Sequential Logic

Introduction to Computer
Yung-Yn Chuang

with slides by Sedgewick & Wayne (introcs.cs.princeton.edu), Nisan & Schocken
(www.nand?2tetris.org) and Harris & Harris (DDCA)

Review of Combinational Circuits

Combinational circuits.
. Basic abstraction = switch.
. In principle, can build TOY computer with a
combinational circuit.
- 2565 x 16 =4,080 inputs = 24080 rows in truth table!
- no simple pattern
- each circuit element used at most once

Sequential circuits. Reuse circuit elements
by storing bits in "memory."

ALV
combinational
Memory
state

Combinational vs. Sequential Circuits

Combinational circuits.

. Output determined solely by inputs.
. Can draw with no loops.

. Ex: majority, adder, ALU.

Sequential circuits.
. Output determined by inputs and
previous outputs.

. Ex: memory, program counter,
CPU.

—Q

A

Xn

X

Xy

X3

g

g

Flip-Flop
Flip-flo

A smarl) and useful sequential circuit

. Abstraction that remembers one bit

. Basis of important computer components for
- register
- memory
- counter

. There are several flavors

S-R flip flop Relay-based flip-flop
R S Q
SR Flip-Flop. 0 0 Ex. Simplest feedback loop.
. 5=1,R=0 (set) = Flips "bit" on. . Two relays A and B, both connected
. 5=0,R=1(reset) = Flops"bit" off. 0 L To power, each bIOCked by the OThe_r .
o . State determined by whichever switches first. The
. 5=R=0 = Status quo. 1 0 .
. S=R=1 = Not allowed. 1 1 SsnaTbel is latched. .
. Stable.
Q=5+RQ outputl ‘_I:\ 0 state
5 Bl Ly,
SR flip flop input2 — —input1 0
— S ®
A Q
R —Rr ® output2
G 1 state
) Interface
Implementation 1
SR Flip Flop Flip-Flop
SR flip flop. Two cross-coupled NOR gates. Flip-flop.
_ . A way to control the feedback loop.
write 0 write 1 Q=R(5+Q) . Abstraction that "remembers" one bit.
R N I/ S R 9 . Basic building block for memory and registers.
e S
Q,‘ writc;() l://ritel write 0 remember (0 write 1 remember 1 unused
® 1 | 1 0 0 0 1
Inn I It e Lt |ﬁ¢
read value ” Q Q o % AH ‘ ‘
0 1 1 0

== Ol O~
= O = O W

0
read value ”*

Caveat. Need to deal with switching delay.

Truth Table and Timing Diagram

SR Flip Flop Truth Table
Truth table.

. Values vary over time.
. 5(1), R(t), Q(t) denote value at time t.

1
0
0
1
1

= = = O O O O

_ = 0O O = = O
_~ O = O =~ O ~

0 0 0

1
Sample timing diagramgfor SR flip-flop.

A .
Q I
R] 1
s] I E— [R,

Clock
Clock.

. Fundamental abstraction: regular on-off pulse.

-on: fetch phase
-off: execute phase

. External analog device.

. Synchronizes operations of different circuit
elements.

. Requirement: clock cycle longer than max
switching time.

cycle time

O I I

Fetch
il

fral

on

of f

How much does it Hert?

Frequency is inverse of cycle time.
. Expressed in hertz.
. Frequency of 1 Hz means that there is 1 cycle per
second.
- 1 kilohertz (kHz) means 1000 cycles/sec.
- 1 megahertz (MHz) means 1 million cycles/sec.
- 1 gigahertz (6Hz) means 1 billion cycles/sec.
- 1 terahertz (THz) means 1 trillion cycles/sec.

Heinrich Rudolf Hertz
(1857-1894)

Clocked S-R flip-flop

Clocked SR Flip-Flop.
. Same as SR flip-flop except S and R only active when clock is 1.

SR flip flop Clocked
s S SR flip flop
—5
cl Qr— al Q
R @ e
R —R

Implementation Interface

Clocked D flip-flop

Clocked D Flip-Flop.
« Output follows D input while clock is 1.
« Output is remembered while clock is 0.

Clocked
SR flip flop Clocked
b s D flip flap
Q D Q—
Cl cl @ [
e — e
Implementation Interface

N I
a | N | l l]

I

o | L] |

v

v

Stand-Alone Register

k-bit register.
. Stores k bits.
. Register contents always available on output.
. If write enable is asserted, k input

bits get copied into register.
xg———0 Q@—vyo
cle
Ex: Program Counter, 16 TOY registers,
256 TOY memory locations.
Y X DCI @

16 | peg 16

+
+ read X15 Q—v15
write data cl

data pite
enable Write

16-bit Register Interface 16-bit Register Implementation

Register file interface

n x k register file.
. Bank of n registers; each stores k bits.
. Read and write information to one of n registers.
- log, n address inputs specifies which cne
. Addressed bits always appear on output.

. If write enable and clock are asserted, k input bits are copied info
addressed register.

Examples.
. TOY registers: n=16, k = 16. WJ;:‘; :!ii:
. TOY main memory: n= 256, k = 16. ” "
. Real computer: n = 256 million, k = 32. — Reg Z
-168 memory W ot
- 1 byte = 8 bits A
HEEL

256 x 16 Register File Interface

Register file implementation

Implementation example: TOY main memory.
. Use 256 16-bit registers.
- Multiplexer and decoder are combinational circuits.

reg 0 0
: —
16
1
8-b 16 read
-bit Mux !
Decoder ces F data
&
reg 255 255
A
255 III' I
select 8
16|
8
addr write W addr

data

When s=0, return x; otherwise,

refurny.

Multiplexer

Example: (Y A S) v (X A =S)

4-to-1 multiplexer

8-to-1 Mux Interface

Two-input multiplexer Input O
X | v Yas | s | xas (Y AS) v (X A7S) Xo—] Input 1 I
F I F T F F X1— AMUX . Input 2 T Output
F T F T F F Xo— Input 3 }
T I F T E 1)(3_
Selact 1
N R N B MUX
Select 0
F F F F I- F Sy S
I I g F F T
T F F F F F
T T & F F T
4-to-1 multiplexer 8-to-1 Multiplexer
2N-to-1 multiplexer
. N select inputs, 2N data
inputs, 1 output
y . Copies "selected” data input
X 0 T bit to output
Xli
X 4MUX — Z 4 OMUX | — Z Xg 000
27 i 001
X3— X X3 010
2 2MUX x| y
{ | X3 x——]100
Xg 101 N
So S xg mw %
x—111
So S1

8-to-1 Multiplexer

2N-to-1 multiplexer
. N select inputs, 2N da
inputs, 1 output X
. Copies "selected” datc
bit to output

X0

110
111

S; S Sy

8-t0-1 Mux Interface 8-t0-1 Mux Implementation

21

4-Wide 2-to-1 Multiplexer
Goal: select from one of two 4-bit buses

4-wide 4

2-to-1 z
4 | mux
y —7

Interface

4-Wide 2-to-1 Multiplexer

Goal: select from one of two 4-bit buses
. Implemented by layering 4 2-to-1 multiplexer

4 ol 2-to-1
X =7 o MUX Z
4-wide 4 zf
2-to-1 z %o
4 | Mux Ya
Y~ Ye

4 copies of

same bit

-

Interface

“—a

Implementation

k-Wide n-to-1 Multiplexer

Goal: select from one of n k-bit buses
. Implemented by layering k n-to-1 multiplexer

k-wide

]
n < . n-to-1 +

* | MUX

[]
X

. —— log,n

Interface

Register file implementation

Implementation example: TOY main memory.

Memory Overview
Computers and TOY have several memory

. Use 256 16-bit registers. Componenfs.
. Multiplexer and decoder are combinational circuits. . Pr‘ogram counter.
. Registers.
reg 0 H
) . o 0 . Main memory.
. 16 . .
E+ 1 Implementation. Use one flip-flop for each
1 — ” bit of memory.
8-bit Mux — read
Decoder data .
Access. Memory components have different
access mechanisms. \
reg 255 255 ;—%\{r has 16 bi‘rd\néor'ds, |
sc\cc‘r255 - * 8 O . . . 4 bit r'egisTeyr m-lmes, '
nl rganization. Need mechanism to manipulate
8 groups of related bits.
addr write Cl W addr
data
Register Bit Register Bit

Register bit. Extend a flip-flop to allow easy
access to values.

input
va?ue\ enable
1 / wr 'l. te
REG
BIT
|

output value
available

Register bit. Extend a flip-flop to allow easy
access to values.

input D
value \ enable
/ write

DW bt DW

| B

w

N\

output value
available

Memory Bit: Interface

Memory bit. Extend a flip-flop to allow easy
access to values.

gt TRt
aput value p—— value
mﬂm\ eruable ™ o write h /a-rﬂ'r::
_— TR Gl MEM or rect 1
BIT MEM sefect
BIT ;‘l‘m‘tl BIT for read
L /:_:;Grt 2
I\ T [o
outpop value f d_1
aveiTaile
BT N qutpat vatoe il i‘
mf]'l'd'le o w
IF seJect on
oot va e Rt value
avaiTabie __avaflable
MERDRY-SAMK BIT If selecr 1 on ¥F sefect 2 on
DUAL -FERT BEFERY-BAME BIT
[TOYPC,IR] [TOY main memory] [TOY registers]

Memory Bit: Switch Level Implementation

Memory bit. Extend a flip-flop to allow easy
access Yo values.

Tt Trgmt
TApUE value onabl valoe
tﬂ?ﬂ\ enabTe h Z llrft: - /cu‘:'-f*nr:
| T / HGEES nJ_J\ nJi\
I 1= - spfert 1
LT Iy Jmle /fnr reat
A !]
C | select 2
-‘:ﬁ o FEL| for resd
\umt vaTus xx
avai Table l" =
ey N utpur vaiae i it
lni"ldle N
IF select on
ozt valee Tttt valee
avaifable available
NERDRY-RAMNK BIT 1F select I on 7F sefect 2 on
AL -PORT RENDRY-BANK RTT
[TOYPC,IR] [TOY main memory] [TOY registers]

Processor Register

Processor register.

. Stores k bits.

. Register contents always available on output bus.

. If enable write is asserted, k input bits get copied
into register.

Ex 1. TOY program counter (PC) holds 8-bit address.
Ex 2. TOY instruction register (IR) holds 16-bit
current instruction.

REGISTER
= write

output bus —

31

Processor Register

Processor register.

. Stores k bits.

. Register contents always available on output bus.

. If enable write is asserted, k input bits get copied
info register.

Ex 1. TOY program counter (PC) holds 8-bit address.
Ex 2. TOY instruction register (IR) holds 16-bit
current instruction.

input bus —

f I T - enable
REG REG REG REG write
BIT BIT BIT BIT

output bus —

Processor Register

Processor register.

. Stores k bits.

. Register contents always available on output bus.

. If enable write is asserted, k input bits get copied
into register.

Ex 1. TOY program counter (PC) holds 8-bit address.
Ex 2. TOY instruction register (IR) holds 16-bit
current instruction.

enable
write

output bus —

33

Memory Bank

Memory bank.

. Bank of n registers; each stores k bits.

. Read and write information to one of n registers.

. Address inputs specify which one.— iognadress bits reeded

. Addressed bits always appear on output.

. If write enabled, k input bits are copied into
addressed register.

6-bit input bus

Ex 1. TOY maih memory '

. 256-by-16 memory bank.

Ex 2. TOY registers.
. 16-by-16 memory bank.
. Two output buses.

2-bit address |
R

--6-bit output bus

34

Memory: Interface

35

Memory: Component Level Implementation

TRpUE s
DFCWre }‘ —
I,Iih —woed
m =—nord 1
e I
Iﬁ -—word 2
“—mord 3
o e e e e
enshle wrize ———
%hm s

Memory: Switch Level Implementation

ol bus

Summary

Sequential circuits add "state" to digital
hardware.

S | e i . Flip-flop. [represents 1 bit]
ﬁ et | e | e | et | . TOY word. [16 flip-flops]
3 e e s e g . TOY registers. [16 words]
e e e e e . TOY main memory. [256 words]
@_ % % % % % Modern technologies for registers and main
@ J% 5% -'% % % . Few registers, easily accessible, high cost per bit.
TEEL] REL| EEL| RED| B . Huge main memories, less accessible, low cost per
|— | p— I__ I | S | — bi.',.
ﬁ ﬁ ﬁ ﬁ % ﬁ . Drastic evolution of technology over time.
FEL| RE| RE| BEF| B BT)
e Next. Build a complete TOY computer.
i +—ootput bas
The Clock Flip-flop
in —»f DFF —» out
tock tock tock tock A
out(t) = in(t-1)
clock = r v r A fundamental state-keeping device

signal
<+— cycle —»<«— cycle —»<4— cycle —»<«— cycle —»

= Inour jargon, a clock cycle = tick-phase (low), followed by a
fock-phase (high)

= Inreal hardware, the clock is implemented by an oscillator

= Inour hardware simulator, clock cycles can be simulated either

. Manudlly, by the user, or
. "Automatically,” by a test script.

For now, let us not worry about the DFF /imp/lementation
Memory devices are made from numerous flip-flops,
all regulated by the same master clock signal

Notational convention:

sequential - . sequential
chip —» out in —» chip L—» out

(notation)

clock
signal

1-bit register (we call it "Bit")

. . . . load
Objective: build a storage unit that can: or
@ Change its state to a given input
®» Maintain its state over time gmﬁl changed) in—» Bit —» out

if load(t-1) then out(t)=in(t-1)

else out(t)=out(t-1)

i out i

out(t) = in(t-1)
Basic building block
out(t) = out(t-1) ?
out(t) = in(t-1) ?

Won’t work

Bit register (cont.)

Interface Implementation
load
load
. i _in| out
in—» Bit |—» out DFF N
if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)
o Load bit

o Read logic

o Werite logic

Multi-bit register

load load
i i i | Bit||Bit| - - - |Bit |t
in—» Bit —» out in 7W4> #bout
if load(t-1) then out(t)=in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1) else out(t)=out(t-1)
1-bit register w-bit register

o Register's width: a trivial parameter

o Read logic
o Write logic

Aside: Hardware Simulation

Relevant topics from the HW simulator tutorial:
Clocked chips: When a clocked chip is loaded into the

simulator, the clock icon is enabled, allowing clock
control
Built-in chips:

. feature a standard HDL interface yet a Java
implementation

. Provide behavioral simulation services

. May feature GUT effects (at the simulator level

only).

Random Access Memory (RAM) RAM interface

load
register 0 load Chip name: RAEMn / n and k are listed below
e — ¢ Inputs: in[1&€], address([k], load
Outputs: out [16]
ister 2
in register out in Function: out (t)=RAM [address (t)] (L)
_— : —> If load(t-1) then
(word) N (word) RAEM [address (t-1)] (t)=in(t-1)
16 bits out Comment : “="is a 16-bit operatiocn.
A +>
RAM n RAMn) The specitic RAM chips needed for the Hack platform are:
dd address 10 b Chip name n K
address / » L
—— P | Direct Access Logic REMS [z} 3
(0ton-1) lobgitzs n REMG4 64 3
RAME12 512 9
RAM4 K 4086 1z
REM1GK 15384 14
o Read logic
o Write logic.

RAM anatomy Counter

Needed: a storage device that can:

RAM 64
- (a) set its state to some base value
(b) increment the state in every clock cycle
RAMS (c) maintain its state (stop incrementing) over clock cycles
(d) reset its state)
inc load reset

RAM 8 . 8

in —<| PC (counter) —<— out
w bits w bits

_ . 8 RAMS If reset(t-1) then out(t)=0
Register else if load(t-1) then out(t)=in(t-1)
else if inc(t-1) then out(t)=out(t-1)+1
Jo. else out(t)=out(t-1)

Typical function: program counter
Implementation: register chip + some combinational logic.

Recursive ascent

Recap: Sequential VS combinational logic

Time matters

tock tock tock tock
Combinational chip Sequential chip
clock tick y fick y tick y tick
(optional) time delay (optional) signal
<+—— cycle —»<«— cycle —»<—— cycle —»<+— cycle —»
in — b comb. L out in comb. DFF comb. | sout
logic logic gate(s) logic During a tick-tock cycle, the internal states of all the clocked chips are allowed
F to change, but their outputs are “latched”
At the beginning of the next cycle, the outputs of all the clocked chips in the
architecture commit to the new values.
out = some function of (in) out(t) = some function of (in(t-1), out(t-1))
Implications:
a Challenge: propagation delays
a Solution: clock synchronization
a Cycle length and processing speed.
Perspective
All the memory units described in this lecture are standard
Typical memory hierarch Access
v Y hierarchy T cost

SRAM ("static"), typically used for the cache
. DRAM ("dynamic"), typically used for main memory
Disk
(Elaborate caching / paging algorithms)
A Flip-flop can be built from Nand gates

But ... real memory units are highly optimized, using a great variety of storage

technologies.

