
Sequential Logic

Introduction to Computer
Yung-Yu Chuang

with slides by Sedgewick & Wayne (introcs.cs.princeton.edu), Nisan & Schocken
(www.nand2tetris.org) and Harris & Harris (DDCA)

http://www.nand2tetris.org/
http://www.nand2tetris.org/

2

Logic gates

Model: And, Or, Not, …
Simple, and powerful:
Logic gates can realize any Boolean function, and can be combined to

form powerful chips, like an ALU
But, as a general model of computation, logic gates fall short

Limitations
Logic gates cannot store information (bits) over time
Feedback loops are not allowed: A chip’s output cannot serve as its

input
Logic gates can handle only inputs of a fixed size.

For example, we can build an Or3 gate, and an Or4 gate, and so on,
but we cannot build a single gate that computes Or for any given
number of inputs

Extension
Allow logic gates to be sensitive to the progression of time.

3

Time-independent Logic

So far we ignored time
The chip’s inputs were just “sitting there” – fixed and unchanging

The chip’s output was a function (“combination”) of the current
inputs, and the current inputs only

This style of gate logic is sometimes called:

l time-independent logic
l combinational logic

All the chips that we discussed
and developed so far were combinational

ALU

+
0101

1000

1101

4

Combinational vs. Sequential Circuits
Combinational circuits.

l Output determined solely by inputs.
l Can draw with no loops.
l Ex: majority, adder, ALU.

Sequential circuits.
l Output determined by inputs and

previous outputs.
l Ex: memory, program counter,

CPU.

5

Combinational vs. Sequential Circuits
Combinational circuits.

l Basic abstraction = switch.
l In principle, can build TOY computer with a

combinational circuit.
– 255 ´ 16 = 4,080 inputs Þ 24080 rows in truth table!
– no simple pattern
– each circuit element used at most once

Sequential circuits. Reuse circuit elements
by storing bits in "memory."

ALU
combinational

Memory
state

6

Time

Software needs:

x = 17

Example (variables):

for i in range(0, 10):
print(i)

Example (iteration):

• The hardware must handle
the physical time delays
associated with computing
and moving data from one
chip to another.

Hardware needs:

• The hardware must be able to
remember things, over time:

• The hardware must be able to
do things, one at a time
(sequentially):

7

Representing time

physical
time:

Arrow of time:
Continuous

8

Representing time

1

0
clock:

physical
time:

Arrow of time:
Continuous

9

Chip behavior over time (example: Not gate)

1

0
clock:

time: 1 2 3 4 5 . . .

physical
time:

Arrow of time:
Continuous

Discrete time:
Design decision:
Track state changes only
when advancing from
one time-step to another

10

Chip behavior over time (example: Not gate)

1

0
clock:

time: 1 2 3 4 5 . . .

physical
time:

(example)

in:
0

1

0

1out:
(Not(in))

Arrow of time:
Continuous

in:
(arbitrary
values)

Discrete time:
Design decision:
Track state changes only
when advancing from
one time-step to another

11

Chip behavior over time (example: Not gate)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

in:
(arbitrary
values)

(example)

out:
(Not(in))

Desired / idealized behavior of the in and out signals:
That’s how we want the hardware to behave

Discrete time:
Design decision:
Track state changes only
when advancing from
one time-step to another

12

Chip behavior over time (example: Not gate)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

(example)

Arrow of time:
Continuous

out:
(Not(in))

in:
(arbitrary
values)

Actual behavior of the in and out signals:
Influenced by physical time delays

Discrete time:
Design decision:
Track state changes only
when advancing from
one time-step to another

13

Chip behavior over time (example: Not gate)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

(example)

Time delays
• Propagation delays
• Computation delays

out:
(Not(in))

in:
(arbitrary
values)

Arrow of time:
Continuous

Discrete time:
Design decision:
Track state changes only
when advancing from
one time-step to another

Cycle length
• Design parameter
• Set to be slightly > max(time delays)

Chip behavior over time (example: Not gate)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

Resulting effect:
Combinational chips react “immediately” to their inputs
Facilitated by the decision to track changes only at cycle ends

out:
(Not(in))

(example)

in:
(arbitrary
values)

Arrow of time:
Continuous

Discrete time:
Design decision:
Track state changes only
when advancing from
one time-step to another

15

Clock
Clock.

l Fundamental abstraction: regular on-off pulse.
– on: fetch phase
– off: execute phase

l External analog device.
l Synchronizes operations of different circuit

elements.
l Requirement: clock cycle longer than max

switching time.
cycle time

Clock

on

off

16

How much does it Hert?
Frequency is inverse of cycle time.

l Frequency of 1 Hz (Hertz) means that there is 1
cycle per second.

– 1 kilohertz (kHz) means 1000 cycles/sec.
– 1 megahertz (MHz) means 1 million cycles/sec.
– 1 gigahertz (GHz) means 1 billion cycles/sec.
– 1 terahertz (THz) means 1 trillion cycles/sec.

Heinrich Rudolf Hertz
(1857-1894)

Physical clock
• An oscillator is used to deliver an ongoing train of

“tick/tock” signals
“1 MHz electronic oscillator circuit which
uses the resonant properties of an
internal quartz crystal to control the
frequency. Provides the clock signal for
digital devices such as computers.”
(Wikipedia)

17

Flip-Flop
Flip-flop

l A small and useful sequential circuit
l Abstraction that remembers one bit
l Basis of important computer components for

– register
– memory
– counter

l There are several flavors

18

S-R flip flop

Q=S+RQ

R S Q
0 0
0 1
1 0
1 1

19

S-R flip flop

Q=S+RQ

R S Q
0 0
0 1
1 0
1 1

20

Relay-based flip-flop
Ex. Simplest feedback loop.
l Two relays A and B, both connected

to power, each blocked by the other.
l State determined by whichever switches first. The

state is latched.
l Stable.

input1

output1

input2

output2

21

SR Flip Flop
SR flip flop. Two cross-coupled NOR gates.

Q=R(S+Q)

R S Q
0 0
0 1
1 0
1 1

R S

Q

22

Flip-Flop
Flip-flop.

l A way to control the feedback loop.
l Abstraction that "remembers" one bit.
l Basic building block for memory and registers.

Caveat. Need to deal with switching delay.

23

Truth Table and Timing Diagram

Truth table.
l Values vary over time.
l S(t), R(t), Q(t) denote value at time t.

Sample timing diagram for SR flip-flop.

Q(t+e)
SR Flip Flop Truth Table

S(t)

00

10

00

00

R(t)

0

0

1

1

Q(t)

0

1

0

1

11

11

1

1

0

0

1

1

0

1

0

1

Q

R

S
time

1
0
1
0
1
0

e e

24

Clock
Clock.

l Fundamental abstraction: regular on-off pulse.
– on: fetch phase
– off: execute phase

l External analog device.
l Synchronizes operations of different circuit

elements.
l Requirement: clock cycle longer than max

switching time.
cycle time

Clock

on

off

25

Clocked S-R flip-flop

26

Clocked D flip-flop

27

Stand-Alone Register

28

Register file interface

29

Register file implementation

30

Multiplexer
When s=0, return x; otherwise,
return y.
Example: (Y Ù S) Ú (X Ù ¬S)

mux
X

Y

S

Z

Two-input multiplexer

31

4-to-1 multiplexer

4MUX

x0
x1
x2
x3

z

s0 s1

32

4-to-1 multiplexer

4MUX

x0
x1
x2
x3

z

s0 s1

2MUX

2MUX

2MUX

x0
x1

x2
x3

z

s0 s1

33

8-to-1 Multiplexer
2N-to-1 multiplexer

l N select inputs, 2N data
inputs, 1 output

l Copies “selected” data input
bit to output

34

8-to-1 Multiplexer
2N-to-1 multiplexer

l N select inputs, 2N data
inputs, 1 output

l Copies “selected” data input
bit to output

35

4-Wide 2-to-1 Multiplexer
Goal: select from one of two 4-bit buses

36

4-Wide 2-to-1 Multiplexer
Goal: select from one of two 4-bit buses

l Implemented by layering 4 2-to-1 multiplexer

37

k-Wide n-to-1 Multiplexer
Goal: select from one of n k-bit buses

l Implemented by layering k n-to-1 multiplexer

38

Register file implementation

39

Memory Overview
Computers and TOY have several memory
components.

l Program counter.
l Registers.
l Main memory.

Implementation. Use one flip-flop for each
bit of memory.

Access. Memory components have different
access mechanisms.

Organization. Need mechanism to manipulate
groups of related bits.

TOY has 16 bit words,
8 bit memory addresses, and
4 bit register names.

40

Register Bit
Register bit. Extend a flip-flop to allow easy
access to values.

41

Register Bit
Register bit. Extend a flip-flop to allow easy
access to values.

DWDW

D
W

42

Memory Bit: Interface
Memory bit. Extend a flip-flop to allow easy
access to values.

[TOY PC, IR] [TOY main memory] [TOY registers]

43

Memory Bit: Switch Level Implementation
Memory bit. Extend a flip-flop to allow easy
access to values.

[TOY PC, IR] [TOY main memory] [TOY registers]

44

Processor Register
Processor register.

l Stores k bits.
l Register contents always available on output bus.
l If enable write is asserted, k input bits get copied

into register.

Ex 1. TOY program counter (PC) holds 8-bit address.
Ex 2. TOY instruction register (IR) holds 16-bit
current instruction.

45

Processor Register
Processor register.

l Stores k bits.
l Register contents always available on output bus.
l If enable write is asserted, k input bits get copied

into register.

Ex 1. TOY program counter (PC) holds 8-bit address.
Ex 2. TOY instruction register (IR) holds 16-bit
current instruction.

46

Processor Register
Processor register.

l Stores k bits.
l Register contents always available on output bus.
l If enable write is asserted, k input bits get copied

into register.

Ex 1. TOY program counter (PC) holds 8-bit address.
Ex 2. TOY instruction register (IR) holds 16-bit
current instruction.

47

Memory Bank
Memory bank.

l Bank of n registers; each stores k bits.
l Read and write information to one of n registers.
l Address inputs specify which one.
l Addressed bits always appear on output.
l If write enabled, k input bits are copied into

addressed register.

Ex 1. TOY main memory.
l 256-by-16 memory bank.

Ex 2. TOY registers.
l 16-by-16 memory bank.
l Two output buses.

(four 6-bit words)

log2n address bits needed

2-bit address

6-bit input bus

6-bit output bus

48

Memory: Interface

(four 6-bit words)

49

Memory: Component Level Implementation

50

Memory: Switch Level Implementation

(four 6-bit words)

51

TOY sequential circuits
Sequential circuits add "state" to digital
hardware.

l Flip-flop. [represents 1 bit]
l TOY word. [16 flip-flops]
l TOY registers. [16 words]
l TOY main memory. [256 words]

Modern technologies for registers and main
memory are different.

l Few registers, easily accessible, high cost per bit.
l Huge main memories, less accessible, low cost per

bit.
l Drastic evolution of technology over time.

Next. Build a complete TOY computer.

Project 3

52

www.nand2tetris.org

All the necessary project 3
files are available in:
nand2tetris / projects
/ 03

Project 3

53

Given:
• All the chips built in projects 1 and 2
• Data Flip-Flop (built-in DFF gate)

Build:
• Bit

• Register

• PC

• RAM8

• RAM64

• RAM512

• RAM4K

• RAM16K

Registers

54

Designed to:
“Store” / “remember” / “maintain” / “persist” a value , until...
“Instructed” to “load”, and then “store”, another value.

outin

load

Bit

1-bit register

Register
in

w

out

w

load

multi-bit register

x = 17, 17, 17, 17, 17, 17, 17, ..., 17

x = 21, 21, 21, 21, 21, 21, ..., 21

time:

loading maintaining state

loading maintaining state

Memory hierarchy

55

1-bit
register

Bit

Data
Flip-Flop

DFF

0

1

n-1

...

Register

Random Access Memory

RAMn

Register

Register

16-bit register

...

Register

BitBitBit?DFF

DFF

56

examples
of arbitrary

inputs

1 2 3 4 5 6 7 8time:

0

1

1

0
in:

out:

out(t) = in(t– 1)outin
DFF

Data Flip Flop (aka latch)

The most elementary sequential
gate: Outputs the input in the
previous time-step

DFF

57

1 2 3 4 5 6 7 8

0

1

1

0

time:

examples
of arbitrary

inputs

in:

out:

out(t) = in(t– 1)outin
DFF

Data Flip Flop (aka latch)

The most elementary sequential
gate: Outputs the input in the
previous time-step

DFF

58

1 2 3 4 5 6 7 8

0

1

1

0

time:

examples
of arbitrary

inputs

in:

out:

out(t) = in(t– 1)outin
DFF

Data Flip Flop (aka latch)

The most elementary sequential
gate: Outputs the input in the
previous time-step

DFF

59

1 2 3 4 5 6 7 8

0

1

1

0

time:

examples
of arbitrary

inputs

in:

out:

out(t) = in(t– 1)outin
DFF

Data Flip Flop (aka latch)

The most elementary sequential
gate: Outputs the input in the
previous time-step

1-bit register

60

outin

load

Bit

/** 1-bit register:
if load(t – 1) then out(t) = in(t – 1)
else out(t) = out(t – 1)) */

CHIP Bit {
IN in, load;
OUT out;

PARTS:
// Put your code here:

}

Bit.hdl

in

load

out

Implementation tip:
Follow the chip diagram

16-bit register

61

Register.hdl

Register
in

16

out

16

load /** 1-bit register:
if load(t – 1) then out(t) = in(t – 1)
else out(t) = out(t – 1)) */

CHIP Bit {
IN in[16], load;
OUT out[16];

PARTS:
// Put your code here:

}

16

out

load

16

in
...

Implementation tip:
Follow the chip diagram

Partial diagram, showing some of
the chip-parts, without connections

Counter

62

Later in the course, we will see that the computer must keep track of
which instruction should be fetched and executed next

This task is regulated by a register typically called Program Counter
We’ll use the PC to store the address of the instruction that should be

fetched and executed next
The PC should support three abstractions:

l Reset: fetch the first instruction

l Next: fetch the next instruction

l Goto: fetch instruction n

PC = 0

PC++

PC = n

Counter

63

if reset(t) out(t+ 1) = 0
else if load(t) out(t + 1) = in(t)
else if inc(t) out(t+ 1) = out(t) + 1

else out(t+ 1) = out(t)

PC (counter)
in

16

out

16

load inc reset

Counter

64

if reset(t) out(t+ 1) = 0
else if load(t) out(t + 1) = in(t)
else if inc(t) out(t+ 1) = out(t) + 1

else out(t+ 1) = out(t)

PC (counter)
in

16

out

16

load inc reset

To read:
probe out

To reset:
assert reset,
set the other control bits to 0

To count:
assert inc,
set the other control bits to 0

To set:
set in to v,
assert load,
set the other control bits to 0

Usage:

16-bit counter

65

Implementation tip: Can be built from a Register, an Incrementer, and Mux’s

/**
A 16-bit counter with control bits.
if reset(t – 1) out(t) = 0 // resetting
else if load(t – 1) out(t) = in(t – 1) // setting
else if inc(t – 1) out(t) = out(t – 1) + 1 // incrementing
else out(t) = out(t – 1) // maintaining

*/
CHIP PC {

IN in[16], load, inc, reset;
OUT out[16];

PARTS:
// Put your code here:

}

PC (counter)
in

16

out

16

load inc reset

Project 3

66

Given:
• All the chips built in projects 1 and 2
• Data Flip-Flop (built-in DFF gate)

Build the following chips
• Bit

• Register

• PC

• RAM8

• RAM64

• RAM512

• RAM4K

• RAM16K

8-register RAM: abstraction

67

/*
Let M stand for the state of the register
selected by address.
if load(t – 1) then {M = in(t), out(t) = M}
else out(t) = M

*/
CHIP RAM8 {

IN in[16], load, address[3];
OUT out[16];

PARTS:
// Put your code here:

}

RAM8.hdl

out

in

load

Register

...

RAMn

Register

Register

address

3

16

16

8-register RAM: implementation

68

DMux
(1 to 8)

Register
in

16

load

out

Register
in

load

out

Register
in

load

out

...

Mux
(8 to 1)

out

16

in

16

address

3

load

Partial diagram, showing some of the chip-parts, without connections

16

16

16

16

16

Implementation tip:
Follow the chip diagram

Project 3

69

Given:
• All the chips built in projects 1 and 2
• Data Flip-Flop (built-in DFF gate)

A family of RAM chips

Build the following chips
• Bit

• Register

• PC

• RAM8

• RAM64

• RAM512

• RAM4K

• RAM16K

N-Register RAM

70

out

in

load

16

Register

...

RAMn

Register

Register

address

k

16

/*
Let M stand for the state of the register
selected by address.
if load(t – 1) then {M = in(t), out(t) = M}
else out(t) = M

*/
CHIP RAMn {

IN in[16], load, address[k];
OUT out[16];

PARTS:
// Put your code here:

}

RAMn.hdl

N-Register RAM

71

chip name n k

RAM8 8 3

RAM64 64 6

RAM512 512 9

RAM4K 4096 12

RAM16K 16384 14

out

in

load

16

Register

...

RAMn

Register

Register

address

k

16

Implementation tips
• Think about the RAM’s address input

as consisting of two fields:
– One field selects a RAM-part;
– The other field selects a register

within that RAM-part
• Use logic gates to effect this

addressing scheme.

