Advanced Architecture

Computer Organization and Assembly 1anguages
Yung-Yn Chuang

with slides by S. Dandamudi, Peng-Sheng Chen, Kip Irvine, Robert Sedgwick and Kevin Wayne

Intel microprocessor history

Early Intel microprocessors Sl

« Intel 8080 (1972)

64K addressable RAM

8-bit registers

CP/M operating system

5,6,8,10 MHz

29K transistors

- Intel 8086/8088 (1978) ~— My first computer (1986)
- IBM-PC used 8088 —
- 1 MB addressable RAM
- 16-bit registers
- 16-bit data bus (8-bit for 8088)
- separate floating-point unit (8087)
- used in low-cost microcontrollers now

The IBM-AT e

e Intel 80286 (1982)
- 16 MB addressable RAM
- Protected memory
- several times faster than 8086
- introduced IDE bus architecture
- 80287 floating point unit
- Up to 20MHz
- 134K transistors

Intel 1A-32 Family I e

* Intel386 (1985)
- 4 GB addressable RAM
- 32-bit registers
- paging (virtual memory)
- Up to 33MHz
* Intel486 (1989)
- instruction pipelining
- Integrated FPU
- 8K cache
e Pentium (1993)
- Superscalar (two parallel pipelines)

Intel P6 Family fio i

e Pentium Pro (1995)

- advanced optimization techniques in microcode
- More pipeline stages

- On-board L2 cache

Pentium Il (1997)

- MMX (multimedia) instruction set

- Up to 450MHz

Pentium III (1999)

- SIMD (streaming extensions) instructions (SSE)

- Up to 1+GHz

Pentium 4 (2000)

- NetBurst micro-architecture, tuned for multimedia
- 3.8+GHz

Pentium D (2005, Dual core)

IA32 Processors et

e Totally Dominate Computer Market

» Evolutionary Design
- Starting in 1978 with 8086
- Added more features as time goes on
- Still support old features, although obsolete

e Complex Instruction Set Computer (CISC)

- Many different instructions with many different
formats
= But, only small subset encountered with Linux programs

- Hard to match performance of Reduced Instruction
Set Computers (RISC)

- But, Intel has done just that!

ARM history I

» 1983 developed by Acorn computers

To replace 6502 in BBC computers

4-man VLSI design team

Its simplicity comes from the inexperience team

Match the needs for generalized SoC for reasonable
power, performance and die size

The first commercial RISC implemenation

e 1990 ARM (Advanced RISC Machine), owned by
Acorn, Apple and VLSI

ARM Ltd i

Design and license ARM core design but not fabricate
Wikowoie BARCO SOTA) LJASHLING CoWere
DNP . ;ifosiecson SIEMENS NSW —~ ’ VIrtIO cimiin, innoveoa. Computex
S @ ".“:"'fr“h' é\ ggﬁ,’gl VORITEE e m ’Ihhmn/lx gm Sophia

(EEMIND - S R Axis systems
SSIDsA o) TOPPAN ,_,9 """"" - lé-;;
wrme wwwwow N, Quunww DITEIE Goobmen e O Aptix
» (} WAt Aurmmr M iy svosow F RE Mk w Miant
i i COf = OKI (M) motomowa ADMIek WNEC " =
;L%Af’ & FARADAY MAZ’ €5 memw TOSHIBA DI o e bl E SYNOPSYs
AL e MCaOHAL % e TKOS « >
—~ pond uf’.n" EPSON & ‘vt) Chartersel I i
wsl:mu?lm s onIes SANYO_ naHm R i S/ lcdence)

FRMWARE SYSTEMS ?{x-u-;i. 4 ogere v III'!EEII"E.IBhE Microsoft
T zeevo intg P innnls ,
Cifol ’ B (G avins B S CEmBLazE +

Virata SONY.

Y _-_-_H e""" AR 3 5' . diTriscend. FTERE

e o = S SRS S
."sl.;,re;:lm: wisondxy (ORENESS 2 a1 corporation H*’
== ask ©Bluetooth™ symbian g
i . OSun. rrvoream ;L;; &?’5 sympetrcom E s o
!5:::~ wascwoers [GHEEL Agam CHEWICALINDUSIRYCO.ITD.

Why ARM? B o

* One of the most licensed and thus widespread
processor cores in the world

- Used in PDA, cell phones, multimedia players,
handheld game console, digital TV and cameras

ARM7: GBA, iPod

ARM9: NDS, PSP, Sony Ericsson, BenQ

ARM11: Apple iPhone, Nokia N93, N800

90% of 32-bit embedded RISC processors till 2009
» Used especially in portable devices due to its

low power consumption and reasonable
performance

Performance boost USSe

» Increasing clock rate is insufficient. Architecture
(pipeline/cache/SIMD) becomes more significant.

CPU Transistor Counts 1971-2008 & Moore’s Law

2.000,000,000

1000000000 | In his 1965 paper,
. Intel co-founder
. —— Gordon Moore
. TR observed that
Z “the number of
twoom-] - transistors per
square inch had
10,000 —
2300 —psia doubled every
i 18 months.
19 1580 1990 2000 2008

Date of introduction

12

Basic architecture

Basic microcomputer design Tt

e clock synchronizes CPU operations

e control unit (CU) coordinates sequence of
execution steps

e ALU performs arithmetic and logic operations

data bus

Central Processor Unit Memory Storage D(le/\fi)ce D(IEI\?CE
(cPU) Unit) i
[ALu | cu] clock |
|__co_ntr_°|2ua _____ J _______ | ______ J.____
address bus
Sl = =" -
Basic microcomputer design = Clock Sr

e The memory storage unit holds instructions and
data for a running program

e A bus is a group of wires that transfer data from
one part to another (data, address, control)

data bus

Central Processor Unit Memory Storage VC.) VC.)
(CPU) Unit Device Device
#1 #2
[AU | cu [clock |
I_ controlbus | _ J _______ | ______ J. -

address bus

synchronizes all CPU and BUS operations

machine (clock) cycle measures time of a single
operation

clock is used to trigger events

one cycle

0

Basic unit of time, 1GHz—clock cycle=1ns

An instruction could take multiple cycles to
complete, e.g. multiply in 8088 takes 50 cycles

Instruction execution cycle

program counter
l instruction queue

program l

memory fetch
opl
op2 read ¢
registers registers
instruction
> register
o
@
(]
o
2 2 l &
= = flags <« ALU
execute
(output)

Fetch
Decode

Fetch
operands

= Execute
Store output

Pipeline

Multi-stage pipeline

Pipelined execution

» Pipelining makes it possible for processor to

execute instructions in parallel

= Instruction execution divided into discrete stages

Stages

S1 | S2

S3

S4

S5

S6

-1

Example of a non-

pipelined processor.

For example, 80386.

Many wasted cycles.

Cycles

PR
REBlojo~Nola/sw NR
N

= More efficient use of cycles, greater throughput
of instructions: (80486 started to use pipelining)

Stages

S1

S2

S3 | S4 | S5 | S6

-1

I-2

-1

-2

-1

1-2 -1

I-2 -1

I-2 I-1

Cycles
N[Ol W|IN|F

I-2

For k stages and
n instructions, the
number of
required cycles is:

k+(n-1)

compared to k*n

Pipelined execution Tt

e Pipelining requires buffers
- Each buffer holds a single value
- ldeal scenario: equal work for each stage
* Sometimes it is not possible

Pipelined execution sl

e Some reasons for unequal work stages
- A complex step cannot be subdivided conveniently

- An operation takes variable amount of time to
execute, e.g. operand fetch time depends on where
the operands are located

» Slowest stage determines the flow rate in the = Registers
entire pipeline « Cache
= Memory
- Complexity of operation depends on the type of
Bl B2 B3 B4 operation
[nstruction Instruction Operand Instruction Result - Add:. ma_y take one cycle
. . . . = Multiply: may take several cycles
fetch decode fetch execution write back
Pipelined execution At Wasted cycles (pipelined) At

e Operand fetch of 12 takes three cycles
- Pipeline stalls for two cycles
e Caused by hazards
- Pipeline stalls reduce overall throughput

Clockcycle 1 2 3 4 S5 6 7 8 9 10

T T T T
I1 IF 1 ID 'OF I IE 'WB
l l L

I T T
2 IF 1 ID 1 OF 1 IE 'WB
| | |
| 1 1
I3 IF | ID 10OF ' IE 'WB
| | |
1 I I
14 IF 1 ID 'OF 1 IE 'WB
1 1 | |

 When one of the stages requires two or more
clock cycles, clock cycles are again wasted.

Stages
exe
S1 S2 S3 S4 S5 S6
1| 1 For k stages and n
2 [12|11 instructions, the
w j I-3 :2 :; — number of required
(] - ~ - =y
S s =T cycles is:
O 6 -2 | 11
s 5 T k+(2n-1)
8 -3 -2
9 1-3 I-2
10 -3
11 I-3

Superscalar Tt

A superscalar processor has multiple execution
pipelines. In the following, note that Stage S4
has left and right pipelines (u and v).

Stages
o For k states and n

A instructions, the
S1 S2 S3 u v S5 S6 .
= number of required
2 | 11 cycles is:
-3 -2 -1
4 [13 | 1.2 | 111 k +n

-4 1-3 I-1 I-2
-4 | I-3 1-2 I-1
1-3 I-4 1-2 -1

“ > Pentium: 2 pipelines

-4 | Pentium Pro: 3

Cycles
O O[(N[O(O|BR|W|N|F

=
o

Pipeline stages

Pentium 3: 10

Pentium 4: 20~31

Next-generation micro-architecture: 14
ARM7: 3

Hazards Tt

» Three types of hazards
- Resource hazards

* Occurs when two or more instructions use the same
resource, also called structural hazards

- Data hazards

= Caused by data dependencies between instructions,
e.g. result produced by I1 is read by 12

- Control hazards
= Default: sequential execution suits pipelining

e Altering control flow (e.g., branching) causes
problems, introducing control dependencies

Data hazards

add r1, r2, #10 ;o write rl1
sub r3, ri1, #20 ; read rl

fetch |decode| reg | ALU wb

fetch |decode stall reg | ALU

wb

Data hazards I

e Forwarding: provides output result as soon as
possible

add r1, r2, #10 D write rl
sub r3, rl1, #20 : read rl

fetch |decode| reg ALU whb

Data hazards I

e Forwarding: provides output result as soon as
possible

add rl1, r2, #10 ; write rl

sub r3, rl, #20 ; read rl

fetch |decode| reg ALU whb

fetch |decode stall reg | ALU | wb
fetch |decode|stall| reg | ALU | wb
Control hazards Tt Control hazards Tt

bz rl, target
add r2, r4, O

target: add r2, r3, O

fetch |decode| reg ALU whb

,,,

e Braches alter control flow
- Require special attention in pipelining
- Need to throw away some instructions in the
pipeline
» Depends on when we know the branch is taken
= Pipeline wastes three clock cycles
- Called branch penalty

- Reducing branch penalty

= Determine branch decision early

Control hazards IS

bt

Branch prediction -

e Delayed branch execution
- Effectively reduces the branch penalty
- We always fetch the instruction following the branch
« Why throw it away?
» Place a useful instruction to execute

» This is called delay slot -

e Three prediction strategies

- Fixed
= Prediction is fixed
- Example: branch-never-taken
» Not proper for loop structures

- Static
« Strategy depends on the branch type

- Conditional branch: always not taken
add R2,R3,R4 branch target/ - Loop: always taken
branch target add R2,R3,R4 - Dynamic
sub R5.R6,R7 sub R5.R6,R7 = Takes run-time history to make more accurate predictions
- G - G
Branch prediction e Branch prediction e

e Static prediction
- Improves prediction accuracy over Fixed

Instruction type Instruction Prediction: Correct

Distribution Branch prediction
(%) taken? (%)

Unconditional ~ 70*0.4 = 28 Yes 28

branch

Conditional 70*0.6 = 42 No 42*0.6 = 25.2

branch

Loop 10 Yes 10*0.9=9

Call/return 20 Yes 20

Overall prediction accuracy = 82.2%

e Dynamic branch prediction

- Uses runtime history
= Takes the past n branch executions of the branch type and
makes the prediction
- Simple strategy
= Prediction of the next branch is the majority of the
previous n branch executions
* Example: n =3
- If two or more of the last three branches were taken, the
prediction is “branch taken”

= Depending on the type of mix, we get more than 90%
prediction accuracy

Branch prediction I e

Branch prediction I e

e Impact of past n branches on prediction
accuracy

00

no branch

branch

Predict

Type of mix nzrsgell(riy no branc
n Compiler Business Scientific
0 64.1 64.4 70.4
1 919 952 866 no branch
2 93.3 96.5 90.8 branch
3 93.7 96.6 91.0
4 94.5 96.8 91.8 10 o
5 947 970 920 Predict Predict :> branch
branch branch
Multitasking st

Multiple threads of execution within the same
program.

Scheduler utility assigns a given amount of CPU
time to each running program.

Rapid switching of tasks

- gives illusion that all programs are running at once
- the processor must support task switching

- scheduling policy, round-robin, priority

OS can run multiple programs at the same time.

Cache

SRAM vs DRAM e The CPU-Memory gap T
| s The gap widens between DRAM, disk, and CPU speeds.
100,000,000 - \
10 10 10,000,000 . o
Central Processor Unit Memory Storage Device Device 1,000,000
(CPL) Unit , I

[ALU T cu T clock | " ” 100.000 —&— Disk seek time

—— 2 10.000 DRAM access time

—A— SRAM access time

I__CO_”"_D'EUE _____ J _______ |___. _J.____ - 1.000 °
address bus '
100 724&‘&’
10

Tran. Access Needs

—e— CPU cycle time

\Q%.

1

per bit time refresh? Cost Applications 1980 1985 1990 1995 2000
year
SRAM 4o0r6 1X No 100X cache memories register cache memory disk
. . Access time 1 1-10 50-100 20,000,000
DRAM 1 10X Yes 1X Main memories, (cycles)
frame buffers
Memory hierarchies in Memory system in practice R

e Some fundamental and enduring properties of
hardware and software:

- Fast storage technologies cost more per byte, have
less capacity, and require more power (heat!).

- The gap between CPU and main memory speed is
widening.
- Well-written programs tend to exhibit good locality.
e They suggest an approach for organizing
memory and storage systems known as a
memory hierarchy.

'y

Smaller, faster, and
more expensive (per
byte) storage devices

Larger, slower, and
cheaper (per byte)
storage devices L4:

LO:
egister

L1:/ on-chip L1
cache (SRAM)

off-chip L2
cache (SRAM)

L3: main memory
(DRAM)

local secondary storage (virtual memory)
(local disks)

L5:

remote secondary storage
(tapes, distributed file systems, Web servers)

Reading from memory LIS

= Multiple machine cycles are required when reading
from memory, because it responds much more slowly
than the CPU (e.g.33 MHz). The wasted clock cycles are
called wait states.

L1 Data
<« 1cycle latency
Regs. 16 kB | L2 Unified
<> 4-way assoc 128KB--2 MB Main
Write-through 4-way assoc | <, M
328 lines Write-back emory
Wreite allocate Up to 468
L1 Instruction 328 lines
16 KB, 4-way [¢
32B lines

Processor Chip Pentium Il cache hierarchy

Cache memory -0

« High-speed expensive static RAM both inside
and outside the CPU.
- Level-1 cache: inside the CPU
- Level-2 cache: outside the CPU

e Cache hit: when data to be read is already in
cache memory

e Cache miss: when data to be read is not in
cache memory. When? compulsory, capacity
and conflict.

e Cache design: cache size, n-way, block size,
replacement policy

Caching in a memory hierarchy R
Smaller, faster, more
levelk |[L4 || o |[10 |[3 | Expensive device at

level k caches a
subset of the blocks
from level k+1

Data is copied between levels
in block-sized transfer units

[o JLt JT 2 JI 3| Larger, slower, cheaper
level | 7@][5 J[6][7]| Storage device at level
Kt s 90 o 1[0 |[=]| k+1is partitioned into

| 12 || 13 || 14 |[15] blocks.

General caching concepts R
e Program needs object d, which is
ReigeSt stored in some block b.
o 1 P ;s < Cache hit
Ie\l/(el 2270 9][24 |[3] - Program finds b in the cache at

level k. E.g., block 14.

gz Request = Cache miss

12 - bis not at level k, so level k cache
must fetch it from level k+1.
ol 121 3] E.g., block 12.

- If level k cache is full, then some
level | L4]| 5 I 6 I 7| current block must be replaced
k+1 1 [8 J[o J[10][11] (evicted). Which one is the “victim™?
[22][13 |[14 |[15 | - Placement policy: where can the new
block go? E.g., b mod 4

* Replacement policy: which block
should be evicted? E.g., LRU

Locality I

Locality example 'f.?.—;-.

« Principle of Locality: programs tend to reuse
data and instructions near those they have used
recently, or that were recently referenced
themselves.

- Temporal locality: recently referenced items are
likely to be referenced in the near future.

- Spatial locality: items with nearby addresses tend to
be referenced close together in time.
e In general, programs with good locality run
faster then programs with poor locality

e Locality is the reason why cache and virtual
memory are designed in architecture and
operating system. Another example is web
browser caches recently visited webpages.

sum = 0O;

for (i = 0; 1 < nj; I++)
sum += af[i];

return sum;

e Data
- Reference array elements in succession (stride-1
reference pattern): Spatial locality
- Reference sum each iteration: Temporal locality
e Instructions
- Reference instructions in sequence: Spatial locality
- Cycle through loop repeatedly: Temporal locality

Locality example I

Locality example I

e Being able to look at code and get a qualitative
sense of its locality is important. Does this
function have good locality?

int sum_array_rows(int a[M][N]D)
{

int i, jJ, sum = O;

for (i = 0; 1 < M; i++)
for (J = 0; J < N; j++)
sum += a[i][J];
return sum;
} stride-1 reference pattern

« Does this function have good locality?

int sum_array_cols(int a[M]IND)
{

int i, J, sum = O;

for (J = 0; J < N; j++)
for (i = 0; 1 < M; 1++)
sum += a[i][J];
return sum;
¥ stride-N reference pattern

Blocked matrix multiply performance I e

= Blocking (bijk and bikj) improves performance
by a factor of two over unblocked versions (ijk
and jik)

- relatively insensitive to array size.

P
ki
—& kij
=< ikj
= jik
—o-ijk
- bijk (bsize = 25)
—& bikj (bsize = 25)

Cyclesl/iteration

Array size (n)

Cache-conscious programming sl

e make sure that memory is cache-aligned
= |
— ! —]

« Split data into hot and cold (list example)

e T e .
f— eee————

e Use union and bitfields to reduce size and
increase locality

SIMD

SIMD I

e MMX (Multimedia Extension) was introduced in
1996 (Pentium with MMX and Pentium II).

e Intel analyzed multimedia applications and
found they share the following characteristics:
- Small native data types (8-bit pixel, 16-bit audio)
- Recurring operations
- Inherent parallelism

56

SIMD f”-r,f._*

SISD/SIMD/Streaming

» SIMD (single instruction multiple data)
architecture performs the same operation on
multiple data elements in parallel

Kernels

- PADDW MMO , MM:I_ Instructions Data Instructions O Data .
Source 1 ‘ X3 ‘ X2 ‘ X1 ‘ X0 ‘
Source 2 ‘ Y3 ‘ Y2 ‘ Y1 ‘ YO ‘ EEE

Results L L L]
Destination ‘ X3 0P Y3 ‘ X2 O‘P Y2 ‘ X1 C;P Y1 ‘ X0 ;Z)P YO ‘

57 58
R G

MMX et MMX data types i
- After analyzing a lot of existing applications Pacled Byte: 8 bytes packed inco 64 bits e o

such as graphics, MPEG, music, speech
recognition, game, image processing, they
found that many multimedia algorithms
execute the same instructions on many pieces
of data in a large data set.

« Typical elements are small, 8 bits for pixels, 16
bits for audio, 32 bits for graphics and general
computing.

« New data type: 64-bit packed data type. Why
64 bits?

- Good enough

- Practical
59

Packed Word: 4 words packed into 64 bits
63 16 15

o

Packed Doubleword: 2 doublewords packed into 64 bits
63 32 31

o

Packed Quadword: One 64-bit quantity
63

W o

60

MMX instructions I e

e 57 MMX instructions are defined to perform the
parallel operations on multiple data elements
packed into 64-bit data types.

e These include add, subtract, multiply,
compare, and shift, data conversion,
64-bit data move, 64-bit logical
operation and multiply-add for multiply-
accumulate operations.

= All instructions except for data move use MMX
registers as operands.

e Most complete support for 16-bit operations.

61

Saturation arithmetic I e

e Useful in graphics applications.

 When an operation overflows or underflows,
the result becomes the largest or smallest
possible representable number.

« Two types: signed and unsigned saturation

ya i i i ya £ i i
[Foooh | a2 [a1 | a0 ‘ [Foooh | a2 | a1 | a0 '
+ + + + + + + +

yd L L yd v L L
[3000h | b2 | b1 | bo ' [3000h| b2 | b1 | b '

yd rd i i rd i
[2000h | a2+b2 | a1+ b1 | a0+b0 ' | FFFFh | a2+b2 | a1+b1 | a(l-l-bo'
wrap-around saturating

62

Keys to SIMD programming flo s

» Efficient data layout
e Elimination of branches

63

64

Application: frame difference

Application: frame difference "«a

MOVQ mml, A //move 8 pixels of image A
MOVQ mm2, B //move 8 pixels of image B
MOVQ mm3, mml // mm3=A
PSUBSB mml, mm2 // mml=A-B
PSUBSB mm2, mm3 // mm2=B-A
POR mml, mm2 // mml=]A-B|
(A-B) or (B-A)
65 66
Data-independent computation et Application: sprite overlay At
e Each operation can execute without needing to Phase 1 = | 2 | o | = |
know the results of a previous operation. O P - a © o =
- Example, sprite overlay
for i=1 to sprite_Size [1111...1111] 0000...0000 |1111...1111] 0000.. 0000 |
it spriteli]=clr T ———— Phase 2
then out_color[i]=bg[i] [a3 [a2 | a 0 | 2 | «d o |

else out_color[i]=sprite[i]

» How to execute data-dependent calculations on

several pixels in parallel.

67

A and (Complement of Mask) C and Mask

[0000...0000 | 1111...1111] 0000...0000 [1111...1111 | [1111...1111] 0000...0000 [1111...1111 | 0000...0000 |

[0 [2 T o 0 [o o | o | o]
~ — OR the two results '_,--/"'/
"m.._\x to finish the overlay __J../"".
\h& e,,--/
3 a2 cl | a0

68

Other SIMD architectures

e

Application: sprite overlay i S
MOVQ mmO, sprite e Graphics Processing Unit (GPU): nVidia 7800, 24
MOVQ mm2, mmO pipelines (8 vector/16 fragment)
MOVQ mm4, bg
MOVQ mml ’ CI r 150 —- == NVIDIA [NV30 NV35 NV40 GT0]
PCMPEQW mmO, mml] - ATI [R300 R360 R420]
PAND 4 ’ mo { 100 ; . ::[;L::LIL]::‘UT\-Lpl where marked)
PANDN ~ mmO, mm2 3])
POR mmO, mm4 5]
50 =
: ; _.--'-"'-L‘ dual-core
R - om0 s S SN
2002 2003 2004 2005
Year
69 70

Impacts on programming

1T

« You need to be aware of architecture issues to
write more efficient programs (such as cache-

aware).

» Need parallel thinking for better utilizing

parallel features of processors.

RISC v.s. CISC

Trade-offs of instruction sets ‘;‘i‘[j-ﬂi

compiler

high-level language machine code
C, C++ semantic gap

Lisp, Prolog, Haskell...

» Before 1980, the trend is to increase instruction
complexity (one-to-one mapping if possible) to
bridge the gap. Reduce fetch from memory.
Selling point: number of instructions,
addressing modes. (CISC)

« 1980, RISC. Simplify and regularize instructions
to introduce advanced architecture for better
performance, pipeline, cache, superscalar.

1980, Patternson and Ditzel (Berkeley),RISC

Features

- Fixed-length instructions

- Load-store architecture

- Register file

Organization

- Hard-wired logic

- Single-cycle instruction

- Pipeline

Pros: small die size, short development time,
high performance

Cons: low code density, not x86 compatible

RISC Design Principles =

« Simple operations
- Simple instructions that can execute in one cycle
= Register-to-register operations
- Only load and store operations access memory
- Rest of the operations on a register-to-register basis
e Simple addressing modes
- A few addressing modes (1 or 2)
e Large number of registers
- Needed to support register-to-register operations
- Minimize the procedure call and return overhead

RISC Design Principles =

e Fixed-length instructions
- Facilitates efficient instruction execution
e Simple instruction format

- Fixed boundaries for various fields
= opcode, source operands,...

CISC and RISC gt CISC and RISC gt
e CISC — complex instruction set
- large instrucF'Zion set CISC RISC
- high-level operations (simpler for compiler?) (Intel 486) (MIPS R4000)
- requires microcode interpreter (could take a long #instructions 235 94
time)
- examples: Intel 80x86 family Addr. modes 11 1
= RISC — reduced instruction set Inst. Size (bytes) 1-12 4
- small instruction set _
- simple, atomic instructions GP registers 8 32
- directly executed by hardware very quickly
- easier to incorporate advanced architecture design
- examples: ARM (Advanced RISC Machines) and DEC
Alpha (now Compaq), PowerPC, MIPS
Why RISC? Tt Why RISC? (cont’d) Tt

« Simple instructions are preferred

- Complex instructions are mostly ignored by
compilers

« Due to semantic gap
e Simple data structures

- Complex data structures are used relatively
infrequently

- Better to support a few simple data types efficiently
= Synthesize complex ones

» Simple addressing modes

- Complex addressing modes lead to variable length
instructions
« Lead to inefficient instruction decoding and scheduling

e Large register set

- Efficient support for procedure calls and returns

= Patterson and Sequin’s study

- Procedure call/return: 12-15% of HLL statements
» Constitute 31-33% of machine language instructions
» Generate nearly half (45%) of memory references

- Small activation record
e Tanenbaum’s study
- Only 1.25% of the calls have more than 6 arguments

- More than 93% have less than 6 local scalar variables
- Large register set can avoid memory references

