CSIE 1000 Introduction to Computers Fall 2024

National Taiwan University Department of CSIE

Homework 1

October 15, 2024 Due date: October 29, 2024

- 1. (12%) What are the binary representations of the following hexadecimal numbers? What are the decimal numbers they represent when interpreted as 8-bit unsigned and signed integers (with 2's complement representations)?
 - a. 6A
 - b. D7
- 2. (8%) What are the 8-bit 2's complement representations of the following decimal numbers? Please give both their binary and hexadecimal representations.
 - a. 107
 - b. -99
- 3. (10%) Show that (A + B)(A + C) = A + BC using (a) the truth table and (b) Boolean algebra rules.
- 4. (10%) Show that NOR is universal.
- 5. (10%) (a) Find the minimal Boolean expression for the following truth table. (b) Draw a circuit for the simplified Boolean expression.

A B C D Y 0 0 0 0 0 X 0 0 0 1 X 0 0 1 0 X 0 0 1 1 0 X 0 1 0 0 0 0 1 1 0 1 X 0 1 1 0 0 0 1 1 1 X 1 0 0 0 1 X 1 0 1 0 X 1 0 1 1 X 1 0 0 0 1 X 1 0 1 0 X 1 0 1 1 1 X 1 0 0 0 1 0 X 1 0 1 1 1 1 X 1 0 0 0 1 0 X 1 0 1 1 1 1 1 1 1 0 0 0 1	
0 0 0 1 X 0 0 1 0 X 0 0 1 1 0 0 1 0 0 0 0 1 0 1 X 0 1 1 0 0 0 1 1 X 0 1 1 X	
0 0 1 0 X 0 0 1 1 0 0 1 0 0 0 0 1 0 1 X 0 1 1 0 0 0 1 1 1 X	
0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 X 0 1 1 0 0 0 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 1 0 1 X 0 1 1 0 0 0 1 1 1 X	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 1 1 1 X	
1 0 0 0 1	
1 0 0 1 0	
1 0 1 0 X	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 1 0 0 1	
$\begin{array}{ccc ccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 1 1 1 1	

- 6. (10%) A circuit has four inputs and two outputs, P and D. The input $X = X_3X_2X_1X_0$ represents an unsigned integer from 0 to 15. The output P should be 1 if the input is prime (note: 0 and 1 are not prime). Otherwise, P should be 0. The output P should be 1 if the number is divisible by 4 (0 is divisible by 5). Otherwise, P should be 0. Provide the truth tables for both P and P. What are their simplified Boolean expressions?
- 7. (10%) Design a 2-bit multiplier (MUL) circuit that accepts two 2-bit inputs, $X = X_1X_0$ and $Y = Y_1Y_0$, and outputs their 4-bit product $P = P_3P_2P_1P_0$, where $P = X \times Y$. Simply provide the simplified Boolean expressions for each bit of the output. It is not required to draw the circuit.
- 8. (20%) Design a 7-segment display driver which accepts a 4-bit input (ABCD where A is the MSB) and outputs 7 bits, which controls the on/off status of a 7-segment display, as shown in Figure 1. Assume that the input ABCD encodes a number ranging within [0..9]. (a) List the truth table for a,b,c,d,e,f,g in the driver. Use X to indicate "don't care". (b) Write down the Boolean expressions for all segments. You should simplify them if possible.

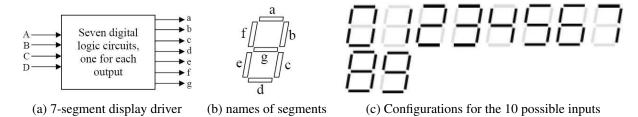


Figure 1: The 7-segment display driver.

9. (10%) In Hack ALU, the following configurations of inputs are used for x-y and x+1. Explain why they work.

$\mathbf{Z}\mathbf{X}$	nx	zy	ny	f	no	out
0	1	0	0	1	1	x-y
0	1	1	1	1	1	x + 1