e .
L S)‘:. v
5% e AP 5

) 3 . Sy

Chapter 14

FIFTH EDITION

Generics
and the ArrayList

ABSOLUTE JAVA Class

WALTER SAVITCH

Introduction to Generics

* Beginning with version 5.0, Java allows class
and method definitions that include
parameters for types

* Such definitions are called generics

— Generic programming with a type parameter
enables code to be written that applies to any

| BT

* ArrayListisa class in the standard Java libraries

— Unlike arrays, which have a fixed length once they have
been created, an ArrayList is an object that can grow
and shrink while your program is running

* Ingeneral, an ArrayL ist serves the same purpose
as an array, except that an ArrayList can change
length while the program is running

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-3

ITrrrrrrrrrrerT

class
- Slides prepared by Rose Williams, I
— Binghamton University =
E Kenrick Mock, University of Alaska E
- Anchorage —
P E A R 5 O N ALWAYS LEARNING E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-2

* The class ArrayList is implemented using
an array as a private instance variable

— When this hidden array is full, a new larger hidden
array is created and the data is transferred to this
new array

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-4

The ArrayList Class

Why not always use an ArrayL ist instead of an
array?

1. AnArrayListis less efficient than an array

2. It does not have the convenient square bracket notation

3. The base type of an ArrayL ist must be a class type
(or other reference type): it cannot be a primitive type

— This last point is less of a problem now that Java provides
automatic boxing and unboxing of primitives

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-5

Using the ArrayList Class

* In order to make use of the ArrayL st class, it
must first be imported from the package
jJava.util

* An ArrayListis created and named in the same
way as object of any class, except that you specify
the base type as follows:

ArrayList<BaseType> aList =
new ArrayList<BaseType>();

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-6

Using the ArrayList Class

* An initial capacity can be specified when creating an
ArrayListas well

— The following code creates an ArrayL 1 ST that stores
objects of the base type String with an initial capacity of 20
items

ArrayList<String> list =
new ArraylList<String>(20);

— Specifying an initial capacity does not limit the size to

which an ArrayL i st can eventually grow

* Note that the base type of an ArrayList is
specified as a type parameter

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-7

Using the ArrayList Class

* The add method is used to set an element
for the first time in an ArrayList
list.add("'something™);
— The method name add is overloaded

— There is also a two argument version that
allows an item to be added at any currently
used index position or at the first unused
position

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-8

Using the ArrayList Class

* The size method is used to find out how many
indices already have elements in the
ArrayList

int howMany = list.size();

* The set method is used to replace any existing
element, and the get method is used to access
the value of any existing element

list.set(index, "something else');
String thing = list_.get(index);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-9

Tip: Summary of Adding to an
ArrayList

e The add method is usually used to place an
element in an ArrayL 1St position for the
first time (at an ArrayList index)

e The simplest add method has a single
parameter for the element to be added, and
adds an element at the next unused index, in
order

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-10

Tip: Summary of Adding to an
ArrayList

* An element can be added at an already
occupied list position by using the two-
parameter version of add

* This causes the new element to be placed at
the index specified, and every other member
of the ArrayList to be moved up by one
position

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-11

Tip: Summary of Adding to an
ArrayList

* The two-argument version of add can also be used
to add an element at the first unused position (if that
position is known)

e Any individual element can be changed using the
set method

— However, set can only reset an element at an index that
already contains an element

* |n addition, the method Size can be used to
determine how many elements are stored in an
ArrayList

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-12

1

ITITrrrrn

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

Methods in the Class ArrayList

The tools for manipulating arrays consist only
of the square brackets and the instance
variable length

ArrayLists, however, come with a
selection of powerful methods that can do

many of the things for which code would have

to be written in order to do them using arrays

14-13

ITTTTITTT

Some Methods in the Class
ArrayList (Part 1 of 11)

Display 14,1 Some Methods in the Class ArraylList

public Arraylist<Base_Type>(int initialCapacity)

Creates an empty ArrayList with the specified Base_Type and initial capacity.

public ArraylList<Base_Type-()
Creates an empty ArraylList with the specified Base_Type and an initial capacity of 10.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-14

1

LI LB T

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

Some Methods in the Class
ArrayList (Part 2 of 11)

Display 141 Some Methods in the Class ArraylList

public Base_Type set(int index, Base_Type newElement)

Sets the element at the specified index to newElement. Returns the element previously at that position,
but the method is often used as if it were a void method. If you draw an analogy between the Arrayl—
ist and an array g, this statement is analogous to setting a[index] to the value newElement. The
index must be a value greater than or equal to @ and less than the current size of the ArrayList. Throws
an IndexOutOfBoundsException if the index is not in this range.

public Base_Type get(int index)
Returns the element at the specified index. This statement is analogous to returning a[index] for an
array a. The index must be a value greater than or equal to ® and less than the current size of the

ArrayList. Throws IndexOutOfBoundsException if the index is not in this range.

(continued)

14-15

ITTrrrrrrl

Some Methods in the Class
ArrayList (Part 3 of 11)

Display 1,1 Some Methods in the Class Arraylist

public boolean add(Base_Type newElement)

Adds the specified element to the end of the calling ArrayList and increases the ArraylList's size by
one. The capacity of the ArrayList is increased if that is required. Returns true if the add was success-
ful. (The return type is boolean, but the method is typically used as if it were a void method.)

public void add(int index, Base_Type newElement)

Inserts newElement as an element in the calling ArrayList at the specified index. Each element in the
ArrayList with an index greater or equal to index is shifted upward to have an index that is one
greater than the value it had previously. The index must be a value greater than or equal to @ and less
than or equal to the current size of the ArrayList. Throws IndexOutOfBoundsException if the index
is not in this range. Note that you can use this method to add an element after the last element. The
capacity of the ArrayList is increased if that is required.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-16

| BT

Some Methods in the Class
ArrayList (Part 4 of 11)

Display 14,1 Some Methods in the Class ArrayList

public Base_Type remove(int index)

Deletes and returns the element at the specified index. Each element in the ArrayList with an index
greater than index is decreased to have an index that is one less than the value it had previously. The
index must be a value greater than or equal to 8 and less than the current size of the ArraylList. Throws
IndexOutOfBoundsException if the index is not in this range. Often used as if it were a void
method.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-17

ITrrrrrrrrrerTT

Some Methods in the Class
ArrayList (Part 5 of 11)

Display 141 Some Methods in the Class ArrayList

protected void removeRange(int fromIndex, int toIndex)

Deletes all the element with indices i such that fromIndex < /i< toIndex. Element with indices greater
than or equal to toIndex are decreased appropriately.

public boolean remove(Object theElement)

Removes one occurrence of theElement from the calling ArrayList. If theElement is found in the
ArrayList, then each element in the ArrayList with an index greater than the removed element’s
index is decreased to have an index that is one less than the value it had previously. Returns true if
theElement was found (and removed). Returns false if theElement was not found in the calling
ArrayList.

public void clear()
Removes all elements from the calling ArrayList and sets the ArrayList’s size to zero.

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-18

| BT

Some Methods in the Class
ArrayList (Part 6 of 11)

ay 14.1 Some Methods in the Class ArrayList

public boolean contains{Object target)

Returns true if the calling ArrayList contains target; otherwise, returns false. Uses the method
equals of the object target to test for equality with any element in the calling ArrayList.

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the object
target to test for equality. Returns =1 if target is not found.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-19

ITrrrrrrrrrrrrd

Some Methods in the Class
ArrayList (Part 7 of 11)

lay 141 Some Methods in the Class ArrayList

public boolean isEmpty()

Returns true if the calling ArrayList is empty (that is, has size 8); otherwise, returns false.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-20

| BT

Some Methods in the Class
ArrayList (Part 8 of 11)

Some Methods in the Class ArrayList

public int size()

Returns the number of elements in the calling ArrayList.

public void ensureCapacity(int newCapacity)
Increases the capacity of the calling ArrayList, if necessary, in order to ensure that the ArrayList can

hold at least newCapacity elements. Using ensureCapacity can sometimes increase efficiency, but its
use is not needed for any other reason.

public void trimToSize()

Trims the capacity of the calling ArrayList to the ArrayList’s current size. This method is used to save
storage space.

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-21

ITrrrrrrrrrerTT

Some Methods in the Class
ArrayList (Part 9 of 11)

Display 14.1 Some Methods in the Class ArrayList

public Object[] toArray()

Returns an array containing all the elements on the list. Preserves the order of the elements.

public Type[] toArray(Type[]l a)
Returns an array containing all the elements on the list. Preserves the order of the elements. Type can be

any class types. If the list will fit in a, the elements are copied to a and a is retumed. Any elements of a
not needed for list elements are set to null. If the list will not fit in a, a new array is created.

(As we will discuss in Section 14.2, the correct Java syntax for this method heading is
public <Type> Type[] toArray(Typel[] a)
However, at this point we have not yet explained this kind of type parameter syntax.)

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-22

| BT

Some Methods in the Class
ArrayList (Part 10 of 11)

Display 14.1 Some Methods in the Class ArrayList

public Object clone()
Returns a shallow copy of the calling ArrayList. Waming: The clone is not an independent copy. Subse-
quent changes to the clone may affect the calling object and vice versa. (See Chapter s for a discussion of

shallow copy.)

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-23

ITrrrrrrrrrrrrd

Some Methods in the Class
ArrayList (Part 11 of 11)

Display 1.1 Some Methods in the Class Arraylist

public boolean equals(Object other)

If other is another ArrayList (of any base type), then equals returns true if and only if both
ArrayLists are of the same size and contain the same list of elements in the same order. (In fact, if
other is any kind of list, then equals returns true if and only if both the calling ArrayList and
other are of the same size and contain the same list of elements in the same order. Lists are discussed in
Chapter 16.)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-24

Why are Some Parameters of Type Base_Type
and Others of type Object

* When looking at the methods available in the ArrayList
class, there appears to be some inconsistency

— In some cases, when a parameter is naturally an object of the base
type, the parameter type is the base type

— However, in other cases, it is the type Object
* This is because the ArrayList class implements a number
of interfaces, and inherits methods from various ancestor
classes

— These interfaces and ancestor classes specify that certain parameters
have type Object

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-25

The "For Each" Loop

* The ArrayList class is an example of a
collection class
e Starting with version 5.0, Java has added a
new kind of for loop called a for-each or
enhanced for loop
— This kind of loop has been designed to cycle
through all the elements in a collection (like an
ArrayList)

A for-each Loop Used with an
ArrayList (Part 1 of 3)

play 15.2 A for-each Loop Used with an ArrayList

1 import jova.util.ArrayList;
import java.util.Scanner;

public class ArraylListDemo

{
public static void main(String[] args)
6 {
7 ArraylList<String> toDolList = new ArraylList<String>(20);
System.out.println(
"Enter list entries, when prompted.");

10 boolean done = false;
String next = null;
String answer;
Scanner keyboard = new Sconner(System.in);

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-27

A for-each Loop Used with an
ArrayList (Part 2 of 3)

A for-each Loop Used with an ArrayList

while (! done)

{
System.out.println("Input an entry:");
next = keyboard.nextLine();
toDoList.add(next);

19 System.out.print("More items for the list? ");
20 answer = keyboard.nextLine();
1 if (!(answer.equalsIgnoreCase("yes"}))

done = true;

1

System.out.println("The list contains:™);
y for (String entry : toDolist)
26 System.out.println(entry);

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-28

A for-each Loop Used with an
ArrayList (Part 3 of 3)

Display 1,.2 A for-each Loop Used with an ArrayList

SAMPLE DIALOGUE

Enter list entries, when prompted.
Input an entry:

Golf Score Program (Part 1 of 6)

Display 14.3 Golf Score Program

1 import java.util.Arraylist;
2 import java.util.Scanner;

3 public class GolfScores
4 {

Practice Dancing.
More items for the list? yes . p
Input an entry: B Shows differences between each of a list of golf scores and their average.
Buy tickets. 7
More items for the list? yes 8 public static void main(String[] args)
Input an entry: 9 {
Pack clothes. 16 ArraylList<Double> score = new ArraylList<Doubles();
More items for the list? no
Tha list contains: 11 System,out.pr'?.nt'ln("'rhis program ren?ds golf scores and show.s"}:
Pructic-iDoncing! 12 System.out.println("how much each differs from the average.");
Buy tickets. 13 5 intln("E 1f Ly,
o Pockiclothes: -l 1)Ifstem‘outl.prlnt n("Enter go scores:”);
| - 4 fillArrayList(score);
- - 15 showDifference(score); ArraylList<Doubles () are
- = 16 } firar ol parare
- - (continued)
= Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-29 I~ Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-30
Display i14.3 Golf Score Program Display 14.3 Golf Score Program
17 25 double next;
18 Reads values into the array a. 26 int index = @:
19 27 next = keyboard.nextDouble(); vialintes
26 public static void fillArraylList{ArraylList<Double> a) 28 while (next »= @) D. .1.:1
x = ouble
21 { {
22 System.out.println("Enter a list of nonnegative numbers."); 30 a.add(next) ;
23 System.out.println("Mark the end of the list with a negative number."); 31 next = keyboard.nextDouble();
24 Scanner keyboard = new Sconner{System.in); 2 }
(continued) 33 }
34 e
35 Returns the overage of numbers in a.
36
7 public static double computeAverage(ArraylList<Double> a)
38 {
39 double total = @; A
4 for (Double element : a) - ¢
- - 41 total = total + element; Arraylist
— = (continued)
| Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-31 — Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-32

| BT

Golf Score Program (Part 4 of 6)

Golf Score Program

int numberOfScores = a.size();
43 if (numberOfScores > @)

44 {

45 return (total/numberOfScores);
46 }

47 else

48 {
] System.out.println("ERROR: Trying to average 0 numbers.");

System.out.println("computeAverage returns 0.");

return 8;

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

14-33

ITrrrrrrrrrerTT

Golf Score Program (Part 5 of 6)

Ay 1L

,.3 Golf Score Program

Gives screen output showing how much each of the elements

in a differ from their average.
58 public stotic void showDifference(ArraylList<Double> a)
59 {
66 double average = computeAverage(a);
61 System.out.println("Average of the " + a.size()
62 + " scores = " + average);
63 System.out.println("The scores are:");
64 for (Double element : a)
65 System.out.println(element + " differs from average by ™
66 + (element — average));
67 }
68 1}
(comntinued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-34

| BT

Golf Score Program (Part 6 of 6)

Display 14.3 Golf Score Program

SAMPLE DIALOGUE

This program reads golf scores and shows
how much each differs from the average.
Enter golf scores:

Enter a list of nonnegative numbers.
Mark the end of the list with o negative number.
69 74 68 -1

Average of the 3 scores = 708.3333

The scores are:

69.08 differs from average by —1.33333
74.8 differs from average by 3.66667
68.0 differs from average by —2.33333

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

14-35

ITrrrrrrrrrrrrd

Tip: Use trimToSize to Save Memory

* AnArrayList automatically increases its capacity when

needed
— However, the capacity may increase beyond what a program requires

— In addition, although an ArrayL i st grows automatically when
needed, it does not shrink automatically

* Ifan ArrayList has a large amount of excess capacity, an

invocation of the method trimToSize will shrink the
capacity of the ArrayL ist down to the size needed

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-36

Pitfall: The clone method Makes a Shallow
Copy

* When a deep copy of an ArrayListis needed,
using the clone method is not sufficient

— Invoking clone on an ArrayList object produces a
shallow copy, not a deep copy

* In order to make a deep copy, it must be possible to
make a deep copy of objects of the base type

— Then a deep copy of each element in the ArrayList can
be created and placed into a new ArrayL 1St object

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-37

The Vector Class

e The Java standard libraries have a class named
Vector that behaves almost exactly the
same as the class ArrayList

* |In most situations, either class could be used

— However the ArrayL st class is newer, and is
becoming the preferred class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-38

Parameterized Classes and Generics

» The class ArrayList is a parameterized class

* |t has a parameter, denoted by Base Type, that
can be replaced by any reference type to obtain a
class for ArrayL 1sts with the specified base type

e Starting with version 5.0, Java allows class definitions
with parameters for types

— These classes that have type parameters are called
parameterized class or generic definitions, or, simply,
generics

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-39

Nonparameterized ArrayList and Vector
Classes

 The ArrayList and Vector classes
discussed here have a type parameter for the
base type

* There are also ArrayList and Vector
classes with no parameter whose base type is
Object

— These classes are left over from earlier versions of
Java

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-40

Generics

e Classes and methods can have a type parameter

— A type parameter can have any reference type (i.e., any
class type) plugged in for the type parameter

— When a specific type is plugged in, this produces a specific
class type or method

— Traditionally, a single uppercase letter is used for a type
parameter, but any non-keyword identifier may be used

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

Generics

* A class definition with a type parameter is stored in a
file and compiled just like any other class

* Once a parameterized class is compiled, it can be
used like any other class

— However, the class type plugged in for the type parameter
must be specified before it can be used in a program

— Doing this is said to instantiate the generic class
Sample<String> object =
new Sample<String>();

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

A Class Definition with a Type
Parameter

play 14.4 A Class Definition with a Type Parameter

1 public class Somple<T>
2 {

private T data;

public void setData(T newData)
{

6 data = newData;

% }

public T getData()
{
16 return data;
1 }
}

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-43

Class Definition with a Type Parameter

* Aclass that is defined with a parameter for a type is
called a generic class or a parameterized class

— The type parameter is included in angular brackets after
the class name in the class definition heading

— Any non-keyword identifier can be used for the type
parameter, but by convention, the parameter starts with
an uppercase letter

— The type parameter can be used like other types used in
the definition of a class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-44

1

ITITrrrrn

Tip: Compile with the -X11nt Option

* There are many pitfalls that can be
encountered when using type parameters

e Compiling with the =X 1nt option will
provide more informative diagnostics of any
problems or potential problems in the code
javac —Xlint Sample.java

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-45

ITTTTITrTe

A Generic Ordered Pair Class
(Part 1 of 4)

Display 14.5 A Generic Ordered Pair Class

1 public class Pair<T>
{

3 private T first;

private T second;

5 public Pair()
6 {
7 first = null;

8 second = null;

}

10 public Pair(T firstItem, T secondItem)
{
first = firstItem;
second = secondItem;

}

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-46

LI BB TR

A Generic Ordered Pair Class
(Part 2 of 4)

Display 14.5 A Generic Ordered Pair Class

15 public void setFirst(T newFirst)
16 £

17 first = newFirst;

-
19 public void setSecond(T newSecond)
20 {
21 second = newSecond;

}

23 public T getFirst()
24 {

25 return first;
26 }
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-47

EENNNNENEE

A Generic Ordered Pair Class
(Part 3 of 4)

Display 14.5 A Generic Ordered Pair Class
public T getSecond()
28 {
29 return second;
30 }
31 public String toString()
29 {
33 return ("first: " + first.toString() + "\n"
34 + "second: " + second.toString());
35 }
36

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-48

| IO

A Generic Ordered Pair Class

(Part 4 of 4)

Display 15.5 A Generic Ordered Pair Class

37
38
39
40
41
42

43

45
46
47
48
49
50

public boolean equals(Object otherObject)
{
if (otherObject == null)
return false;
else if (getClass() != otherObject.getClass())
return false;
else
{
Pair<T> otherPair = (Pair<T>)otherObject;
return (first.equals(otherPair.first)
&& second.equals(otherPair.second)});

ITrrrrrrrrrerTT

Using Our Ordered Pair Class

(Part 1 of 3)

Display 14.6 Using Our Ordered Pair Class

1 import java.util.Scanner;

2 public class GenericPairDemo

3 {

4 public stotic void main(String[] args)
‘I {

6 Pair<5tring> secretPair =

7 new Pair<String>("Happy", "Day");

8

9 Scanner keyboard = new Scanner(System.in);
10 System.out.println("Enter two words:");

11 String wordl = keyboard.next();

12 String word2 = keyboard.next();

13 Pair<String> inputPair =

14 new Pair<Strings{wordl, word2);

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-49 Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-50
Using Our Ordered Pair Cl Using Our Ordered Pair Cl
Display 15.6 Using Our Ordered Pair Class Display 1.6 Using Our Ordered Pair Class

15 if (inputPair.equals(secretPair)) SAMPLE DIALOGUE
16 { . Enter two words:
17 System.out.println("You guessed the secret words"); two words
18 System.out.println("in the correct order!"); You guessed incorrectly
1' 1 You guessed
:u else first: two
j} { . . second: words
22 System.out.println("You guessed incorrectly."); The secret words are
23 System.out.println("You guessed"); first: Happy
24 System.out.println(inputPair); second: Day
25 System.out.println("The secret words are");
26 System.out.println(secretPair);
27 }
28

[29 —

— (continued) I~

E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-51 E Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-52

Pitfall: A Generic Constructor Name Has No
Type Parameter

e Although the class name in a parameterized class definition has a type
parameter attached, the type parameter is not used in the heading of the
constructor definition

public Pair<T>()

e A constructor can use the type parameter as the type for a parameter of
the constructor, but in this case, the angular brackets are not used

public Pair(T first, T second)
* However, when a generic class is instantiated, the angular
brackets are used
Pair<String> pair =
new Pair<STring>("Happy", 'Day');

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-53

Pitfall: A Primitive Type Cannot be Plugged in
for a Type Parameter

e The type plugged in for a type parameter must
always be a reference type

— It cannot be a primitive type such as Int,
double, or char

— However, now that Java has automatic boxing, this
is not a big restriction

— Note: reference types can include arrays

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-54

Pitfall: A Type Parameter Cannot Be Used
Everywhere a Type Name Can Be Used

* Within the definition of a parameterized class
definition, there are places where an ordinary class
name would be allowed, but a type parameter is not
allowed

* |n particular, the type parameter cannot be used in
simple expressions using new to create a new object

— For instance, the type parameter cannot be used as a
constructor name or like a constructor:

T object = new T(Q);
T[1 a = new T[10];

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-55

Pitfall: An Instantiation of a Generic Class
Cannot be an Array Base Type

e Arrays such as the following are illegal:
Pair<String>[] a =
new Pair<String>[10];

— Although this is a reasonable thing to want to do,
it is not allowed given the way that Java
implements generic classes

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-56

LEEETE

|

Using Our Ordered Pair Class and
Automatic Boxing (Part 1 of 3)

Display 14.7 Using Our Ordered Pair Class and Automatic Boxing

1 import java.util.Scanner;

public class GenericPairDemo2
{
public static void main(String[] args)
{
6 Pair<Integer> secretPair =

T new Pair<Integer>(42, 24); \

Scanner keyboard = new Scanner(System.in); U2¢anint
10 System.out.println{"Enter two numbers:"); Integer parametes
11 int nl = keyboard.nextInt();

int n2 = keyboard.nextInt();

Pair<Integer> inputPair =
14 new Pair<Integer>(nl, n2);

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-57

|

Using Our Ordered Pair Class and
Automatic Boxing (Part 2 of 3)

Display 14.7 Using Our Ordered Pair Class and Automatic Boxing

if (inputPair.equals(secretPair))

1

1 {

1 System.out.println{"You guessed the secret numbers");

18 System.out.println("in the correct order!");

19 }

20 else

1 {
System.out.println{"You guessed incorrectly.");
System.out.println{"You guessed");
System.out.println(inputPair);
System.out.println("The secret numbers are");

26 System.out.println(secretPair);

27 }

}
20 }
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-58

I BLH I

|

Using Our Ordered Pair Class and
Automatlc Boxing (Part 3 of 3)

Using Our Ordered Pair Class and Automatic Boxing

SAMPLE DIALOGUE

Enter two numbers:

42 24

You guessed the secret numbers
in the correct order!

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-59

Pitfall: A Class Definition Can Have More Than
One Type Parameter

e A generic class definition can have any
number of type parameters

— Multiple type parameters are listed in angular
brackets just as in the single type parameter case,
but are separated by commas

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-60

| BT

Multiple Type Parameters (Part 1
of 4)

Display 14.8 Multiple Type Parameters

1 public class TwoTypePair<T1l, T2>

2 {

3 private T1 first;

4 private T2 second;

5 public TwoTypePair()

6 i

7 first = null;

8 second = null;

9 }

16 public TwoTypePair(T1l firstItem, T2 secondItem)

11 {
12 first = firstItem;
13 second = secondItem;

i }

(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-61

ITrrrrrrrrrerTT

Multiple Type Parameters (Part 2
of 4)

Display 14.8 Multiple Type Parameters

15 public void setFirst(T1l newFirst)
16 {
17 first = newFirst;
18 }
19 public void setSecond(T2 newSecond)
28 {
21 second = newSecond;
22 H

public T1 getFirst()

i

return first;
H
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-62

| BT

Multiple Type Parameters (Part 3
of 4)

Display 15.8 Multiple Type Parameters

27 public T2 getSecond()

28 {

29 return second;

30 }

31 public String toString()

32 {

33 return ("first: " + first.toString() + "\n"

34 + "second: " + second.toString());

35 }

36

(continued)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-63

ITrrrrrrrrrrrrd

Multiple Type Parameters (Part 4
of 4)

Display 14.8 Multiple Type Parameters

37 public boolean equals(Object otherObject)
38 {
39 if (otherObject == null)
46 return false;
41 else if (getClass() != otherObject.getClass())
42 return false;
43 else
44 {
45 TwoTypePair<Tl, T2> otherPair =
46 (TwoTypePair<T1l, T2>)otherObject;
47 return (first.equals(otherPair.first)
48 &% second.equals(otherPair.second));
49
: H o \

he equals of

t equals is th
s gequals ¢

4 equals is t

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-64

LEEETE

|

Pitfall: A Generic Class Cannot Be an Exception
Class

* |tis not permitted to create a generic class
with Exception, Error, Throwable, or
any descendent class of Throwable
— A generic class cannot be created whose objects

are throwable
public class Gex<T> extends Exception

— The above example will generate a compiler error
message

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-65

|

Using a Generic Class with Two
Type Parameters (Part 1 of 2)

Display 14.9 Using a Generic Class with Two Type Parameters

1 import java.util.Scanner;

public class TwoTypePairDemo

{

public static void main(String[] args)

{
6 TwoTypePair<String, Integer> rating =
7 new TwoTypePair<String, Integer>("The Car Guys", 8);
8 Scanner keyboard = new Scanner(System.in);
;) System.out.printin(
10 "Our current rating for " + rating.getFirst());
11 System.out.println(” is " + rating.getSecond());
12 System.out.println{"How would you rate them?");
13 int score = keyboard.nextInt();

rating.setSecond(score);
(continued)
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-66

I BLH I

|

Using a Generic Class with Two
Type Parameters (Part 2 of 2)

1y 14.9 Using a Generic Class with Two Type Parameters

15 System.out.println(

16 "Our new rating for " + rating.getFirst());
17 System.out.println(” is " + rating.getSecond());

18 }

19 }

SAMPLE DIALOGUE

Our current rating for The Car Guys
is 8

How would you rate them?

10

Our new rating for The Car Guys

is 10

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-67

Bounds for Type Parameters

* Sometimes it makes sense to restrict the possible
types that can be plugged in for a type parameter T

— For instance, to ensure that only classes that implement
the Comparabl e interface are plugged in for T, define a
class as follows:

public class RClass<T extends Comparable>

— "extends Comparable" serves as a bound on the type
parameter T

— Any attempt to plug in a type for T which does not implement the
Comparable interface will result in a compiler error message

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-68

Bounds for Type Parameters

* Abound on a type may be a class name (rather than an
interface name)

— Then only descendent classes of the bounding class may be plugged in
for the type parameters

public class ExClass<T extends Classl>
* A bounds expression may contain multiple interfaces and up
to one class
* If there is more than one type parameter, the syntax is as
follows:

public class Two<Tl extends Classl, T2 extends
Class2 & Comparable>

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-69

A Bounded Type Parameter

Display 14,10 A Bounded Type Parameter

1 public class Pair<T extends Comparable>
{
private T first;
private T second;

5 public T max()

G {

7 if (first.compareTo(second) <= 0)
return first;

else

16 return second;

11 }

<All the constructors and methods given in Display 14.5

are also included as part of this generic class definition>

}

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 14-70

Tip: Generic Interfaces

* An interface can have one or more type
parameters

* The details and notation are the same as they
are for classes with type parameters
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-71

Generic Methods

* When a generic class is defined, the type parameter
can be used in the definitions of the methods for
that generic class

* |n addition, a generic method can be defined that
has its own type parameter that is not the type
parameter of any class

— A generic method can be a member of an ordinary class or
a member of a generic class that has some other type
parameter

— The type parameter of a generic method is local to that
method, not to the class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-72

LEEETE

|

Generic Methods

* The type parameter must be placed (in angular
brackets) after all the modifiers, and before the

returned type

public static <T> T genMethod(T[] a)

* When one of these generic methods is invoked, the

method name is prefaced with the type to be
plugged in, enclosed in angular brackets

String s = NonG.<String>genMethod(c);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

14-73

|

Inheritance with Generic Classes

* A generic class can be defined as a derived class of
an ordinary class or of another generic class

— As in ordinary classes, an object of the subclass type would
also be of the superclass type
e Given two classes: A and B, and given G: a generic
class, there is no relationship between G<A> and
G

— This is true regardless of the relationship between class A
and B, e.g., if class B is a subclass of class A

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-74

I BLH I

|

A Derived Generic Class (Part 1 of

2)

Display 1.1 A Derived Generic Class

1 public class UnorderedPair<T> extends Pair<T>

{

public UnorderedPair()
4 {
5 setFirst(null);
6 setSecond(null);

}
8 public UnorderedPair(T firstItem, T secondItem)
J {
18 setFirst{firstItem);
11 setSecond(secondItem);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

(continued)

14-75

A Derived Generic Class (Part 2 of
2)

Display 14.11 A Derived Generic Class

13 public boolean equals(Object otherObject)

14 {

15 if (otherObject == null)

16 return false;

17 else if (getClass() != otherObject.getClass())
18 return false;

19 else

20 {
21 UnorderedPair<T> otherPair =

22 (UnorderedPair<T>)otherObject;
23 return (getFirst().equals(otherPair.getFirst())
24 && getSecond().equals(otherPair.getSecond()))
25 I

26 (getFirst().equals(otherPair.getSecond())
&& getSecond().equals(otherPair.getFirst()));

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 14-76

| IO

Using UnorderedPair (Part 1 of 2)

Display 1412 Using UnorderedPair

1 public class UnorderedPairDemo

2 {

3 public static void main(String[] args)

4 {

5 UnorderedPair<String> pl =

6 new UnorderedPair<String>("peanuts”, "beer");

UnorderedPair<String> p2 =

8 new UnorderedPair<String>("beer", "peanuts");

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

ITrrrrrrrrrerTT

Using UnorderedPair (Part 2 of 2)

Display 14.12

Using UnorderedPair

9
10

11

12

13

14

15

16 }
17 }

if (pl.equals{p2))
System.out.println(pl.getFirst() + " and " +
pl.getSecond() + " is the same as");
System.out.println(p2.getFirst() + " and "
+ p2.getSecond());

SAMPLE DIALOGUE®

peanuts and beer is the same as
beer and peanuts

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

14-78

