public String peek()
45 {
31 String toReturn = position.item; 46 if (!'hasNext())
32 previous = position; 47 throw new IllegalStateException();
33 position = position.link; 48 return position.item;
34 return toReturn; 49 }
35 } (continued)
36 public boolean hasNext()
37 {
i8 return (position != null);
39 }
- (continued) -
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-87 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-88

A Linked List with an Iterator

(Part 5 of 6)

A Linked List with an
Iterator (Part 6 of 6)

Display 15,17 A Linked List with an Iterator Display 1517 A Linked List with an Iterator
50 Vi fr '.a' xR
51 Adds a node before the node at location position. eletes the node at locatieon position and
52 previous is placed at the new node. If hasNext() is moves position to the "next" node.
53 false, then the node is added to the end of the list. Throws an IllegolStateException if the list is empty.
54 If the list is empty, inserts node as the only node.
55 */ : ; ; public void delete()
56 public void addHere(String newData) <The rest of the method delete is Self-Test Exercise 12.>
<The rest of the method addHere is Self-Test Exercise 11.> 68 }//End of List2Iterator inner class
57 Vit 69 ivate Node head By
58 Changes the String in the node at location position. U' private:Noce. hedes LinkedList2,
59 Throws an IllegalStoteException if position is not at a node, list.iterator() returns an
(1] 70 public List2Iterator iterator() + far 1ist
61 public void changeHere(String newData) 71 {) z 3
<The rest of the method addHere is Self-Test Exercise 13.> 72 return new List2Iterator();
(continued) 73 }
<The other methods and constructors are identical to those in Displays 15.7 and 15.11.>
[[~ 74}
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-89 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-90
Usi Iterator (Part 1 of 6) Usi Iterator (Part 2 of 6)
Display 1518 Using an Hterator Display 1518 Using an Iterator
1 public class IteratorDemo 10 System.out.println("List contains:");
2 { A i.restart();
3 public static void main(String[] args) 12 while(i.hasNext())
4 { 13 System.out.println(i.next());
5 LinkedList2 list = new LinkedList2():; 14 System.out.println();
6 LinkedList2.List2Iterator i = list.iterator();
15 i.restart();
7 list.addToStart("shoes"); 16 i.next();
8 list.addToStart("orange juice"); 17 System.out.println("Will delete the node for " + i.peek());
9 list.addToStart("coat"); 18 i.delete();
(continued) (continued)
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-91 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-92

| IO

Using an Iterator (Part 3 of 6)

Display 15,18 Using an Iterator

19 System.out.println("List now contains:");

20 i.restart();

21 while(i.hasNext())

22 System.out.println(i.next());

23 System.out.println();

24 i.restart();

25 i.next();

26 System.out.println("Will add one node before " + i.peek());

27 i.addHere("socks");

28 System.out.println(”List now contains:");

29 i.restart();

30 while(i.hasNext())

31 System.out.println(i.next());

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-93

ITrrrrrrrrrerTT

Using an Iterator (Part 4 of 6)

Display 15.18 Using an Iterator

32 System.out.println();

33 System.out.println("Changing all items to credit card.");

34 i.restart();

35 while(i.hasNext())

36 {

37 i.changeHere("credit card");

38 i.next();

39 3}

40 System.out.println();

41 System.out.println("List now contains:");

42 i.restort();

43 while(i.hasNext())

44 System.out.println(i.next());

45 System.out.println():

46 }

47 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-94

| BT

Using an Iterator (Part 5 of 6)

Display 1518 Using an Iterator

SAMPLE DIALOGUE

List contains:
coat

orange juice
shoes

Will delete the node for orange juice
List now contains:

coat

shoes

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-95

ITrrrrrrrrrrerT

Using an Iterator (Part 6 of 6)

Display 1518 Using an Iterator

Will add one node before shoes
List now contains:

coat

socks

shoes

Changing all items to credit card.

List now contains:
credit card
credit card
credit card

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-96

The Java Iterator Interface

* Java has an interface named Iterator that
specifies how Java would like an iterator to
behave

— Although the iterators examined so far do not
satisfy this interface, they could be easily
redefined to do so

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-97

Adding and Deleting Nodes

* Aniterator is normally used to add or delete a node

in a linked list

* Given iterator variables position and previous,

the following two lines of code will delete the node
at location position:

previous.link = position.link;

position = position.link;
— Note: previous points to the node before position

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-98

Deleting a Node (Part 1 of 2)

1. Existing list with the iterator positioned at “shoes”

‘ "coat" ‘ —’—»‘ "orange juice" ‘ —’—b{ "shoes" ‘ —H "socks" ‘null‘

head previous position

2. Bypass the node at position from previous
previous.link = position.link;
‘ "coat" ‘ —H “orange juice” ‘ ‘ "shoes" ‘ —H "socks" ‘ null ‘

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-99

Deleting a Node (Part 2 of 2)

3. Update position to reference the next node
position = position.link;

‘ “"coat" ‘ —H "orange juice” ‘ /(‘ "shoes" ‘ —H "socks" ‘null‘

head) previous &—/

Since no variable references the node "shoes" Java will automatically
recycle the memory allocated for it.

4. Same picture with deleted node not shown

‘ "coat" ‘ —H “orange juice” ‘ —H "socks" ‘null‘

head) previous position

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-100

Adding and Deleting Nodes

* Note that Java has automatic garbage collection

— In many other languages the programmer has to keep track of deleted
nodes and explicitly return their memory for recycling

— This procedure is called explicit memory management
* The iterator variables position and previous can be
used to add a node as well

— previous will point to the node before the insertion point, and
position will point to the node after the insertion point

Node temp = new Node(newData,position);
previous.link = temp;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-101

Adding a Node between Two
Nodes (Part 1 of 2)

1. Existing list with the iterator positioned at “shoes”

‘ "coat" ‘ —’—ﬂ "orange juice” ‘ H "shoes" ‘nu\l‘

head previous position

2. Create new Node with "socks" linked to "shoes"

temp = new Node(newData, position); // newData is "socks"
‘ “coat" ‘ —H “orange juice" ‘ —H “shoes" ‘null‘

head previous

position

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-102

Adding a Node between Two
Nodes (Part 2 of 2)

3. Make previous link to the Node temp

previouws.link = temp;

‘ "coat" ‘ —H "orange juice" ‘

head previous \

position

4. Picture redrawn for clarity, but structurally identical to picture 3

‘ "coat" ‘ —H "orange juice” ‘ *)* "socks" ‘ H "shoes" ‘nu\l‘

head previous temp position

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-103

Variations on a Linked List

e An ordinary linked list allows movement in one direction only

¢ However, a doubly linked list has one link that references the next node,
and one that references the previous node

e The node class for a doubly linked list can begin as follows:
private class TwoWayNode
{
private String item;
private TwoWayNode previous;
private TwoWayNode next;

e In addition, the constructors and methods in the doubly linked list class
would be modified to accommodate the extra link

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-104

A Doubly Linked List

v 15.21 A Doubly Linked List
“shoes"
null
-
L]
"socks"
~
L]
"coot”
-
L]
"gloves”
null

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

Adding a Node to the Front of a
Doubly Linked List

1. Existing list

4 A
null “coat’ “shoes™ “socks” null
8 S A
head
2. Create new TwoWayNode linked to "coat”
TwoWayNode newHead = new TwoWayNode (itemName, null, head); // itemName = "shirt"
A A A
nul "shirt" null "coat" "shoes" ‘ "socks” null
v * v
newHead
head
3. Setbackward link and set new head
head.previous = newHead:
head = newHead;
A A A
nul "shirt" "coat" "shoes" "socks” null
l — = =
newHead

head

15-105 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-106
1. Existing list with an iterator referencing "shoes" 3. Bypass the "shoes" node from the previous link of the next node
/\ /\ and move position off the deleted node

‘ null ‘ "coat" ‘ ‘ ‘ ‘ “shoes” ‘ ‘ ‘ ‘ "socks” ‘ null ‘ position.next.previous = positio.previows;
position = position.next;
[oun] vcoar | [] shes | 7] [, | ‘rsocks nul
2. Bypass the "shoes" node from the next link of the previous node
head position
position.previows.next = position.next;
m 4. Picture redrawn for clarity with the "shoes" node removed since
[nu] reoar [] [,] shees [) [[tsocks’ [nul] there are no longer references pointing to this node .
@/ @ ‘ null ‘ "coat" ‘ ‘ ‘ ‘ "socks” ‘ ‘
Q/ position
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-107

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-108

Inserting a Node Into a Doubly
Linked List (1 of 2)

1. Existing list with an iterator referencing "shoes"

W

‘nuu ‘ "coat" ‘ ‘ ‘ ‘ "shoes” ‘

"socks” ‘nu"‘

2. Create new TwoWayNode with previous linked to "coat" and nextto "shoes"
TwoWayNode temp= new TwoWayNod(newData, position.previous, positio);
// newData = “shirt"

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-109

Inserting a Node Into a Doubly
Linked List (2 of 2)

3. Set next link from "coat" to the new node of "shirt"

position.previous.next = temp;

temp position

4. Set previous link from "shoes" to the new node of "shirt"

position.previous = temp;

temp position

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-110

The Stack Data Structure

* A stack data structure is not necessarily a
linked data structure, but can be implemented

das one

— A stack is a data structure that removes items in
the reverse order of which they were inserted
(LIFO: Last In First Out)

— A linked list that inserts and deletes only at the
head of the list is a stack

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-111

The Queue Data Structure

* A queue is a data structure that handles data in a
first-in/first-out fashion (FIFO) like a line at a bank
— Customers add themselves to the end of the line and are
served from the front of the line
* A queue can be implemented with a linked list
— However, a queue needs a pointer at both the head and
tail (the end) of the linked list
— Nodes are removed from the front (head end), and are
added to the back (tail end)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-112

| BT

A Queue Class (Part 1 of 5)

A Queue Class

1 public class Queue

2 {

3 private class Node

4 {

5 private String item;
6 private Node link;
7 public Node()

8 {

9 item = null;
10 link = null;
11 }

(continued)

ITrrrrrrrrrerTT

A Queue Class (Part 2 of 5)

A Queue Class

12 public Node(String newItem, Node linkValue)
13 {

14 item = newItem;

15 link = linkvalue;
16 }

17 }//End of Node inner class
18 private Node front;

19 private Node back;

20 public Queue()

21 {

22 front = null;

23 back = null;

24 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-113 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-114
A Queue Class

25 /x* A Queue Class

26 Adds a String to the back of the queue. -

27 w/ 38 ek .)

. . P . 39 Returns the String in the front of the queue.
28 public void addToBack(String itemName) 40 RntL:r‘ns ALl if qﬂeue is empty. fuEL!
<The definition of this method is Self-Test Exercise 14.> 41 */
42 public String whoIsNext()

29 public boolean isEmpty() 43 {

30 { 44 if (front == null)

31 return (front == null); 45 return null;

32 } 46 else

47 return front.item;

33 public void clear() 48 }

34 { 49 .

35 front = null: (continued)

36 back = null;
- 37 } -
= (continued) —
E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-115 E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-116

[LB

1

A Queue Class (Part 5 of 5)

A Queue Class

50 /-.‘.--:
51 Removes a String from the front of the queue.
52 Returns false if the list is empty.
53 *r
54 public boolean removeFront()
55 {
56 if (front != null)
57 {
58 front = front.link;
59 return true;
60 }
61 else
62 return false;
63 }
64 }
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-117

ITTTTITrTe

I

Demonstration of the Queue Class
(Part 1 of 2)

Demonstration of the Queue Class

1 public class QueueDemo
2 {
3 public static void main(String[] args)
4 {
5 Queue q = new Queue();
6 q.addToBack("Tom"); e com e
Items come out of the

7 q.addToBack ("Dick™); O

c order that they went
8 q.addToBack("Harriet"); _ raer tha ey we

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-118

LI BB TR

|

Demonstration of the Queue Class
(Part 2 of 2)

Demonstration of the Queue Class

9 while(!q.isEmpty())

10 {

11 System.out.println(q.whoIsNext());

12 q.removeFront();

13 }

14 System.out.println("The queue is empty.");
15 }

16 3

SAMPLE DIALOGUE
Tom
Dick
Harriet
The queue 1is empty.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-119

EENNNNENEE

|

Running Times

* How fast is program?

— "Seconds"?

— Consider: large input? .. small input?
* Produce "table"

— Based on input size

— Table called "function" in math
e With arguments and return values!

— Argument is input size:
T(10), T(10,000), ...

* Function Tis called "running time"

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-120

Table for Running Time Function:
Display 15.31 Some Values
of a Running Time Function

Some Values of a Running Time Function

10 numbers 2 seconds

100 numbers 2.1 seconds

1,000 numbers 10 seconds

10,000 numbers 2.5 minutes
Copyright © 2012 Pearson Addison-Wesley. All rights reserved

19-121

Consider Sorting Program

e Faster on smaller input set?
— Perhaps
— Might depend on "state" of set
* "Mostly" sorted already?
e Consider worst-case running time

— T(N) is time taken by "hardest" list
* List that takes longest to sort

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-122

Counting Operations

e T(N) given by formula, such as:
T(N)=5N+5
— "On inputs of size N program runs for
5N + 5 time units"

* Must be "computer-independent"
— Doesn’t matter how "fast" computers are
— Can’t count "time"
— Instead count "operations"

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

19-123

Counting Operations Example

e inti=0;
Boolean found = false;
while ((i < N) && !found)
if (a[l] == target)
found = true;
else
i++;
e 5 operations per loop iteration:
<, &&,!,[], == ++
e After N iterations, final three: <, &&, !

e So: 6N+5 operations when target not found

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-124

Big-O Notation

* Recall: 6N+5 operations in "worst-case"
* Expressed in "Big-O" notation

— Some constant "c" factor where
c(6N+5) is actual running time
¢ cdifferent on different systems

— We say code runs in time O(6N+5)
— But typically only consider "highest term"

e Term with highest exponent

— O(N) here

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

19-125

Big-O Terminology

* Linear running time:
— O(N)—directly proportional to input size N
e Quadratic running time:
— 0O(N?)
e Logarithmic running time:
— O(log N)
* Typically "log base 2"
* Very fast algorithms!

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 19-126

Display 15.32
Comparison of Running Times

Comparison of Running Times

T(N) (running time)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

19-127

Efficiency of Linked Lists

* Find method for linked list
— May have to search entire list
— On average would expect to search half of the list,
orn/2
— In big-O notation, this is O(n)
* Adding to a linked list
— When adding to the start we only reassign some
references
— Constant time or O(1)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-128

Hash Tables

* A hash table or hash map is a data structure
that efficiently stores and retrieves data from
memory

* Here we discuss a hash table that uses an
array in combination with singly linked lists
* Uses a hash function
— Maps an object to a key
— In our example, a string to an integer

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-129

Simple Hash Function for Strings

e Sum the ASCII value of every character in the
string and then compute the modulus of the
sum using the size of the fixed array.

private int computeHash(String s)
{

int hash = 0;

for (int i = 0; i < s.lengthQ); i++)

{

hash += s.charAt(i);

by

return hash % SI1ZE; // SI1ZE = 10 in example
b

Example: “dog” = ASCIl 100, 111, 103
Hash = (100 + 111 + 103) % 10 = 4

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-130

Hash Table Idea

* Storage
— Make an array of fixed size, say 10
— In each array element store a linked list

— To add an item, map (i.e. hash) it to one of the 10
array elements, then add it to the linked list at
that location

e Retrieval

— To look up an item, determine its hash code then
search the linked list at the corresponding array
slot for the item

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-131

Constructing a Hash Table (1 of 2)

1. Existing hash table initialized with ten empty linked lists
hashArray = new LinkedLis3[SI1ZE]; // SIZE = 10

0 1 2 3 4 5 6 7 8 9
hashArray ‘ empty ‘ empty ‘ empty ‘ empty ‘ empty ‘ empty ‘ empty ‘ empty ‘ empty ‘ empty ‘

2. After adding "cat" with hash of 2

0 1 2 3 4 5 6 7 8 9
hashArray ‘ empty ‘ empty ‘ | ‘ empty ‘ empty ‘ null ‘ empty ‘ empty ‘ empty ‘ empty ‘

cat

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-132

Constructing a Hash Table (2 of 2)

A Hash Table Class (1 of 3)

1 public class HashTable
3. After adding "dog" with hash of 4 and "bird" with hash of 7 2 { o) i
3 // Uses the generic LinkedList2 class from Display 15.7
0 1 2 3 4 5 6 7 8 9 4 private LinkedList2[] hashArray;
hashArray | empty | empty | [empty [| [empty [empyy | | empty [empty | 5 private static final int SIZE = 10;
6 public HashTable()
a] 7 {
@ m @ 8 hashArray = new LinkedList2[SIZE];
9 for (int i=0; i < SIZE; i++)
4. After adding "turtle" with hash of 2 — collision and chained to linked list with "cat" 12 y hashArray[i] = new LinkedList2();
0 1 2 3 4 5 6 7 8 9
hasharray [empty [empty [| [empty| | [empty [empy | | [empty | empty | 12 private int computeHash(String s)
13 {
14 int hash = 0;
turtle bird 15 for (int i = 0; i < s.lengthQ); i++)
(o] oo] [ova | 1s '
17 hash += s.charAt(i);
cat 18
19 return hash % SIZE;
20 }
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-133 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-134
21 /** 33 /**
22 Returns true if the target is in the hash table, 34 Stores or puts string s into the hash table
23 false if it is not. 35 */
24 */ 36 public void put(String s)
25 public boolean containsString(String target) 37 {
26 { 38 int hash = computeHash(s); // Get hash value
27 int hash = computeHash(target); 39 LinkedList2 list = hashArray[hash];
28 LinkedList2 list = hashArray[hash]; 40 if (1list.contains(s))
29 if (list.contains(target)) 41 {
30 return true; 42 // Only add the target if it"s not already
31 return false; 43 // on the list.
32 } 44 hashArray[hash] .addToStart(s);
45 }
46 }
47 } // End HashTable class
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-135 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-136

Hash Table Demonstration (1 of 2)

Hash Table Demonstration (2 of 2)

1 public class HashTableDemo 19 System.out.printIn("Contains fish? " +
2 { 20 h.containsString("fish™));
3 public static void main(String[] args) 21 System.out.printIn(*"Contains cow? " +
4 { 22 h.containsString(*'cow));
5 HashTable h = new HashTable(); 23 }
24 }
6 System.out.printIn(""Adding dog, cat, turtle, bird");
7 h_put('dog™);
8 h.put('cat™);
9 h_put(turtle™); SAMPLE DIALOGUE
10 h.put("bird™);
11 System._out.printin('Contains dog? " + Adding dog, cat, turtle, bird
12 h.containsString(‘'dog™)); Contains dog? true
13 System.out.printIn(’Contains cat? " + Contains cat? true
14 h.containsString(‘‘cat™)); Contains turtle? true
15 System.out.printIn('Contains turtle? " + Contains bird? true
16 h.containsString("'turtle™)); Contains fish? false
17 System.out.printIn(’'Contains bird? " + Contains cow? false
18 h.containsString("'bird™));
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-137 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-138
Hash Table Efficiency Set Template Class
* Worst Case
— Every item inserted into the table has the same hash key, e Asetis a collection of elements in which no
the find operation may have to search through all items element occurs more than once
every time (same performance as a linked list, O(n) to find) .)
* We can implement a simple set that uses a
* Best Case linked | he i - th
— Every item inserted into the table has a different hash key, Inked list to store the items in the set
the find operation will only have to search a list of size 1, e Fundamental set operations we will support:
very fast, O(1) to find.
' .) — Add
e Can decrease the chance of collisions with a better)
. — Contains
hash function
. . . — Union
* Tradeoff: Lower chance of collision with bigger hash
table, but more wasted memory space — Intersection
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-139 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 17-140

Sets Using Linked Lists

A Set Class (1 of 5)

1 // Uses a linked list as the internal data structure
2 // to store items in a set.
3 public class Set<T>
round 4)*| | ‘—>| | }_’[[nul|| 4 {
5 private class Node<T>
6 {
7 rivate T data;
| peas | | grass | | ball | { pe | 8 Srivate Node<T> link;
9 public Node()
green ——p | / | |—>| \ Inull | 10 {
11 data = null;
12 link = null;
13
14 public Node(T newData, Node<T> linkValue)
15 {
16 data = newData;
17 link = linkvalue;
18
19 }//7End of Node<T> inner class
20 private Node<T> head;
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-141 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-142
A Set Class (2 of 5) A Set Class (3 of 5)
21 public Set() 39 public boolean contains(T item)
22 { 40 { o
23 head = null: 41 Noc_je<T> position = head;
24 } 42 T !temAtP0§l1_:lon;
25 /x* 43 while (position != null)
26 Add a new item to the set. |If the item 44 { _ L L
27 is already in the set, false is returned, 45 itemAtPosition = position.data;
28 otherwise true is returned. 46 if (itemAtPosition.equals(item))
29 %/ 47 return true;
30 public boolean add(T newltem) jg position = position.link;
g; if (contains(newltem)) 50 return false; //target was not found
33 { 51 }
34 head = new Node<T>(newltem, head); _ _
35 return true; 52 public void output()
36 } 53 { .
37 return false: 54 Not_ie posnt!or_1 = head;
38 3} 55 while (position != null)
56 {
57 System.out.print(position.data.toString(Q) + " ');
58 position = position.link;
59 }
60 System.out.printinQ);
61 }
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-143 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-144

62
63 Returns a new set that is the union
64 of this set and the input set.
65 */
66 public Set<T> union(Set<T> otherSet)
67 {
68 Set<T> unionSet = new Set<T>();
69 // Copy this set to unionSet
70 Node<T> position = head;
71 while (position != null)
72 {
73 unionSet.add(position.data);
74 position = position.link;
75 }
76 // Copy otherSet items to unionSet.
77 // The add method eliminates any duplicates.
78 position = otherSet.head;
79 while (position !'= null)
80 {
81 unionSet.add(position.data);
82 position = position.link;
83 }
84 return unionSet;
85 }
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-145

A Set Class (4 of 5)

103

¥

A Set Class (5 of 5)

Returns a new that is the intersection
of this set and the input set.
*/
public Set<T> intersection(Set<T> otherSet)
{
Set<T> interSet = new Set<T>();
// Copy only items in both sets
Node<T> position = head;
while (position != null)
{
if (otherSet.contains(position.data))
interSet.add(position.data);
position = position.link;
}

return interSet;

The clear, size, and isEmpty methods are identicalto those in Display 15.8

for the LinkedList3 class.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-146

O~NOODWNPRP

class SetDemo

{

A Set Class Demo (1 of 3)

public static void main(String[] args)

{

// Round things
Set round = new Set<String>();
// Green things
Set green = new Set<String>(Q);

// Add some data to both sets
round.add(*'peas'™);
round.add(*ball™);
round.add('pie™);
round.add("'grapes™);

green.add("'peas™);
green.add(*'grapes');
green.add(*'garden hose™);
green.add('grass');

System.out.printin(""Contents of set round: ');
round.output();

System.out.printIn(’Contents of set green: ');
green.output();

System.out.printin(Q);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-147

A Set Class Demo (2 of 3)

System.out.printIin("ball in set round? " +
round.contains("ball™));
System.out.printIin("ball in set green? " +
green.contains('ball™));

System.out.printin(“'ball and peas in same set? " +
((round.contains(ball') &&
(round.contains(*'peas'™))) ||
(green.contains("ball™) &&
(green.contains('peas')))));

System.out.printIn("pie and grass in same set? " +
((round.contains(“'pie') &&
(round.contains('grass'))) ||
(green.contains('pie') &&
(green.contains(''grass’)))));

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-148

A Set Class Demo (3 of 3)

Trees

37 System.out.print(*'Union of green and round: ™);
38 round.union(green) .output();
39 System.out.print("Intersection of green and round: "); ¢ Trees are a very important and Wldely used data
40 round. intersection(green).output();
41 } structure
42 3}
* Like linked lists, they are a structure based on nodes
SAMPLE DIALOGUE and links, but are more complicated than linked lists
Contents of set round: — All trees have a node called the root
grapes pie ball peas — Each node in a tree can be reached by following the links
Contents of set green:
Grass garden hose grapes peas from the root to the node
ball in set round? true — There are no cycles in a tree: Following the links will
ball in set green? false always |ead to an "end"
ball and peas in same set? true
pie and grass in same set? false
Union of green and round: garden hose grass peas ball pie grapes
Intersection of green and round: peas grapes
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-149 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-150
ees A Binary Tree
* A binary tree is the most common kind of tree
— Each node in a binary tree has exactly two link instance variables
— A binary tree must satisfy the Binary Search Tree Storage Rule
* The root of the tree serves a purpose similar to that of the
instance variable head in a linked list 4 I
— The node whose reference is in the root instance variable is called
the root node
* The nodes at the "end" of the tree are called leaf nodes
— Both of the link instance variables in a leaf node are nul I P ~— -
10 30 60
null | null null
null null null
\ 2 e /
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-151 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-152

A Binary Tree (Part 2 of 2) Binary Search Tree Storage Rule

A Binary Tree 1. All the values in the left subtree must be less than
1 public class IntTree .

2 g the value in the root node

3 public class IntTreeNode

Tl e ot date: 2. All the values in the right subtree must be greater
5 rivate IntTr leftLink; H

’ D vace IntTrocade righttink: than or equal to the value in the root node

8 } //End of IntTreeNode inner class

3. Thisruleis applied recursively to each of the two

9 private IntTreeNode root;

<The methods and other inner classes are not shown.> Su bt rees
103 (The base case for the recursion is an empty tree)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-153 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-154
Tree Properties Preorder Processing
* Note that a tree has a recursive structure 1. Process the data in the root node
— Each tree has two subtrees whose root nodes are the
nodes pointed to by the leftLink and rightLink of 2. Process the left subtree

the root node
— This makes it possible to process trees using recursive
algorithms
* |f the values of a tree satisfying the Binary Search
Tree Storage Rule are output using Inorder
Processing, then the values will be output in order
from smallest to largest

3. Process the right subtree

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-155 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-156

1

ITITrrrrn

Inorder Processing

1. Process the left subtree
2. Process the data in the root node
3. Process the right subtree

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-157

ITTTTITrTe

Postorder Processing

1. Process the left subtree
2. Process the right subtree
3. Process the data in the root node

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-158

LI BB TR

A Binary Search Tree for Integers (Part
1 of 6)

A Binary Search Tree for Integers

1 [%%

2 Class invariant: The tree satisfies the binary search tree storage rule.

3 *

4 public class IntTree

5 {

6 private static class IntTreeNode —e—_ ~

7 { static | A5

8 private int data; insertInSubtree, isInSubtree,

9 private IntTreeNode leftLink; and showElementsInSubtree.

10 private IntTreeNode rightlLink;

11

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-159

EENNNNENEE

A Binary Search Tree for Integers (Part
2 of 6)

A Binary Search Tree for Integers

12 public IntTreeNode(int newData, IntTreeNode newLeftLink,
13 IntTreeNode newRightLink)
14 {

15 data = newData;

16 leftLink = newLeftlLink;

17 rightLink = newRightLink;

18 ¥

19 } //End of IntTreeNode inner class

20 private IntTreeNode root;

21 public IntTree()

22 { re methods. This is just

23 root = null;
24 1

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-160

| BT

A Binary Search Tree for Integers (Part

3 of 6)

A Binary Search Tree for Integers

25 public void add(int item)

26 {

27 root = insertInSubtree(item, root);

28 }

29 public boolean contains(int item)

30 {

31 return isInSubtree(item, root);

32 }

33 public void showElements()

34 {

35 showElementsInSubtree(root);

36 ¥

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-161

ITrrrrrrrrrerTT

A Binary Search Tree for Integers (Part

4 of 6)

A Binary Search Tree for Integers

37
38
39
40
41
42
43
44
45
46
47
48
49
50

Returns the root node of a tree that is the tree with root node
subTreeRoot, but with a new node added that contains item.

private static IntTreeNode insertInSubtree(int item,
IntTreeNode subTreeRoot)
{
if (subTreeRoot == null)
return new IntTreeNode(item, null, null);
else if (item < subTreeRoot.data)
{

subTreeRoot.leftLink = insertInSubtree(item, subTreeRoot.leftLink);

return subTreeRoot;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

15-162

| BT

A Binary Search Tree for Integers (Part

5 of 6)

A Binary Search Tree for Integers

51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67

else //item >= subTreeRoot.data

{
subTreeRoot.rightLink = insertInSubtree(item, subTreeRoot.rightLink);
return subTreeRoot;

}

private static boolean isInSubtree(int item, IntTreeNode subTreeRoot)
{
if (subTreeRoot == null)
return false;
else if (subTreeRoot.data == item)
return true;
else if (item < subTreeRoot.data)
return isInSubtree(item, subTreeRoot.leftLink);
else //item >= link.data
return isInSubtree(item, subTreeRoot.rightLink);

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-163

ITrrrrrrrrrrrrd

A Binary Search Tree for Integers (Part

6 of 6)

A Binary Search Tree for Integers

68
69
70
71
72
73
74
75
76
77

private static void showElementsInSubtree(IntTreeNode subTreeRoot)
{//Uses inorder traversal.
if (subTreeRoot != null)
{
showElementsInSubtree(subTreeRoot.leftLink);
System.out.print(subTreeRoot.data + " ");
showElementsInSubtree(subTreeRoot.rightlLink);
}//else do nothing. Empty tree has nothing to display.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

15-164

Demonstration Program for the Binary
Search Tree (Part 1 of 3)

Demonstration Program for the Binary Search Tree

1 import java.util.Scanner;

2 public class BinarySearchTreeDemo

ER

4 public static void main(String[] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 IntTree tree = new IntTree();

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-165

Demonstration Program for the Binary
Search Tree (Part 2 of 3)

Demonstration Program for the Binary Search Tree

8 System.out.println("Enter a list of nonnegative integers.™);

9 System.out.println("Place a negative integer at the end.");

10 int next = keyboard.nextInt();

11 while (next >= @)

12 {

13 tree.add(next);

14 next = keyboard.nextInt();

15 }

16 System.out.println("In sorted order:");

17 tree.showElements();

18 1

19 }

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-166

Demonstration Program for the Binary
Search Tree (Part 3 of 3)

Demonstration Program for the Binary Search Tree

SAMPLE DIALOGUE

Enter a list of nonnegative integers.
Place a negative integer at the end.
40

30

20

10

11

22

33

44

=1

In sorted order:

10 11 20 22 30 33 40 44

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 15-167

Efficiency of Binary Search Trees

* A Binary search trees that is as short as possible can
be processed most efficiently

— Asshort tree is one where all paths from root to a leaf differ
by at most one node

* When this is so, the search method 1sInSubtree
is about as efficient as the binary search on a sorted
array

— Its worst-case running time is O(log n), where n is the
number of nodes in the tree

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 15-168

Efficiency of Binary Search Trees

* As atree becomes more tall and thin, this efficiency
falls off

— In the worst case, it is the same as that of searching a
linked list with the same number of nodes

e Maintaining a tree so that it remains short and fat, as
nodes are added, is known as balancing the tree

— A tree maintained in this manner is called a balanced tree

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

