LN AT

s o -

Chapter 12

FIFTH EDITION

UML and Patterns

ABSOLUTE JAVA

WALTER SAVITCH

Slides prepared by Rose Williams,
Binghamton University

Kenrick Mock, University of Alaska
Anchorage

PEARSON

ALWAYS LEARNING

ITrrrrrrrrrerTT

Introduction to UML and Patterns

e UML and patterns are two software design tools that
can be used within the context of any OOP language

e UML s a graphical language used for designing and
documenting OOP software

e A pattern in programming is a kind of template or
outline of a software task

— A pattern can be realized as different code in different, but
similar, applications

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 12-2

| BT

UML

* Pseudocode is a way of representing a program in a
linear and algebraic manner
— It simplifies design by eliminating the details of

programming language syntax

e Graphical representation systems for program design
have also been used
— Flowcharts and structure diagrams for example

* Unified Modeling Language (UML) is yet another
graphical representation formalism

— UML is designed to reflect and be used with the OOP
philosophy

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 12-3

ITrrrrrrrrrrrrd

History of UML

* As OOP has developed, different groups have developed
graphical or other representations for OOP design

¢ In 1996, Brady Booch, Ivar Jacobson, and James Rumbaugh
released an early version of UML

— Its purpose was to produce a standardized graphical representation
language for object-oriented design and documentation

¢ Since then, UML has been developed and revised in response
to feedback from the OOP community

— Today, the UML standard is maintained and certified by the Object
Management Group (OMG)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 12-4

UML Class Diagrams

* Classes are central to OOP, and the class diagram is
the easiest of the UML graphical representations to
understand and use

e Aclass diagram is divided up into three sections

— The top section contains the class name

— The middle section contains the data specification for the
class

— The bottom section contains the actions or methods of the
class

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-5

UML Class Diagrams

* The data specification for each piece of datain a
UML diagram consists of its name, followed by a
colon, followed by its type

* Each name is preceded by a character that specifies
its access type:

— A minus sign (-) indicates private access
— A plus sign (+) indicates public access

— Assharp (#) indicates protected access
— Atilde () indicates package access

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

12-6

UML Class Diagrams

e Each method in a UML diagram is indicated by
the name of the method, followed by its
parenthesized parameter list, a colon, and its
return type

* The access type of each method is indicated in
the same way as for data

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-7

UML Class Diagrams

e Aclass diagram need not give a complete
description of the class

— If a given analysis does not require that all the
class members be represented, then those
members are not listed in the class diagram

— Missing members are indicated with an ellipsis
(three dots)

Copyright © 2012 Pearson Addison-Wesley. All rights reserved

| BT

A UML Class Diagram

Display 12.1 A UML Class Diagram

- side: double
- xCoordinate: double
- yCoordinate: double

+ resize(double newSide): void
+ move(double newX, double newY): void
erase(): void

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 12-9

ITrrrrrrrrrerTT

Class Interactions

Rather than show just the interface of a class, class diagrams
are primarily designed to show the interactions among classes

UML has various ways to indicate the information flow from
one class object to another using different sorts of annotated
arrows

UML has annotations for class groupings into packages, for
inheritance, and for other interactions

In addition to these established annotations, UML is
extensible

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 12-10

| BT

Inheritance Diagrams

* An inheritance diagram shows the relationship
between a base class and its derived class(es)

— Normally, only as much of the class diagram is shown as is
needed

— Note that each derived class may serve as the base class of
its derived class(es)

e Each base class is drawn above its derived class(es)

— An upward pointing arrow is drawn between them to
indicate the inheritance relationship

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 12-11

ITrrrrrrrrrrrrd

A Class Hierarchy in UML Notation

Display 12.2 A Class Hierarchy in UML Notation

rd

=l

b4
d
Y,

7 \\ tolts
/ .
N
/r.'.-'-" "3}\
o'/ \\\
\

S
Vi

/
T S
N

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 12-12

DD

1

Inheritance Diagrams

* The arrows also help in locating method definitions

¢ To look for a method definition for a class:
— Examine the class definition first

— If the method is not found, the path of connecting arrows will show
the order and direction in which to search

— Examine the parent class indicated by the connecting arrow

— If the method is still not found, then examine this parent's parent class
indicated by the connecting arrow

— Continue until the method is found, or until the top base class is
reached

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 12-13

EEREREREREEEEE

Some Details of a UML Class Hierarchy

Display 12.3 Some Details of a UML Class Hierarchy

— name: String

+ setName (String newName) : void

+ getName () : String

+ toString(): String

+ sameName (Person otherPerson)): boolean

T
==]

— studentNumber: int

+ set (String newName,
int newStudentNumber) : wvoid
+ getStudentNumber (): int
+ setStudentNumber (
int newStudentNumber) : wvoid
+ toString(): String
+ equals (Object otherObject): boolean

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 12-14

(BRI AR

Patterns

* Patterns are design outlines that apply across
a variety of software applications

— To be useful, a pattern must apply across a variety
of situations

— To be substantive, a pattern must make some
assumptions about the domain of applications to
which it applies

Copyright © 2012 Pearson Addison-Wesley. All rights reserved. 12-15

ITTITTrrrrrrrer:

Container-lterator Pattern

A container is a class or other construct whose objects hold
multiple pieces of data

— An array is a container

— Vectors and linked lists are containers

— A String value can be viewed as a container that contains the

characters in the string

Any construct that can be used to cycle through all the items
in a container is an jterator

— An array index is an iterator for an array
The Container-Iterator pattern describes how an iterator is
used on a container

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-16

Adaptor Pattern

* The Adaptor pattern transforms one class into
a different class without changing the
underlying class, but by merely adding a new
interface
— For example, one way to create a stack data

structure is to start with an array, then add the
stack interface

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-17

The Model-View-Controller Pattern

* The Model-View-Controller pattern is a way of
separating the 1/0 task of an application from the
rest of the application

— The Model part of the pattern performs the heart of the
application

— The View part displays (outputs) a picture of the Model's
state

— The Controller is the input part: It relays commands from
the user to the Model

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-18

The Model-View-Controller Pattern

* Each of the three interacting parts is normally
realized as an object with responsibilities for
its own tasks

e The Model-View-Controller pattern is an
example of a divide-and-conquer strategy

— One big task is divided into three smaller tasks
with well-defined responsibilities

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-19

The Model-View-Controller Pattern

* As an example, the Model might be a container class,
such as an array.

* The View might display one element of the array

* The Controller would give commands to display the
element at a specified index

e The Model would notify the View to display a new
element whenever the array contents changed or a
different index location was given

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-20

The Model-View-Controller Pattern

* Any application can be made to fit the Model-
View-Controller pattern, but it is particularly
well suited to GUI (Graphical User Interface)
design projects
— The View can then be a visualization of the state

of the Model

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-21

Model-View-Controller Pattern

datal
data2

Notify -' actionl() ST— Manipulate

_ — ipul
L action2 ()

update ()

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-22

A Sorting Pattern

e The most efficient sorting algorithms all seem to
follow a divide-and-conquer strategy

* Given an array a, and using the < operator, these
sorting algorithms:

— Divide the list of elements to be sorted into two smaller
lists (split)

— Recursively sort the two smaller lists (sort)

— Then recombine the two sorted lists (Jo1n) to obtain the
final sorted list

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-23

A Sorting Pattern

The method spl it rearranges the elements in the interval
a[begin] through a[end] and divides the rearranged
interval at splitPoint

The two smaller intervals are then sorted by a recursive call to
the method sort

After the two smaller intervals are sorted, the method join
combines them to obtain the final sorted version of the entire
larger interval

Note that the pattern does not say exactly how the methods
splitand join are defined

— Different definitions of spl it and join will yield different sorting
algorithms

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-24

Divide-and-Conquer Sorting Pattern

Display 12.5 Divide-and-Conquer Sorting Pattern

1
2 Precondition: Interval a[begin] through al[end] of a have elements.
3 Postcondition: The values in the interval have
4 been rearranged so that a[begin] <= al[begin+l] <= ... <= al[end].
5 ®/
6 public static veid sort(Type[] a, int begin, int end)
7 1 To get a correct Java method
8 if (Cend - begin) »= 1) definition Type must be replaced
9 { with a suitable type name.
10 int splitPoint = split(a, begin, end);
11 sort(a, begin, splitPoint); Different definitions for the methods
12 sort(a, splitPoint + 1, end); split and join will give different
13 join(a, begin, splitPoint, end); realizations of this pattern.
14 }//else sorting one (or fewer) elements so do nothing.
15 1}
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-25

Merge Sort

The simplest realization of this sorting pattern is the
merge sort
The definition of spl 1t is very simple

— It divides the array into two intervals without rearranging
the elements

The definition of Join is more complicated

Note: There is a trade-off between the complexity of
the methods splitand join

— Either one can be made simpler at the expense of making
the other more complicated

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-26

Merge Sort: the Join method

— The merging starts by comparing the smallest elements in
each smaller sorted interval

— The smaller of these two elements is the smallest of all the
elements in either subinterval

— The method Join makes use of a temporary array, and it
is to this array that the smaller element is moved

— The process is repeated with the remaining elements in
the two smaller sorted intervals to find the next smallest
element, and so forth

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-27

Merge Sort Code (1 of 3)

/**
Class that realizes the divide-and-conquer sorting pattern and
uses the merge sort algorithm.

*/
public class MergeSort
{

e

Precondition: Interval a[begin] through a[end] of a have elements.
Postcondition: The values in the interval have

been rearranged so that a[begin] <= a[begin+1l] <= ... <= a[end].
*
/
public static void sort(double[] a, int begin, int end)
{
if ((end - begin) >= 1)
int splitPoint = split(a, begin, end);
sort(a, begin, splitPoint);
sort(a, splitPoint + 1, end);
join(a, begin, splitPoint, end);
}//else sorting one (or fewer) elements so do nothing.
3
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-28

Merge Sort Code (2 of 3)

private static int split(double[] a, int begin, int end)

return ((begin + end)/2);
3

private static void join(double[] a, int begin, int splitPoint, int end)

{
double[] temp;
int intervalSize = (end - begin + 1);
temp = new double[intervalSize];
int nextLeft = begin; //index for first chunk
int nextRight = splitPoint + 1; //index for second chunk
int i = 0; //index for temp

//Merge till one side is exhausted:
while ((nextLeft <= splitPoint) && (nextRight <= end))

Merge Sort Code (3 of 3)

while (nextLeft <= splitPoint)//Copy rest of left chunk, if any.

temp[i] = a[nextLeft];
i++; nextLeft++;

}

while (nextRight <= end) //Copy rest of right chunk, if any.
temp[i] = a[nextRight];
i++; nextRight++;

}

for (i = 0; i < intervalSize; i++)
a[begin + i] = temp[i];

3
if (a[nextLeft] < a[nextRight]) h
temp[i] = a[nextLeft];
i++; nextLeft++;
b
else
temp[i] = a[nextRight];
i++; nextRight++;
3
Copyright ((J};OW Pearson Addison-Wesley. All rights reserved 12-29 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-30
* Inthe quick sort realization of the sorting pattern,
public class MergeSortDemo e el -
o the definition of spl 1t is quite sophisticated, while
public static void main(String[] args) - - . I . |
double[] b = {7.7, 5.5, 11, 3, 16, 4.4, 20, 14, 13, 42}; JOln Is utter y SImp e
Systen.out.printin("Array contents before sorting:"): — First, a value called the splitting value is chosen
for (i = 05 i < b.length: i+ * We do this arbitrarily but other methods to select this value may
System.out.print(b[i] + " '); be employed
System.out.printin(); .
— The elements in the array are rearranged:
MergeSort.sort(b, 0, b.length-1); .
System.out.printin(“Sorted array values:™); * All elements less than or equal to the splitting value are placed at
for (i = 0; i < b.length; i++)
Systen_out.print(b[i] + * *3; the front of the array
N System.out.printin(); All elements greater than the splitting value are placed at the back
} of the array
* The splitting value is placed in between the two
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-31 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-32

Quick Sort

Note that the smaller elements are not sorted, and
the larger elements are not sorted

However, all the elements before the splitting value are
smaller than any of the elements after the splitting value

The smaller elements are then sorted by a recursive
call, as are the larger elements

Then these two sorted segments are combined

The jJoin method actually does nothing

Quick Sort Code (1 of 3)

public class QuickSort

Vs

Precondition: Interval a[begin] through a[end] of a have elements.

Postcondition: The values in the interval have
been rearranged so that a[begin] <= a[begin+l] <= ... <= a[end].
*/
public static void sort(double[] a, int begin, int end)
{
if ((end - begin) >= 1)

int splitPoint = split(a, begin, end);
sort(a, begin, splitPoint);
sort(a, splitPoint + 1, end);
join(a, begin, splitPoint, end);
}//else sorting one (or fewer) elements so do nothing.

3

private static int split(double[] a, int begin, int end)
{

double[] temp;

int size = (end - begin + 1);

temp = new double[size];

double splitvalue = a[begin];
int up = 0;
int down = size - 1;

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-33 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-34
Quick Sort Code (2 of 3) Quick Sort Code (3 of 3)
//Note that a[begin] = splitvalue is skipped.
for (int i = begin + 1; i <= end; i++) private static void join(double[] a, int begin,
~ _ ~ int splitPoint, int end)
if (a[i] <= splitvalue)
{ ~ //Nothing to do.
temp[up] = a[il; H
Up++;
¥ 3
else
public class QuickSortDemo
temp[down] = a[i];
} down--; public static void main(String[] args)
{
h double[] b = {7.7, 5.5, 11, 3, 16, 4.4, 20, 14, 13, 42};
//0 <= up = down < size System.out.printin("Array contents before sorting:");
int i;
temp[up] = a[begin]; //Positions the split value, spliV. for (i = 0; i < b.length; i++)
_ ~ ~ System.out.print(b[i] + " ");
//temp[i] <= splitvalue for i < up System.out.printin();
// temp[up] = splitvalue
// temp[i] > splitvalue for i > up QuickSort.sort(b, 0, b.length-1);
~ ~ ~ ~ ~ System.out.printIn(“Sorted array values:");
for (int i =0; 1 <size; i++) for (i = 0; i < b.length; i++)
a[begin + i] = temp[i]; System.out.print(b[i] + " ™);
~ System.out.printin();
return (begin + up); 3
3
Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-35 Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-36

Restrictions on the Sorting Pattern

* Like all patterns, the sorting pattern has some restrictions on
where it applies
— It applies only to types for which the < operator is defined
— It applies only to sorting into increasing order
* The pattern can be made more general, however

— The < operator can be replaced with a boolean valued method
called compare

— The compare method would take two arguments of the base type of
the array, and return true or False based on the comparison
criteria

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-37

Efficiency of the Sorting Pattern

* The most efficient implementations of the sorting
pattern are those for which the spl 1t method
divides the array into two substantial size chunks
— The merge sort spl 1t divides the array into two roughly

equal parts, and is very efficient

— The quick sort spl 1t may or may not divide the array into
two roughly equal parts

¢ When it does not, its worst-case running time is not as fast as that
of merge sort

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-38

Efficiency of the Sorting Pattern

The selection sort algorithm (from Chapter 5)
divides the array into two pieces: one with a
single element, and one with the rest of the
array interval

— Because of this uneven division, selection sort has
a poor running time

— However, it is simple

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-39

Pragmatics and Patterns

e Patterns are guides, not requirements
— Itis not necessary to follow all the fine details

* For example, quick sort was described by following
the sorting pattern exactly

— Notice that, despite the fact that method calls incur
overhead, the quick sort Join method does nothing

— In practice calls to Join would be eliminated

— Other optimizations can also be done once the general
pattern of an algorithm is clear

Copyright © 2012 Pearson Addison-Wesley. All rights reserved 12-40

