L WL T

) : o

v
PR

Chapter 13

FIFTH EDITION

Interfaces and
Inner Classes

ABSOLUTE JAVA

WALTER SAVITCH

Slides prepared by Rose Williams,
Binghamton University

Kenrick Mock, University of Alaska
Anchorage

PEARSON

ALWAYS LEARNING

ITrrrrrrrrrerTT

Interfaces

e Aninterface is something like an extreme case of an abstract
class

— However, an interface is not a class

— Itis a type that can be satisfied by any class that implements the
interface

* The syntax for defining an interface is similar to that of
defining a class
— Except the word interface is used in place of class
¢ Aninterface specifies a set of methods that any class that
implements the interface must have
— It contains method headings and constant definitions only
— It contains no instance variables nor any complete method definitions

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 13-2

| BT

Interfaces

e An interface serves a function similar to a base class,
though it is not a base class

— Some languages allow one class to be derived from two or
more different base classes

— This multiple inheritance is not allowed in Java

— Instead, Java's way of approximating multiple inheritance
is through interfaces

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 13-3

ITrrrrrrrrrrerT

Interfaces

* Aninterface and all of its method headings should be
declared public
— They cannot be given private, protected, or package access
* When a class implements an interface, it must make all the
methods in the interface public
e Because an interface is a type, a method may be written with
a parameter of an interface type

— That parameter will accept as an argument any class that implements
the interface

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 13-4

The Ordered Interface

Display 13.1 The Ordered Interface

Interfaces

e Toimplement an interface, a concrete class must do two
o Do not forget the semicolons at thln S:
1 public interface Ordered the end of the method headings. gs:
i € e bool s BRI other) 1. It mustinclude the phrase
public boolean precedes(Object other); -
implements Interface_Name
4 J* at the start of the class definition
5 For objects of the class ol and o2, . P L.
. o obgects oF He class o and o — If more than one interface is implemented, each is listed,
ol.follows(02) == o2.preceded(ol).
7 . separated by commas
8 public boolean follows(Object other); 2. The class must implement all the method headings listed
o 3 Neither the co m'w\::ruf'nr the run-time system -mllnIu;nu,-ﬂ:Huu t::-;ws re that this comment is in the definition(s) Of the interface(s)
satisfied. It is only advisory to the programmer implementing the interface. - .
* Note the use of Object as the parameter type in
the following examples
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 13-5 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 13-6
Impl tati f an Interf Impl tati f an Interf
Display 13.2 Implementation of an Interface Display 13.2 Implementation of an Interface (continued)
1 public class OrderedHourlyEmployee 17 public boolean follows(Object other)
2 extends HourlyEmployee implements Ordered 18 1
E : i
Althenih 19 if (other == null)
4 public boolean precedes(Object other) Althoudt GE‘thlﬂS‘Sf‘-‘-_ ks better than 50 roturn folse:
inst £ for defining 1 '
5 { e 21 else if (!(other instanceof OrderedHourlyEmployee))
6 if (other == null) instanceof works better here. Ho 22 return false:
7 return false: either will do for the points being made here 2 1 !
! else
8 else if (!(other instanceof HourlyEmployee)) 24 {
e return false; 25 OrderedHourlyEmployee otherOrderedHourlyEmployee =
10 else 26 (OrderedHourlyEmployee)other;
1 { 27 return (otherOrderedHourlyEmployee.precedes(this));
12 OrderedHourlyEmployee otherOrderedHourlyEmployee = 58 1
13 (OrderedHourlyEmployee)other; 29 }
14 return (getPay() < otherOrderedHourlyEmployee.getPay()); 30}
15 }
16 }
B Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 13-7 = Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-8

|

Abstract Classes Implementing Interfaces

An Abstract Class Implementing an Interface

Display 13.3 An Abstract Class Implementing an Interface <

1 public abstract class MyAbstractClass implements Ordered

* Abstract classes may implement one or more Dt e
. 4 char ade;
interfaces 5 e
6 public boolean precedes(Object other)
_ 7 {
Any method headings given in the interface that ! i Gother — ol
1 init 1 9 return false;
are not given definitions are made into abstract . e e e vanceof HourlyEmployee)
methods E ELSer‘eturﬁ false;
. e egs 13 {
* A concrete class must give definitions for all 14 MyAbstractClass otherOfiyabstractClass =
15 (MyAbstractClass)other;
the methOd headings given in the abstract i? X return (this.number < otherOfMyAbstractClass.number);
. 18 }
| class and the interface R
- - 19 public abstract boolean follows(Object other);
B = 20}
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-9 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-10
Derived Interfaces Extending an Interface
. . . ispl . di T
« Like classes, an interface may be derived from a base Dlsplay 13-4 Extending an Interface
interface 1 public interface ShowablyOrdered extends Ordered
2 q
. . . . 3 /oed
- Thls IS Ca“ed EXtendlng the Interface 4 Outputs an object of the class that precedes the calling object.
. . . 5 W/
— The derived interface must include the phrase . public void shownelhoPrecedes():
extends BaselnterfaceName [_ _
N::\thf:r the compiler nor t_?c: || t will de
* A concrete class that implements a derived interface anything to ensure that this comment s satisied.

Hr H H (concrete) class that implements the Showab 1yOrdered interface must have a definition for
mUSt have deflnltlons for any methOds In the derlved fhe mefhcfd5how(;ne;‘imi’rece;'e;ansdafsoha}\lfzdeﬁnmon;fgr the me:hods preéed;s a’nd
interface as well as any methods in the base fotlows ghenmthe grderedinteriace

) interface a
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-11 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-12

Pitfall: Interface Semantics Are Not Enforced

* When a class implements an interface, the compiler and run-
time system check the syntax of the interface and its
implementation

— However, neither checks that the body of an interface is consistent
with its intended meaning

e Required semantics for an interface are normally added to the
documentation for an interface

— It then becomes the responsibility of each programmer implementing
the interface to follow the semantics

* If the method body does not satisfy the specified semantics,
then software written for classes that implement the interface
may not work correctly

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-13

The Comparable Interface

* Chapter 6 discussed the Selection Sort algorithm, and
examined a method for sorting a partially filled array of type
doubl e into increasing order

* This code could be modified to sort into decreasing order, or
to sort integers or strings instead

— Each of these methods would be essentially the same, but making
each modification would be a nuisance

— The only difference would be the types of values being sorted, and the
definition of the ordering

» Using the Comparable interface could provide a single
sorting method that covers all these cases

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-14

The Comparable Interface

* The Comparable interfaceisin the java. lang
package, and so is automatically available to any
program

* |t has only the following method heading that must
be implemented:

public Int compareTo(Object other);

* |tis the programmer's responsibility to follow the
semantics of the Comparable interface when
implementing it

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-15

The Comparable Interface Semantics

* The method compareTo must return

— A negative number if the calling object "comes before" the
parameter other

— A zero if the calling object "equals" the parameter other
— A positive number if the calling object "comes after" the
parameter other
 If the parameter other is not of the same type as
the class being defined, then a
ClassCastException should be thrown

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-16

The Comparable Interface Semantics

* Almost any reasonable notion of "comes
before" is acceptable

— In particular, all of the standard less-than relations
on numbers and lexicographic ordering on strings
are suitable

* The relationship "comes after" is just the
reverse of "'comes before"

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-17

The Comparable Interface Semantics

e Other orderings may be considered, as long as they are a total
ordering

* Such an ordering must satisfy the following rules:
— (Irreflexivity) For no object 0 does 0 come before O

— (Trichotomy) For any two object 01 and 02, one and only one of the
following holds true: 01 comes before 02, 01 comes after 02, or 0l
equals 02

— (Transitivity) If 01 comes before 02 and 02 comes before 03, then 01
comes before 03

* The "equals" of the compareTo method semantics should
coincide with the equals method if possible, but this is not
absolutely required

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-18

Using the Comparable Interface

* The following example reworks the SelectionSort class
from Chapter 6
* The new version, GeneralizedSelectionSort,
includes a method that can sort any partially filled array
whose base type implements the Comparabl e interface
— It contains appropriate indexOfSmal lest and interchange
methods as well
* Note: Both the Double and String classes implement the
Comparable interface
— Interfaces apply to classes only
— A primitive type (e.g., double) cannot implement an interface

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-19

GeneralizedSelectionSortclass: sort
Method

Display 13.5 Sorting Method for Array of Comparable (Part 1 of 2)

1 public class GeneralizedSelectionSort

2 q

3 Jin

4 Precondition: numberUsed <= a.length;

5 The first numberUsed indexed variables have values.

6 Action: Sorts a so that al[®, al[l1], ... , a[numberUsed — 1] are 1in

7 increasing order by the compareTo method.

8 “f

9 public static void sort(Comparable[] a, int numberUsed)

10 {

11 int index, indexOfNextSmallest;

12 for (index = 0; index < numberUsed - 1; index++)

13 {//Place the correct value in a[index]:

14 indexOfNextSmallest = indexOfSmallest(index, a, numberUsed);
15 interchange(index, indexOfNextSmallest, a);

16 //al@], a[l],..., a[index] are correctly ordered and these are
17 //the smallest of the original array elements. The remaining
18 //positions contain the rest of the original array elements.
19 }

20 }

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-20

1

LI BB

GeneralizedSelectionSortclass: sort

Method

Display 13.5 Sorting Method for Array of Comparable (Part1of 2) (continued)

21 pick
22 Returns the index of the smallest value among

23 a[startIndex], al[startIndex+1], a[numberUsed - 1]

24 o/

25 private static int indexOfSmallest(int startIndex,

26 Comparable[] a, int numberUsed)

27 {

28 Comparable min = a[startIndex];

29 int indexOfMin = startIndex;

30 int index;

31 for (index = startIndex + 1; index < numberUsed; index-++)

32 if (al[index].compareTo(min) < 0)//if al[index] is less than min
33 {

34 min = a[index];

35 index0fMin = index;

36 /min is smallest of a[startIndex] through a[index]

37 }

38 return index0fMin;

39 }

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

13-21

|ENEEEERERERE]

GeneralizedSelectionSort class:
interchange Method

Display 13.5 Sorting Method for Array of Comparable (Part z of 2)

ok
Precondition: i and j are legal indices for the array a.
Postcondition: Values of a[i] and a[j] have been interchanged.
*/

private static void interchange(int i, int j, Comparable[] a)

{
Comparable temp;
temp = a[il;
alil = al[jl;
alj] = temp; //original value of a[i]

}

}
Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 13-22

1

LR R

Sorting Arrays of Comparable

Display 13.6 Sorting Arrays of Comparable (Part 1 of 2)

1

2 Demonstrates sorting arrays for classes that

3 implement the Comparable interface.

‘; public class ComparableDemo The classes Double and String do
6 { implement the Comparable interface.
7 public static void main(String[] args)

8 {

9 Double[] d = new Double[10];

10 for (int 1 = 0; 1 < d.length; i++)

11 d[i] = new Double(d.length - i);

12 System.out.println("Before sorting:");

13 int 1i;

14 for (1 = 0; i < d.length; i++)

15 System.out.print(d[i].doubleValue() + ", ");

16 System.out.println();

17 GeneralizedSelectionSort.sort(d, d.length);

18 System.out.println("After sorting:");

19 for (1 = 0; i < d.length; i++)

20 System.out.print(d[i].doubleValue() + ", ");

21 System.out.println();

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

13-23

|ENEEEERERERE]

Sorting Arrays of Comparable

Display 13.6 Sorting Arrays of Comparable (Part 2 of 2)

22 String[] a = new String[10];

23 a[@] = "dog";

24 al[1l] = "cat";

25 al[2] = "cornish game hen";

26 int numberUsed = 3;

27 System.out.println("Before sorting:");
28 for (1 = 0; 1 < numberUsed; i++)

29 System.out.print(ali] + ", ");

30 System.out.println();

31

32 GeneralizedSelectionSort.sort(a, numberUsed);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-24

Sorting Arrays of Comparable

Display 13.6 Sorting Arrays of Comparable (Part z of 2) (continued)

33 System.out.println("After sorting:");
34 for (i = 0; 1 < numberUsed; i++)

35 System.out.print(a[il + ", ");

36 System.out.println();

37 }

38 }

SAMPLE DIALOGUE

Before Sorting

10.e, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0,
After sorting:

i1.e, 2.0, 3.0, 4.0, 5.0, 6.0, 7.9, 8.0, 9.0, 16.0,
Before sorting;

dog, cat, cornish game hen,

After sorting:

cat, cornish game hen, dog,

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-25

Defined Constants in Interfaces

¢ An interface can contain defined constants in
addition to or instead of method headings

— Any variables defined in an interface must be public, static,
and final

— Because this is understood, Java allows these modifiers to
be omitted

e Any class that implements the interface has access to
these defined constants

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-26

Pitfall: Inconsistent Interfaces

* InJava, a class can have only one base class
— This prevents any inconsistencies arising from different
definitions having the same method heading
* |n addition, a class may implement any number of
interfaces

— Since interfaces do not have method bodies, the above
problem cannot arise

— However, there are other types of inconsistencies that can
arise

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-27

Pitfall: Inconsistent Interfaces

* When a class implements two interfaces:

— One type of inconsistency will occur if the interfaces have
constants with the same name, but with different values

— Another type of inconsistency will occur if the interfaces
contain methods with the same name but different return
types

* [f a class definition implements two inconsistent
interfaces, then that is an error, and the class
definition is illegal

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-28

The Ser1al1zabl e Interface

* An extreme but commonly used example of
an interface is the Serial 1zabl e interface
— It has no method headings and no defined
constants: It is completely empty

— It is used merely as a type tag that indicates to the
system that it may implement file /O in a
particular way

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-29

The Cloneabl e Interface

e The Cloneable interface is another unusual
example of a Java interface

— It does not contain method headings or defined
constants

— It is used to indicate how the method clone
(inherited from the Ob ject class) should be used
and redefined

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-30

The Cloneabl e Interface

* The method Object.clone() does a bit-by-
bit copy of the object's data in storage

 |f the data is all primitive type data or data of
immutable class types (such as String), then
this is adequate
— This is the simple case

* The following is an example of a simple class
that has no instance variables of a mutable class
type, and no specified base class

— So the base classisObject

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-31

Implementation of the Method clone:
Simple Case

Display 13.7 Implementation of the Method clone (Simple Case)

1 public class YourCloneableClass implements Cloneable

2 {
3 p“:;’ﬁ;wrr?rﬁy#”w instan
" Ve fype o of an im e Variaple i ofa
5) Mutable type like Strin
6 public Object clone() 7
7 {
8 try
9 {
16 return super.clone();//Invocation of clone
11 //in the base class Object
12 }
13 catch(CloneNotSupportedException e)
14 {//This should not happen.
15 return null; //To keep the compiler happy.
16 }
17 }
18
19
20
21}
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-32

The Cloneabl e Interface

e If the data in the object to be cloned includes instance
variables whose type is a mutable class, then the simple
implementation of clone would cause a privacy leak

* When implementing the Cloneabl e interface for a
class like this:
— First invoke the clone method of the base class Object (or
whatever the base class is)

— Then reset the values of any new instance variables whose
types are mutable class types

— This is done by making copies of the instance variables by
invoking their clone methods

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-33

The Cloneabl e Interface

* Note that this will work properly only if
the Cloneabl e interface is
implemented properly for the classes to
which the instance variables belong

— And for the classes to which any of the
instance variables of the above classes
belong, and so on and so forth

e The following shows an example

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-34

Implementation of the Method clone: Harder
Case

Display 13.8 pl ion of the hod clone (Harder Case)

1 public class YourCloneableClass? implements Cloneable
=
privote DotaClass someVarioble;
DataClass

e like String.

public Object clone()

8 {

g try
16 {
11 YourCloneableClass2 copy =
12 (YourCloneableClass2)super.clone();
13 copy.someVarioble = (DatoClass)someVariable.clone();
14 return copy;
1 ¥
16 catch(CloneNotSupportedException e)
17 {//This should not happen.
18 return null; o keep the compiler happy.
19 }
26 ¥ f o ne method ret pe is DataClass rather
21 . than Object, then this t £ is not ne
bl he class DataClass I

g the clone

the Cloneable

Copyright © 2012 Pearson Addison-Wesley. Al rights reserved 13-35

Simple Uses of Inner Classes

* |nner classes are classes defined within other
classes

— The class that includes the inner class is called the
outer class

— There is no particular location where the
definition of the inner class (or classes) must be
place within the outer class

— Placing it first or last, however, will guarantee that
it is easy to find

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-36

Simple Uses of Inner Classes

* Aninner class definition is a member of the outer
class in the same way that the instance variables and
methods of the outer class are members

— An inner class is local to the outer class definition

— The name of an inner class may be reused for something
else outside the outer class definition

— If the inner class is private, then the inner class cannot be
accessed by name outside the definition of the outer class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-37

Simple Uses of Inner Classes

* There are two main advantages to inner classes

— They can make the outer class more self-contained
since they are defined inside a class

— Both of their methods have access to each other's
private methods and instance variables

e Using aninner class as a helping class is one of
the most useful applications of inner classes

— If used as a helping class, an inner class should be
marked private

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-38

Tip: Inner and Outer Classes Have Access to
Each Other's Private Members

* Within the definition of a method of an inner class:
— ltis legal to reference a private instance variable of the outer class
— Itis legal to invoke a private method of the outer class

* Within the definition of a method of the outer class

— Itis legal to reference a private instance variable of the inner class on
an object of the inner class

— ltis legal to invoke a (nonstatic) method of the inner class as long as
an object of the inner class is used as a calling object

e Within the definition of the inner or outer classes, the
modifiers public and private are equivalent

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-39

Class with an Inner Class

Display 13.9 Class with an Inner Class (Part 1 of 2)

1 public class BankAccount

2 q

3 private class Money.—— The modifier private in this line should

4 { n hanged to public.

3 private long dollars; «—————— | . the modifiers public and

6 private int cents; private inside th class Money
can be chan se and it

7 public Money(String stringAmount) yid have no ¢

8§ { BankAccount.

9 abortOnNull(stringAmount);

10 int length = stringAmount.length();

11 dollars = Long.parselLong(

12 stringAmount.substring(®, length - 3));

13 cents = Integer.parseInt(

14 stringAmount.substring(length - 2, length));

15 }

16 public String getAmount()

17 {

18 if (cents > 9)

19 return (dollars + "." + cents);

20 else

21 return (dollars + ".0" + cents);

22 }

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-40

LEEETE

|

Class with an Inner Class

Display 13.9 Class with an Inner Class (Part10f 2) (continued)

23 public void addIn(Money secondAmount)

24 {

25 abortOnNull(secondAmount) ;

26 int newCents = (cents + secondAmount.cents)%100;
27 long carry = (cents + secondAmount.cents)/100;

28 cents = newCents;

29 dollars = dollars + secondAmount.dollars + carry;
30 }

31 private void abortOnNull(Object o)

32 {

33 if (o == null)

34 {

35 System.out.println("Unexpected null argument.");
36 System.exit(0);

37 }

The definition of the inner class ends he

i ‘}/ ;
39 1 the outer class continues in

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-41

|

Class with an Inner Class

Display 13.9 Class with an Inner Class (Part 2 of 2)

40 private Money balance; To invoke a nonstatic f the inner class
outside of the inner cle i need to create an

41 public BankAccount() object of the inner class

42 {

43 balance = new Money("§.00");

44 }

45 public String getBg¥ance() This invocation of the inner class method

45 { getAmount () would be allc

a7 return balance.getAmount(); -+—""" the method getAmount () w

48 } as private

49 public void makeDeposit(String depositAmount)

50 {

51 balance.addIn(new Money(depositAmount));

52 }

53 public void closeAccount() Notice that the outer class has access to the

o ¢ / private instance variables of the inner class.
55

balance.dollars = 0;

56 balance.cents = 0;
57 }
58 1}
This class would normally have more methods, but we have only
included the methods we need to illustrate the points covered here.
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-42

I BLH I

|

The .class File for an Inner Class

» Compiling any class in Java produces a .class file

named ClassName .class

* Compiling a class with one (or more) inner classes

causes both (or more) classes to be compiled, and
produces two (or more) .class files

— Such asClassName.class and
ClassName$lInnerClassName.class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-43

Static Inner Classes

* A normalinner class has a connection between its
objects and the outer class object that created the
inner class object

— This allows an inner class definition to reference an
instance variable, or invoke a method of the outer class

e There are certain situations, however, when an inner
class must be static

— If an object of the inner class is created within a static
method of the outer class

— If the inner class must have static members

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-44

Static Inner Classes

Since a static inner class has no connection to an
object of the outer class, within an inner class
method

— Instance variables of the outer class cannot be referenced
— Nonstatic methods of the outer class cannot be invoked
To invoke a static method or to name a static variable
of a static inner class within the outer class, preface
each with the name of the inner class and a dot

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-45

Public Inner Classes

 Ifaninner class is marked publ ic, then it can
be used outside of the outer class

* In the case of a nonstatic inner class, it must be
created using an object of the outer class
BankAccount account = new BankAccount();
BankAccount.Money amount =
account.new Money("'41.99");
— Note that the prefix account. must come before
new

— The new object amount can now invoke methods
from the inner class, but only from the inner class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-46

Public Inner Classes

* |In the case of a static inner class, the
procedure is similar to, but simpler than,
that for nonstatic inner classes

OuterClass.InnerClass innerObject =
new OuterClass.InnerClass();

— Note that all of the following are acceptable
innerObject._nonstaticMethod();
innerObject.staticMethod();

OuterClass. InnerClass.staticMethod();

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-47

Tip: Referring to a Method of the Outer Class

If a method is invoked in an inner class

— If the inner class has no such method, then it is assumed to
be an invocation of the method of that name in the outer
class

— If both the inner and outer class have a method with the
same name, then it is assumed to be an invocation of the
method in the inner class

— If both the inner and outer class have a method with the
same name, and the intent is to invoke the method in the
outer class, then the following invocation must be used:

OuterClassName.this.methodName()

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-48

Nesting Inner Classes

* |tis legal to nest inner classes within inner classes
— The rules are the same as before, but the names get longer
— Given class A, which has public inner class B, which has
public inner class C, then the following is valid:
A aObject = new AQ;
A_.B bObject = aObject.new B();
A_.B.C cObject = bObject.new CQ);

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-49

Inner Classes and Inheritance

Given an OuterClass that has an InnerClass

— Any DerivedClass of OuterClass will automatically
have InnerClass as an inner class

— In this case, the DerivedClass cannot override the
InnerClass

¢ An outer class can be a derived class
e Aninner class can be a derived class also

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-50

Anonymous Classes

* If an object is to be created, but there is no need to name the
object's class, then an anonymous class definition can be used
— The class definition is embedded inside the expression with the new
operator
* Anonymous classes are sometimes used when they are to be
assigned to a variable of another type

— The other type must be such that an object of the anonymous class is
also an object of the other type

— The other type is usually a Java interface

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-51

Anonymous Classes

Display 13.11 Anonymous Classes (Part 1 of z)

This is just a toy example to demonstrate

1 public class AnonymousClassDemo the Java syniax for anonymous classes.
2 {
3 public static void main(String[] args)
4 {
5 NumberCarrier anObject =
6 new NumberCarrier()
7 {
8 private int number;
9 public void setNumber(int value)
10 {
11 number = value;
12 1
13 public int getNumber()
14 {
15 return number;
16 3
17 I
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 13-52

| IO

Anonymous Classes

Display 13.11 Anonymous Classes (Part 1 of 2}

18
19

41

1

NumberCarrier anotherObject =
new NumberCarrier()

{
private int number;
public void setNumber(int value)
{
number = 2%value;
}
public int getNumber ()
{
return number;
3
Y

anObject.setNumber(42);
anotherObject.setNumber(42);
showNumber (anObject) ;

showNumber (anotherObject);
System.out.println("End of program.");

public static void showNumber(NumberCarrier o)

{

}

System.out.println(o.getNumber());

This is still the file
AnonymousClassDemo. java.

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 13-53

ITrrrrrrrrrerTT

Anonymous Classes

Display 13.11 Anonymous Classes (Part z of 2)

SAMPLE DIALOGUE

42
84
End of program.

1 public interface NumberCarrier This is the file

2 { NumberCarrier. java.
3 public void setNumber(int value);

4 public int getNumber();

5 1

Copyright © 2012 Pearson Addison-Wesley. All rights reserved.

13-54

