
Course overview

Introduction to Computer
Yung-Yu Chuang

with slides by Nisan & Schocken (www.nand2tetris.org)

Logistics

• Meeting time: 2:20pm-5:20pm, Tuesday
• Classroom: CSIE Room 101
• Instructor: 莊永裕 Yung-Yu Chuang
• Teaching assistant: 沈林承 魏敏家

• Webpage:
http://www.csie.ntu.edu.tw/~cyy/introcs

id / password
• Mailing list: introcs@cmlab.csie.ntu.edu.tw

Please subscribe via
https://cmlmail.csie.ntu.edu.tw/mailman/listinfo/introcs/

Textbook

The Elements of Computing
Systems, Noam Nisan,
Shimon Schocken, MIT Press

Nand2Tetris on Coursea

References (TOY)

Princeton’s Introduction to CS,
http://www.cs.princeton.edu/intro
cs/50machine/
http://www.cs.princeton.edu/intro
cs/60circuits/

Grading (subject to change)

• Assignments (n projects, 50%) from the
accompanying website

• Class participation (5%)
• Midterm quiz(20%)
• Final project (25%)

Early computers

Early programming tools First popular PCs

Early PCs

• Intel 8086
processor

• 768KB memory
• 20MB disk
• Dot-Matrix

printer (9-pin)

GUI/IDE

More advanced architectures

• Pipeline
• SIMD
• Multi-core
• Cache

More advanced software

More “computers” around us My computers

iPhone 6+
(A8,

ARMv8-A)iPad 2
(dual-core A5 1GHz)

MacBook Air
(dual-core Intel Core i5, 1.3GHz)

Desktop
(Intel Pentium D

3GHz, Nvidia 7900)

The downside

• “Once upon a time, every computer specialist
had a gestalt understanding of how computers
worked. … As modern computer technologies
have become increasingly more complex, this
clarity is all but lost.” Quoted from the textbook

How is it done?

// First Example in Programming 101
class Main {
function void main () {
do Output.printString("Hello World");
do Output.println(); // New line
return;

}
}

Main secret of computer science

Don’t worry about the “how”
Only about the “what”

• Extremely complicated system
• Information hiding

implementation

abstraction
what our programming
language promises to do

Main secret of computer science

Don’t worry about the “how”

But, someone has to, for example, you.

Goal of the course

“The best way to understand how computers
work is to build one from scratch.” Quoted from the
textbook

The course at a glance

Objectives:
• Understand how hardware and software systems are

built and how they work together
• Learn how to break complex problems into simpler ones
• Learn how large scale development projects are

planned and executed
• Have fun

Methodology:
• Build a complete, general-purpose and working

computer system
• Play and experiment with this computer, at any level of

interest

TOY machine TOY machine

• Starting from a simple construct

Logic gates

NOT AND

OR

Components

PC

Registers

W

W Data
A Data

B Data
W Addr
A Addr
B Addr+

1

Memory

W

W Data

Addr

R Data

IR
op
d

s

t

A
L
U

Cond
Eval

25

Toy machine

PC

Registers

W

W Data
A Data

B Data
W Addr
A Addr
B Addr+

1-bit
counter

1

5

2

4

=0

>0

Opcode
Execute
Fetch
Clock

Memory

W

W Data

Addr

R Data

IR
op
d

s

t

Cond
Eval

A
L
U

Control
Clock

1
0

1
0

0
1

1
0

10
01
00

TOY machine

• Almost as good as any computers

TOY machine

A DUP 32

lda R1, 1
lda RA, A
lda RC, 0

read ld RD, 0xFF
bz RD, exit
add R2, RA, RC
sti RD, R2
add RC, RC, R1
bz R0, read

exit jl RF, printr
hlt

int A[32];

i=0;
Do {

RD=stdin;
if (RD==0) break;

A[i]=RD;
i=i+1;

} while (1);

printr();

10: C020

20: 7101
21: 7A00
22: 7C00

23: 8DFF
24: CD29
25: 12AC
26: BD02
27: 1CC1
28: C023

29: FF2B
2A: 0000

TOY machine

From NAND to Tetris

• The elements of computing systems
• Courses
• Software
• Cool stuffs

Pong on the Hack computer

Pong, 1985 Pong, 2011

Pong, on our
computer

Theme and structure of the book

Assembler

Chapter 6

H.L. Language
&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5
Gate Logic

Chapters 1 - 3 Electrical
Engineering

Physics

Virtual
Machine

abstract interface

Software
hierarchy

Assembly
Language

abstract interface

Hardware
hierarchy

Machine
Language

abstract interface

Hardware
Platform

abstract interface

Chips &
Logic Gates

abstract interface

Human
Thought

Abstract design

Chapters 9, 12

(Abstraction–implementation paradigm)

Application level: Pong (an example)

Ball
abstraction

Bat
abstraction

The big picture

Assembler

Chapter 6

H.L. Language
&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5
Gate Logic

Chapters 1 - 3 Electrical
Engineering

Physics

Virtual
Machine

abstract interface

Software
hierarchy

Assembly
Language

abstract interface

Hardware
hierarchy

Machine
Language

abstract interface

Hardware
Platform

abstract interface

Chips &
Logic Gates

abstract interface

Human
Thought

Abstract design

Chapters 9, 12

High-level programming (Jack language)
/** A Graphic Bat for a Pong Game */
class Bat {

field int x, y; // screen location of the bat's top-left corner
field int width, height; // bat's width & height

// The class constructor and most of the class methods are omitted

/** Draws (color=true) or erases (color=false) the bat */
method void draw(boolean color) {

do Screen.setColor(color);
do Screen.drawRectangle(x,y,x+width,y+height);
return;

}

/** Moves the bat one step (4 pixels) to the right. */
method void moveR() {

do draw(false); // erase the bat at the current location
let x = x + 4; // change the bat's X-location
// but don't go beyond the screen's right border
if ((x + width) > 511) {

let x = 511 - width;
}
do draw(true); // re-draw the bat in the new location
return;

}
}

Ball
abstraction

Bat
abstraction

Typical call to
an OS method

Operating system level (Jack OS)
/** An OS-level screen driver that abstracts the computer's physical screen */
class Screen {

static boolean currentColor; // the current color

// The Screen class is a collection of methods, each implementing one
// abstract screen-oriented operation. Most of this code is omitted.

/** Draws a rectangle in the current color. */
// the rectangle's top left corner is anchored at screen location (x0,y0)
// and its width and length are x1 and y1, respectively.
function void drawRectangle(int x0, int y0, int x1, int y1) {

var int x, y;
let x = x0;
while (x < x1) {

let y = y0;
while(y < y1) {

do Screen.drawPixel(x,y);
let y = y+1;

}
let x = x+1;

}
}

}

Ball
abstraction

Bat
abstraction

The big picture

Assembler

Chapter 6

H.L. Language
&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5
Gate Logic

Chapters 1 - 3 Electrical
Engineering

Physics

Virtual
Machine

abstract interface

Software
hierarchy

Assembly
Language

abstract interface

Hardware
hierarchy

Machine
Language

abstract interface

Hardware
Platform

abstract interface

Chips &
Logic Gates

abstract interface

Human
Thought

Abstract design

Chapters 9, 12

A modern compilation model

. . .
RISC

machine

VM language

other digital platforms, each equipped
with its VM implementation

RISC
machine
language

Hack
computer

Hack
machine
language

CISC
machine
language

CISC
machine

. . .

Projects
10-11

written in
a high-level
language

Any
computer

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

VM imp.
over the Hack

platform
VM

emulator

Some Other
language

Jack
language

Some
compiler Some Other

compiler
Jack

compiler

. . .

Projects
7-8

Some
language

. . .

Projects
1-6

Proj. 9: building an app.

Proj. 12: building the OS

Compilation 101

Observations:

 Modularity

 Abstraction / implementation interplay

 The implementation uses abstract services from the level below.

parsing Code
generation

Source code

(x + width) > 511

Abstraction

push x
push width
add
push 511
gt

Intermediate code

ImplementationSyntax
Analysis

Parse
Tree

Semantic
Synthesis

widthx

+ 511

>

The virtual machine (VM modeled after JVM)

// VM implementation
 push x // s1
 push width // s2
 add // s3
 push 511 // s4
 gt // s5
 if-goto L1 // s6
 goto L2 // s7
L1:
 push 511 // s8
 push width // s9
 sub // s10
 pop x // s11
L2:
...

if ((x+width)>511) {
let x=511-width;

}
75

450
sp

s2memory (before)

450

...

x

width

75

...

...

525
511

sp

1
sp

511
450

sp

s4 s5 s9

61
sp

s10

450

...

x

width

61

...

...

memory (after)

The big picture

Assembler

Chapter 6

H.L. Language
&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5
Gate Logic

Chapters 1 - 3 Electrical
Engineering

Physics

Virtual
Machine

abstract interface

Software
hierarchy

Assembly
Language

abstract interface

Hardware
hierarchy

Machine
Language

abstract interface

Hardware
Platform

abstract interface

Chips &
Logic Gates

abstract interface

Human
Thought

Abstract design

Chapters 9, 12

Low-level programming (on Hack)

...
 push x
 push width
 add
 push 511
 gt
 if-goto L1
 goto L2
L1:
 push 511
 push width
 sub
 pop x
L2:
...

Virtual machine program

Low-level programming (on Hack)

...
 push x
 push width
 add
 push 511
 gt
 if-goto L1
 goto L2
L1:
 push 511
 push width
 sub
 pop x
L2:
...

// push 511
@511
D=A // D=511
@SP
A=M
M=D // *SP=D
@SP
M=M+1 // SP++

Virtual machine program

Assembly program

VM translator

push 511

Low-level programming (on Hack)

...
 push x
 push width
 add
 push 511
 gt
 if-goto L1
 goto L2
L1:
 push 511
 push width
 sub
 pop x
L2:
...

// push 511
@511
D=A // D=511
@SP
A=M
M=D // *SP=D
@SP
M=M+1 // SP++

Virtual machine program

Assembly program

0000000000000000
1110110010001000

Executable

VM
translator

Assembler

push 511

@SP
M=M+1 // SP++

The big picture

Assembler

Chapter 6

H.L. Language
&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5
Gate Logic

Chapters 1 - 3 Electrical
Engineering

Physics

Virtual
Machine

abstract interface

Software
hierarchy

Assembly
Language

abstract interface

Hardware
hierarchy

Machine
Language

abstract interface

Hardware
Platform

abstract interface

Chips &
Logic Gates

abstract interface

Human
Thought

Abstract design

Chapters 9, 12

Machine language semantics (Hack)

Code syntax
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 0 0 01 1 1 0 1 1 1

Instruction code
(0=“address” inst.) Address

ALU
operation code

(M-1)

Destination
Code

(M)

Jump
Code

(no jump)

Code semantics, as interpreted by the Hack hardware platform

Instruction code
(1=“compute” inst.)

0000000000000000
1111110111001000

@0
M=M-1

• We need a hardware architecture that realizes this semantics
• The hardware platform should be designed to:

o Parse instructions, and
o Execute them.

Computer architecture (Hack)

• A typical Von Neumann machine

Data
Memory

(M)

A
LUInstruction

Memory

instruction

A

D

M

Program
Counter

address of next
instruction

data in

data out

RAM(A)

The big picture

Assembler

Chapter 6

H.L. Language
&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5
Gate Logic

Chapters 1 - 3 Electrical
Engineering

Physics

Virtual
Machine

abstract interface

Software
hierarchy

Assembly
Language

abstract interface

Hardware
hierarchy

Machine
Language

abstract interface

Hardware
Platform

abstract interface

Chips &
Logic Gates

abstract interface

Human
Thought

Abstract design

Chapters 9, 12

Logic design

• Combinational logic (leading to an ALU)
• Sequential logic (leading to a RAM)
• Putting the whole thing together (leading to a

computer)

Using … gate logic

Gate logic

Xor
a

b
out

0 0 0
0 1 1
1 0 1
1 1 0

a b out

Interface

And

And
 Not

Or out

a

b

 Not

Implementation

 Hardware platform = inter-connected set of chips

 Chips are made of simpler chips, all the way down to elemantary logic gates

 Logic gate = hardware element that implements a certain Boolean function

 Every chip and gate has an interface, specifying WHAT it is doing, and an
implementation, specifying HOW it is doing it.

Hardware description language (HDL)

And

And
 Not

Or out

a

b

 Not

CHIP Xor {
 IN a,b;
 OUT out;
 PARTS:
 Not(in=a,out=Nota);
 Not(in=b,out=Notb);
 And(a=a,b=Notb,out=w1);
 And(a=Nota,b=b,out=w2);
 Or(a=w1,b=w2,out=out);
}

The tour ends:

0 0 1
0 1 1
1 0 1
1 1 0

a b out

out
a

b
Nand

Interface One implementation option (CMOS)

ElectronicsDigital System Design

Computer Architecture

Operating System

Compiler

The tour map, revisited

Assembler

Chapter 6

H.L. Language
&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5
Gate Logic

Chapters 1 - 3 Electrical
Engineering

Physics

Virtual
Machine

abstract interface

Software
hierarchy

Assembly
Language

abstract interface

Hardware
hierarchy

Machine
Language

abstract interface

Hardware
Platform

abstract interface

Chips &
Logic Gates

abstract interface

Human
Thought

Abstract design

Chapters 9, 12

Course overview:
Building this world,
from the ground up

What you will learn

• Number systems
• Combinational logic
• Sequential logic
• Basic principle of computer architecture
• Assembler
• Virtual machine
• High-level language
• Fundamentals of compilers
• Basic operating system
• Application programming

In short

