922 M0520 Computtion Theory and Algorithms Fall 2004

National Taiwan University Department of CSIE

Homework 1

September 29, 2004

Due date: October 13, 2004

- 1. (10%) Find the error in the following proof that 2 = 1. Consider the equation a = b. Multiply both sides by a to obtain $a^2 = ab$. Subtract b^2 from both sides to get $a^2 - b^2 = ab - b^2$. Now factor each side, (a + b)(a - b) = b(a - b), and divide each side by (a - b), to get a + b = b. Finally, let a and b equal 1, which shows that 2 = 1.
- 2. (10%) Design a DFA recognizing the following language over $\Sigma = \{0, 1\}$, $A = \{w | w \text{ ends in } 00\}$. Show both the state diagram and the formal definition.
- 3. (10%) Design a DFA recognizing the following language over $\Sigma = \{0, 1, \dots, 9\}$, $B = \{w | w \text{ is a multiple of } 3$, when w is treated as a decimal number }. For example, 621 is in B (621%3 = 0) but not 761 (761%3 = 2). You can show your design in either the state diagram or the formal definition.
- 4. (10%) Prove that A B is a regular language if both A and B are regular languages.
- 5. (10%) Convert the NFA in Figure 1 to an equivalent DFA.

- 6. (10%) Convert the regular expression, (0+1)*000(0+1)*, to an equivalent NFA.
- 7. (10%) Convert the finite automata in Figure 2 to a regular expression.
- 8. (10%) Show that the language, $C = \{www | w \in \{a, b\}^*\}$, is not regular.
- 9. (10%) Show that the language, $D = \{0^m 1^n | m \neq n\}$, is not regular.
- 10. (10%) For any string $w = w_1 w_2 \cdots w_n$, the reverse of w, written w^R , is the string w in reverse order, $w = w_n \cdots w_2 w_1$. For any language A, let $A^R = \{w^R | w \in A\}$. Show that if A is regular, so is A^R .