
2

Logic gates

Model: And, Or, Not, …
Simple, and powerful:
Logic gates can realize any Boolean function, and can be combined to

form powerful chips, like an ALU
But, as a general model of computation, logic gates fall short

Limitations
Logic gates cannot store information (bits) over time
Feedback loops are not allowed: A chip’s output cannot serve as its

input
Logic gates can handle only inputs of a fixed size.

For example, we can build an Or3 gate, and an Or4 gate, and so on,
but we cannot build a single gate that computes Or for any given
number of inputs

Extension
Allow logic gates to be sensitive to the progression of time.

3

Time-independent Logic

So far we ignored time
The chip’s inputs were just “sitting there” – fixed and unchanging

The chip’s output was a function (“combination”) of the current
inputs, and the current inputs only

This style of gate logic is sometimes called:

time-independent logic
combinational logic

All the chips that we discussed
and developed so far were combinational

4

Combinational vs. Sequential Circuits
Combinational circuits.

Output determined solely by inputs.
Can draw with no loops.
Ex: majority, adder, ALU.

Sequential circuits.
Output determined by inputs and
previous outputs.
Ex: memory, program counter,
CPU.

5

Combinational vs. Sequential Circuits
Combinational circuits.

Basic abstraction = switch.
In principle, can build TOY computer with a
combinational circuit.

– 255 × 16 = 4,080 inputs ⇒ 24080 rows in truth table!
– no simple pattern
– each circuit element used at most once

Sequential circuits. Reuse circuit elements
by storing bits in "memory."

ALU
combinational

Memory
state

6

Time

Software needs:

The hardware must handle
the physical time delays
associated with computing
and moving data from one
chip to another.

Hardware needs:

The hardware must be able to
remember things, over time:

The hardware must be able to
do things, one at a time
(sequentially):

7

Representing time

8

Representing time

9

Chip behavior over time (example: Not gate)

10

Chip behavior over time (example: Not gate)

(example)
(())

(arbitrary
values)

11

Chip behavior over time (example: Not gate)

(arbitrary
values)

(example)
(())))

12

Chip behavior over time (example: Not gate)

(example)
(())

(arbitrary
values)

))

13

Chip behavior over time (example: Not gate)

(example)
(())

(arbitrary
values)

Chip behavior over time (example: Not gate)

Resulting effect:
Combinational chips react “immediately” to their inputs
Facilitated by the decision to track changes only at cycle ends

(())
(example)

(arbitrary
values)

15

Clock
Clock.

Fundamental abstraction: regular on-off pulse.
– on: fetch phase
– off: execute phase

External analog device.
Synchronizes operations of different circuit
elements.
Requirement: clock cycle longer than max
switching time.

cycle time

Clock

on

off

16

How much does it Hert?
Frequency is inverse of cycle time.

Frequency of 1 Hz (Hertz) means that there is 1
cycle per second.

– 1 kilohertz (kHz) means 1000 cycles/sec.
– 1 megahertz (MHz) means 1 million cycles/sec.
– 1 gigahertz (GHz) means 1 billion cycles/sec.
– 1 terahertz (THz) means 1 trillion cycles/sec.

Heinrich Rudolf Hertz
(1857-1894)

Physical clock
An oscillator is used to deliver an ongoing train of
“tick/tock” signals

“1 MHz electronic oscillator circuit which
uses the resonant properties of an
internal quartz crystal to control the
frequency. Provides the clock signal for
digital devices such as computers.”
(Wikipedia)

17

Flip-Flop
Flip-flop

A small and useful sequential circuit
Abstraction that remembers one bit
Basis of important computer components for

– register
– memory
– counter

There are several flavors

18

S-R flip flop

Q=S+RQ

R S Q
0 0
0 1
1 0
1 1

19

S-R flip flop

Q=S+RQ

R S Q
0 0
0 1
1 0
1 1

20

Relay-based flip-flop
Ex. Simplest feedback loop.

Two relays A and B, both connected
to power, each blocked by the other.
State determined by whichever switches first. The
state is latched.
Stable.

input1

output1

input2

output2

21

SR Flip Flop
SR flip flop. Two cross-coupled NOR gates.

Q=R(S+Q)

R S Q
0 0
0 1
1 0
1 1

R S

Q

22

Flip-Flop
Flip-flop.

A way to control the feedback loop.
Abstraction that "remembers" one bit.
Basic building block for memory and registers.

Caveat. Need to deal with switching delay.

23

Truth Table and Timing Diagram

Truth table.
Values vary over time.
S(t), R(t), Q(t) denote value at time t.

Sample timing diagram for SR flip-flop.

Q(t+ε)
SR Flip Flop Truth Table

S(t)

00

10

00

00

R(t)

0

0

1

1

Q(t)

0

1

0

1

11

11

1

1

0

0

1

1

0

1

0

1

Q

R

S
time

1
0
1
0
1
0

ε ε

24

Clock
Clock.

Fundamental abstraction: regular on-off pulse.
– on: fetch phase
– off: execute phase

External analog device.
Synchronizes operations of different circuit
elements.
Requirement: clock cycle longer than max
switching time.

cycle time

Clock

on

off

25

Clocked S-R flip-flop

26

Clocked D flip-flop

27

Stand-Alone Register

28

Register file interface

29

Register file implementation

30

Multiplexer
When s=0, return x; otherwise,
return y.
Example: (Y ∧ S) ∨ (X ∧ ¬S)

mux
X

Y

S

Z

31

4-to-1 multiplexer

32

4-to-1 multiplexer

33

8-to-1 Multiplexer
2N-to-1 multiplexer

N select inputs, 2N data
inputs, 1 output
Copies “selected” data input
bit to output

34

8-to-1 Multiplexer
2N-to-1 multiplexer

N select inputs, 2N data
inputs, 1 output
Copies “selected” data input
bit to output

35

4-Wide 2-to-1 Multiplexer
Goal: select from one of two 4-bit buses

36

4-Wide 2-to-1 Multiplexer
Goal: select from one of two 4-bit buses

Implemented by layering 4 2-to-1 multiplexer

37

k-Wide n-to-1 Multiplexer
Goal: select from one of n k-bit buses

Implemented by layering k n-to-1 multiplexer

38

Register file implementation

39

Memory Overview
Computers and TOY have several memory
components.

Program counter.
Registers.
Main memory.

Implementation. Use one flip-flop for each
bit of memory.

Access. Memory components have different
access mechanisms.

Organization. Need mechanism to manipulate
groups of related bits.

TOY has 16 bit words,
8 bit memory addresses, and
4 bit register names.

40

Register Bit
Register bit. Extend a flip-flop to allow easy
access to values.

41

Register Bit
Register bit. Extend a flip-flop to allow easy
access to values.

DWDW

D
W

42

Memory Bit: Interface
Memory bit. Extend a flip-flop to allow easy
access to values.

[TOY PC, IR] [TOY main memory] [TOY registers]

43

Memory Bit: Switch Level Implementation
Memory bit. Extend a flip-flop to allow easy
access to values.

[TOY PC, IR] [TOY main memory] [TOY registers]

44

Processor Register
Processor register.

Stores k bits.
Register contents always available on output bus.
If enable write is asserted, k input bits get copied
into register.

Ex 1. TOY program counter (PC) holds 8-bit address.
Ex 2. TOY instruction register (IR) holds 16-bit
current instruction.

45

Processor Register
Processor register.

Stores k bits.
Register contents always available on output bus.
If enable write is asserted, k input bits get copied
into register.

Ex 1. TOY program counter (PC) holds 8-bit address.
Ex 2. TOY instruction register (IR) holds 16-bit
current instruction.

46

Processor Register
Processor register.

Stores k bits.
Register contents always available on output bus.
If enable write is asserted, k input bits get copied
into register.

Ex 1. TOY program counter (PC) holds 8-bit address.
Ex 2. TOY instruction register (IR) holds 16-bit
current instruction.

47

Memory Bank
Memory bank.

Bank of n registers; each stores k bits.
Read and write information to one of n registers.
Address inputs specify which one.
Addressed bits always appear on output.
If write enabled, k input bits are copied into
addressed register.

Ex 1. TOY main memory.
256-by-16 memory bank.

Ex 2. TOY registers.
16-by-16 memory bank.
Two output buses.

mory...
bank.

y

s.
ank.

(four 6-bit words)

log2n address bits needed

2-bit address

6-bit input bus

6-bit output bus

48

Memory: Interface

(four 6-bit words)

49

Memory: Component Level Implementation

50

Memory: Switch Level Implementation

(four 6-bit words)

51

TOY sequential circuits
Sequential circuits add "state" to digital
hardware.

Flip-flop. [represents 1 bit]
TOY word. [16 flip-flops]
TOY registers. [16 words]
TOY main memory. [256 words]

Modern technologies for registers and main
memory are different.

Few registers, easily accessible, high cost per bit.
Huge main memories, less accessible, low cost per
bit.
Drastic evolution of technology over time.

Next. Build a complete TOY computer.

Project 3

nand2tetris / projects
/ 03

Project 3 Registers

Designed to:
“Store” / “remember” / “maintain” / “persist” a value , until...
“Instructed” to “load”, and then “store”, another value.

Memory hierarchy DFF

examples
of arbitrary

inputs

DFF

examples
of arbitrary

inputs

DFF

examples
of arbitrary

inputs

DFF

examples
of arbitrary

inputs

1-bit register

16-bit register Counter

Later in the course, we will see that the computer must keep track of
which instruction should be fetched and executed next

This task is regulated by a register typically called
We’ll use the to store the address of the instruction that should be

fetched and executed next
The should support three abstractions:

Reset: fetch the first instruction

Next: fetch the next instruction

Goto: fetch instruction n

n

Counter Counter

16-bit counter Project 3

8-register RAM: abstraction 8-register RAM: implementation

Project 3 N-Register RAM

N-Register RAM

