
High-Level Language

Machine language (binary code)
Assembly language (low-level symbolic programming)
Simple procedural languages, e.g. , ,

,

Machine language (binary code)
Assembly language (low-level symbolic programming)
Simple procedural languages, e.g. , ,

,
Simple object-based languages (without inheritance),
e.g. early versions of ,
Fancy object-oriented languages (with inheritance):

,

Procedural programming (e.g. C, Fortran, Pascal)

Object-oriented programming (e.g. C++, Java, Python)

Functional programming (e.g. Lisp, ML, Haskell)

Logic programming (e.g. Prolog)

fun fac(x) =

if x=0 then 1

else x*fac(x-1);

fun length(L) =

if (L=nil) then 0

else 1+length(tl(L));

Facts

human(kate).

human(bill).

Human(John).

likes(bill,kate).

likes(kate,john).

likes(john,kate).

Rules

friend(X,Y) :- likes(X,Y),likes(Y,X).

Absolute value
abs(X, Y) :- X <0, Y is –X.
abs(X, X) :- X>=0.

?- abs(-9,8).
No

?- abs(-9,R).
R=9

Length of a list
my_length([], 0).
my_length([_|T],R) :- my_length(T, R1), R is R1+1.

?- my_length([a, b, [c, d], e], R).
R = 4

Jack: a simple, object-based, high-level language with a Java-like syntax

Some sample applications written in Jack:

procedural
programming

Pong game

Space Invaders

Tetris

Although Jack is a real programming language, we don’t
view it as an end.

Rather, we use Jack as a means for teaching:
How to build a compiler
How the compiler and the language interface with
the operating system
How the topmost piece in the software hierarchy
fits into the big picture

Jack can be learned (and un-learned) in one hour.

Start with examples

Hello World

Procedure and array

Abstract data types

Linked list

...

Formal Jack Spec.

More complex examples

Some observations:
Java-like syntax
Classes
Entry point: Main.main
Typical comments format
do for function calls

Class_name.method_name
Standard library a set of
services (methods and functions)
organized in 8 supplied classes:

, . , ,
, , ,

class Math {
function void init()
function int abs(int x)
function int multiply(int x, int y)
function int divide(int x, int y)
function int min(int x, int y)
function int max(int x, int y)
function int sqrt(int x)

}

Class String {
constructor String new(int maxLength)
method void dispose()
method int length()
method char charAt(int j)
method void setCharAt(int j, char c)
method String appendChar(char c)
method void eraseLastChar()
method int intValue()
method void setInt(int j)
function char backSpace()
function char doubleQuote()
function char newLine()

}

Class Array {
function Array new(int size)
method void dispose()

}

class Memory {
function int peek(int address)
function void poke(int address, int value)
function Array alloc(int size)
function void deAlloc(Array o)

}

class Output {
function void moveCursor(int i, int j)
function void printChar(char c)
function void printString(String s)
function void printInt(int i)
function void println()
function void backSpace()

}

Class Screen {
function void clearScreen()
function void setColor(boolean b)
function void drawPixel(int x, int y)
function void drawLine(int x1, int y1, int x2, int y2)
function void drawRectangle(int x1, int y1, int x2, int y2)
function void drawCircle(int x, int y, int r)

}

Class Keyboard {
function char keyPressed()
function char readChar()
function String readLine(String message)
function int readInt(String message)

}

Class Sys {
function void halt():
function void error(int errorCode)
function void wait(int duration)

}

Jack can be used to develop any app that comes to my mind, for example:

Array processing a program storing numbers in an array

Procedural programming: a program that computes 1 + 2 + ... + n

Object-oriented programming: a class representing bank accounts

Abstract data type representation: a class representing fractions (like 2/5)

Data structure representation: a class representing linked lists

We will now discuss the above examples

As we do so, we’ll begin to unravel how the magic of a high-level object-
based language is delivered by the compiler and by the VM

These insights will serve us in the next lectures, when we build the Jack
compiler.

var: variable declaration
type: int, Array
let: assignment
Array: provided by OS.
No type for an array.
Actually, it can contain
any type and even
different types in an
array.
Primitive types: int,
boolean, char.
All types in Jack occupy
one word. When declaring
a variable of primitive
types, the space is
reserved. For other
types, a reference is
reserved.

Jack program = a collection of
one or more classes

Jack class = a collection of one
or more subroutines

Execution order: when we
execute a Jack program,

starts running.

Jack subroutine:

(static method)
(the example on the left
has functions only, as it is
“object-less”)

The class (skeletal)

Explain
Calls the constructor (which creates a
new object)
Explain
The constructor returns the base
address of the memory block that
stores the data of the newly created

object

Explain
stores in variable a pointer to the
object’s base memory address

Behind the scene (following compilation):

Explanation: the calling code pushes an
argument and calls the constructor; the
constructor’s code (not shown above; the
compiler generates
for constructors) creates a new object,
pushes its base address onto the stack,
and returns;
The calling code then pops the base
address into a variable that will now
point to the new object.

Explain

In Jack, methods are invoked
using the keyword
(a compilation artifact)
The object-oriented method invocation
style is a fancy way to
express the procedural semantics

Behind the scene (following compilation):

Explain

Jack has no garbage
collection; The programmer
is responsible for explicitly
recycling memory resources
of objects that are no
longer needed. If you don’t
do so, you may run out of
memory.

Explain

This is a call to an OS
function that knows how to
recycle the memory block
whose base-address is .
We will write this function
when we develop the OS
(project 12).

The class API (method signatures)

Syntax

Program structure

Data types

Variable kinds

Expressions

Statements

Subroutine calling

(for complete language specification, see the book).

A jack program is a sequence of tokens separated by an arbitrary
amount of white space and comments.

Tokens can be symbols, reserved words, constants and identifiers.

A Jack program:

Each class is written in a separate
file (compilation unit)

Jack program = collection of one or
more classes, one of which must be
named

The class must contain at least
one method, named

About this spec:

Every part in this spec can appear 0
or more times

The order of the /
declarations is arbitrary

The order of the subroutine
declarations is arbitrary

Each is either , ,
, or a class name.

Primitive types (Part of the language; Realized by the compiler):

16-bit 2’s complement (from to)
and , standing for and

unicode character

Abstract data types (Standard language extensions; Realized by the OS
/ standard library):

(extensible)

Application-specific types (User-defined; Realized by user applications):

/ . . . (as needed)

Jack is weakly typed. The language does not define the results of
attempted assignment or conversion from one type to another, and
different compilers may allow or forbid it.

A Jack is any one of the following:
A constant
A variable name in scope (the variable may be static, field, local, or a
parameter)
The keyword , denoting the current object
An array element using the syntax ,
where is a variable name of type in scope
A subroutine call that returns a non-void type
An prefixed by one of the unary operators – or ~ :

(arithmetic negation)
(logical negation)

An expression of the form where is one of
the following:

/ (integer arithmetic operators)
(boolean and operators, bit-wise)
(comparison operators)
(an expression within parentheses)

General syntax:
where each argument is a valid Jack expression

Parameter passing is by-value (primitive types) or by-reference (object
types)

Example 1:
Consider the function (static method):
This function can be invoked as follows:

etc. In all these examples the argument value is computed and
passed by-value

Example 2:
Consider the method:
If and were variables of type , this method can be invoked

using:
The variable is passed by-reference, since it refers to an object.

The (cumbersome) keyword, as in
The (cumbersome) o keyword, as in
No operator priority: (language does not define, compiler-dependent)

yields , since expressions are evaluated left-to-right;
To effect the commonly expected result, use

Only three primitive data types: , ,
n fact, each one of them is treated as a 16-bit value

No casting; a value of any type can be assigned to a variable of any type
Array declaration: followed by
Static methods are called
Constructor methods are called ;
Invoking a constructor is done using the syntax

Q: Why did we introduce these features into the Jack language?
A: To make the writing of the Jack compiler easy!
Any of these language features can be modified, with a reasonable amount

of work, to make them conform to a more typical Java-like syntax.

’x’ x appears verbatim
x x is a language construct

x? x appears 0 or 1 times
x* x appears 0 or more times

x|y either x or y appears
(x,y) x appears, then y

’x’ x appears verbatim
x x is a language construct

x? x appears 0 or 1 times
x* x appears 0 or more times

x|y either x or y appears
(x,y) x appears, then y

’x’ x appears verbatim
x x is a language construct

x? x appears 0 or 1 times
x* x appears 0 or more times

x|y either x or y appears
(x,y) x appears, then y

’x’ x appears verbatim
x x is a language construct

x? x appears 0 or 1 times
x* x appears 0 or more times

x|y either x or y appears
(x,y) x appears, then y

Compilation:

A Jack application is a set of 1 or more class files (just like
files).

When we apply the Jack compiler to these files, the compiler
creates a set of 1 or more files (just like files). Each
method in the Jack app is translated into a VM function written in
the VM language

Thus, a VM file consists of one or more VM functions.

(Demo)

Use Square as an example.

Design a class: think of its

States: data members

Behaviors: function members

Square

x, y, size

MoveUp, MoveDown, IncSize, …

/** Initializes a new Square Dance game and starts running it. */
class Main {

function void main() {
var SquareGame game;
let game = SquareGame.new();
do game.run();
do game.dispose();
return;

}
}

class SquareGame {
field Square square; // the square of this game
field int direction; // the square's current direction:

// 0=none, 1=up, 2=down, 3=left, 4=right

/** Constructs a new Square Game. */
constructor SquareGame new() {

// Creates a 30 by 30 pixels square and positions it at the
top-left

// of the screen.
let square = Square.new(0, 0, 30);
let direction = 0; // initial state is no movement
return this;

}

/** Disposes this game. */
method void dispose() {

do square.dispose();
do Memory.deAlloc(this);
return;

}

/** Moves the square in the current direction. */
method void moveSquare() {

if (direction = 1) { do square.moveUp(); }
if (direction = 2) { do square.moveDown(); }
if (direction = 3) { do square.moveLeft(); }
if (direction = 4) { do square.moveRight(); }
do Sys.wait(5); // delays the next movement
return;

}

method void run() {
var char key; // the key currently pressed by the user
var boolean exit;
let exit = false;

while (~exit) {
// waits for a key to be pressed
while (key = 0) {

let key = Keyboard.keyPressed();
do moveSquare();

}
if (key = 81) { let exit = true; } // q key
if (key = 90) { do square.decSize(); } // z key
if (key = 88) { do square.incSize(); } // x key
if (key = 131) { let direction = 1; } // up arrow
if (key = 133) { let direction = 2; } // down arrow
if (key = 130) { let direction = 3; } // left arrow
if (key = 132) { let direction = 4; } // right arrow

// waits for the key to be released
while (~(key = 0)) {

let key = Keyboard.keyPressed();
do moveSquare();

}
} // while
return;

}
}

class Square {

field int x, y; // screen location of the square's top-left corner
field int size; // length of this square, in pixels

/** Constructs a new square with a given location and size. */
constructor Square new(int Ax, int Ay, int Asize) {

let x = Ax;
let y = Ay;
let size = Asize;
do draw();
return this;

}

/** Disposes this square. */
method void dispose() {

do Memory.deAlloc(this);
return;

}

/** Draws the square on the screen. */
method void draw() {

do Screen.setColor(true);
do Screen.drawRectangle(x, y, x + size, y + size);
return;

}

/** Erases the square from the screen. */
method void erase() {

do Screen.setColor(false);
do Screen.drawRectangle(x, y, x + size, y + size);
return;

}

/** Increments the square size by 2 pixels. */
method void incSize() {

if (((y + size) < 254) & ((x + size) < 510)) {
do erase();
let size = size + 2;
do draw();

}
return;

}

/** Decrements the square size by 2 pixels. */
method void decSize() {

if (size > 2) {
do erase();
let size = size - 2;
do draw();

}
return;

}

/** Moves the square up by 2 pixels. */
method void moveUp() {

if (y > 1) {
do Screen.setColor(false);
do Screen.drawRectangle(x, (y + size) - 1, x + size, y + size);
let y = y - 2;
do Screen.setColor(true);
do Screen.drawRectangle(x, y, x + size, y + 1);

}
return;

}

/** Moves the square down by 2 pixels. */
method void moveDown() {

if ((y + size) < 254) {
do Screen.setColor(false);
do Screen.drawRectangle(x, y, x + size, y + 1);
let y = y + 2;
do Screen.setColor(true);
do Screen.drawRectangle(x, (y + size) - 1, x + size, y + size);

}
return;

}

/** Moves the square left by 2 pixels. */
method void moveLeft() {

if (x > 1) {
do Screen.setColor(false);
do Screen.drawRectangle((x + size) - 1, y, x + size, y + size);
let x = x - 2;
do Screen.setColor(true);
do Screen.drawRectangle(x, y, x + 1, y + size);

}
return;

}

/** Moves the square right by 2 pixels. */
method void moveRight() {

if ((x + size) < 510) {
do Screen.setColor(false);
do Screen.drawRectangle(x, y, x + 1, y + size);
let x = x + 2;
do Screen.setColor(true);
do Screen.drawRectangle((x + size) - 1, y, x + size, y + size);

}
return;

}
}

Jack is an object-based language: no inheritance

Primitive type system (3 types)

Standard library

Our hidden agenda: gearing up to learn how to develop the ...

Compiler (projects 10 and 11)

OS (project 12).

Assembler for Hack/Toy

VM translator

Compiler for Jack

Finish OS implementation

Develop applications with Jack

Design your own computers

<Fill your ideas here>

