Elements of Computing Systems, Nisan & Schocken, MIT Press

www.idc.ac.il/tecs

Operating Systems

Building a Modern Computer From First Principles

www.nand?2tetris.org

Where we are at:

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System

slide 1

.) .
= Human ‘g, Abstractdesign : Software
2 Thought abstract interface hierarchy
/,1 Chapters 9, 12 YL, (EREVERR Compiler
& ¥ abstract interface
Operating Sys. Chapters 10 - 11
Virtual VM Translator
. — » abstract interface
Machine Chapters 7 - 8
Assembly
Language
Assembler
Chapter 6
abstract interface
Computer
Machine Architecture
L » abstract interface
anolacs Chapters 4 -5 .
Hardware Gate Logic
\atf —————» abstract interface
Platform Chapters 1-3 Electrical s
f . NN
Chips & Engineering < Z
Hardware) —— »= Physics
hierarchy Logic Gates <

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 2
Jack revisited Jack revisited
/** Computes the average of a sequence of integers. */ /** Computes the average of a sequence of integers. */
class Main { class Main {
function void main() { function void main(Q) {
var Array a; var Array a;
var int length; var int length;
var int i, sum; var int i, sum;
let length = Keyboard.readlnt(’How many numbers? ™); let length = Keyboard.readlnt(”How many numbers?);
let a = Array.new(length); // Constructs the array let a = Array.new(length); // Constructs the array
let i = 0; let 1 = 0;
while (i < length) { while (i < length) {
let a[i] = Keyboard.readlnt(”Enter the next number: ™); let a[i] = Keyboard.readlnt(’Enter the next number: ”);
let sum = sum + a[i]; let sum = sum + a[i];
let i =i + 1; let i =i + 1;
¥ }
do Output.printString(’The average is: 7); do Output.printString(’The average is: ”);
do Output.printint(sum / length); do Output.printint(sum /7 length);
do Output.printinQ; do Output.printin(Q);
return; return;
¥ ¥
1 ks
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 3 Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 4

Typical OS functions The Jack OS
Language extensions / standard library ~ System-oriented services H Math: Provides basic mathematical operations;
B Mathematical operations B Memory management B String: Implements the String type and string-related operations;
(abs, sqrt, ...) (objects, arrays, ...)
)) B Array: Implements the Array type and array-related operations;
B Abstract data types B I/0 device drivers
String, Date, ... m Output: ndles text output to the screen;
(g, | B Mass storage p Handles text output to the scree
B OQutput functions) ® File system m Screen: Handles graphic output to the screen;
(printChar, printString ...)
m Multi-tasking B Keyboard: Handles user input from the keyboard:;
B Input functions
(readChar, readLine ...) B UI management (shell / windows) B Memory: Handles memory operations:
B Graphics functions B Security H Sys: Provides some execution-related services.
(drawPixel, drawCircle, ..)
B Communications
B And more ...
B And more ...
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 5 Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 6
Jack OS API A typical OS:
class Math { ‘ O Is modular and scalable
Class String { ‘
O Empowers programmers (language extensions)
Class Array {
T ‘ O Empowers users (file system, GUL, ...)
y) Clless Seream ‘ Q Closes gaps between software and hardware
— class Memory {
QO Runs in “protected mode”
Class Keyboard {
3 QO Typically written in some high level language
Class Sys {
} function void haltQ: Q Typically grows gradually, assuming more and more functions
I } function void error(int errorCode)
— ¥ .] o . O Must be efficient.
function void wait(int duration)
I }
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nandz2tetris.org , Chapter 12: Operating System slide 7 Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nandz2tetris.org , Chapter 12: Operating System slide 8

Efficiency

We have to implement various operations on 7-bit binary numbers
(n=16, 32,64, .).

For example, consider mu/tiplication

ENaive algorithm: o multiply x*y: { fori=1 ..y do sum = sum + x }
Run-time is proportional to y
In a 64-bit system, y can be as large as 2%
Multiplications can take years to complete
B Algorithms that operate on #-bit inputs can be either:
e Nadive: run-time is proportional to the value of the n-bit inputs

e (Good: run-time is proportional to n, the input’s size.

Example I: multiplication

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 9

The “steps” The algorithm explained
(first 4 of 16 iteratiom)

1[1]3)}:1; erOOlOll_‘.
» OO0 0O 1 01 fthbitofy
o a et 0001011 1
1011 oo lol 10 0
o1 01100 1
11011 1=253 1011000 0
o 001 1 01 11 sutn
multiply(x, y):
i Where x,y2 0 B Run-fime: proportional to
s =1
shiftedX =1 B Can be implemented in SW or HW
forj =0...(n—1) do
if (-th bit of y) = 1 then B Division: similar idea.
surn = sum + shifted X
shiftedX = chiftedX * 2
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 10

Example Il: square root

The square root function has two convenient properties:
e It's inverse function is computed easily
e Monotonically increasing

Functions that have these two properties can be computed by binary search:

sqrtix):
i Compute the integer part of v = Jx Strategy:
if Find an integer y such that 3* =x <(y+1® (for 0= x<2™)
it By performing a binary search in the range 0... 2%% 1.
»=10
for j=nf2-1...0 do
i (y+29% 2 x then y=p+27
return ¥

Number of loop iterations is bounded by n/2, thus the run-time is O(n).

Complexity

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 11

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 12

Complexity

Donald Knuth =&

@
£
E
—_—
Data Input (Space)
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 13

H Bornin 1938

B Author of "The Art of Computer Programming”

(EEFIEEK) (American Scientist) ifzg 754 2 & AT
4y (HEfEm) ~ WALy (AT 758) - BE B (278
B 7E8) GRS L0 iR EZNT IR S i &

o

B Creator of Tex and metafont
B Turing Award, 1974

B $2.56 check

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System

slide 14

Math operations (n the Jack 0s)

class Math {

class String {

String processing (n the Jack 0OS)

class Math {

class String {

function

/function
\/function

function

function

/function
H

class Math {

function void initQ)

int abs(int x)

int multiply(int x, int y)
int divide(int x, int y)
int min(int x, int y)

int max(int x, int y)

int sqre(int x)

class Array {

W

class Keyboard {

class Sys {
function (.)

3

The remaining functions are simple to implement.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 15

Class String {

constructor String new(int maxLength)

class Array {

W

class Keyboard

{

method void dispose() cuf?;sctsiy:n{()
method int lengthQ }
method char charAt(int j)
method void setCharAt(int j, char c)
method String appendChar(char c)
method void eraselLastChar()
method int intvalue()
method void setint(int j)
function char backSpace()
function char doubleQuote()
function char newLine()
by
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 16

Single digit ASCII conversions

Character: ‘0’ 1 z 3 4q 5 6 7 g 9

ASCHcode: 48 43 50 51 52 53 54 35 56 57

B asciiCode(digit) == digit + 48

B digit(asciiCode) == asciiCode - 48

Converting a number to a string

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 17

B SingleDigit-to-character conversions: done

B Number-to-string conversions:

{f Convert a non-negative number to a string #f Convert a string to a non-negative number
int2 String(x): string2Int(s):
lastDhgit = n % 10 v=0
¢ = character representing JastIigis fori=1... length of s do
ifn =10 d =1nteger value of the digit s[i]
return ¢ (as a string) v=p*10+d
else return v
return int23tring (2 / 10).append(z) i (Assuming that s[1] is the most

i significant digit character of 5.)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 18

class Math {

Memory management (in the Jack 0S)

class String {

class Array {

W

class Keyboard {

Memory management (naive)

class Sys {
function (.)

3

class Memory {
function int peek(int address)
function void poke(int address, int value)

function Array alloc(int size)

function void deAlloc(Array o)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 19

B When a program constructs (destructs) an object, the OS has to allocate
(de-allocate) a RAM block on the heap:

e alloc(size): returns a reference to a free RAM block of size size

e deAlloc(object): recycles the RAM block that object refers to

Initialization: free = heap Base

i Allocate a memory block of size words.
alloc(size): B The data structure that
this algorithm manages

painier =froz is a single pointer: free.

free = free + size

return poinier

ff De-allocate the memory space of a given abject,

deAlloc(ndiact):
do nothing
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 20

Memory management (improved)

Initialization:
freelisi = heapBase
frealist length = haapLength

freelist.mext = null

i Allocate a memory space of size words.
alloc(size):
Search freelist using best-fit or first-fit heuristics
to obtain a segment with segment length = gize
If no such segment is found, return failure
(ot attempt defragmentation)
block =needed part of the found segment
(or all of it, if the segment remainder is too small)

Tpdate freelist to reflect the allocation
binek[-1]=size + 1 [/ Retember block size, for de-allocation
Return black

i Deallocate a decommissioned abject.
deAlloc(adeci):

segment = ohject - 1
segmentlength = abject[-1]
Insert segment into the freelis:

Data structure

freelist —»|

After alloc(3)

freeList —w, 4] ¥ 3

returned block —m|

Peek and poke

class Memory {

function int peek(int address)

function void poke(int address, int value)

function Array alloc(int size)

function void deAlloc(Array o)

B Implementation: based on our ability to exploit exotic casting in Jack:

// To create a Jack-level

var Array memory:

let memory =

o

proxy™ of the RAM:

/¢ From this point on

we can use code like:

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 21

let
let

¥ = mwemory[i]

/4 There j is any RAM address

memory[j] = ¥ /4 Where j iz any RAM address

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 22

Graphics primitives (in the Jack 0s)

class Math {

class String {

class Array {

ii class Memory {

class Keyboard {

Memory-mapped screen

class Sys {
function (.)

3

Class Screen {
function void clearScreen()
function void setColor(boolean b)

function void drawPixel(int x, int y)

function void drawLine(int x1, int yl, int x2,

int y2)

function void drawCircle(int x, int y, int r)

function void drawRectangle(int x1, int yl,int x2, int y2)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 23

mapBase+ |_. u]

Wemaory

0011000000000000

3
32
33

63

8129
5130

8160

0000000000000000

0000000000000000

0001110000000000

0000000000000000

0000000000000000

&

0100100000000000

0000000000000000

0000000000000000

o 0

it

7~ orow 1

oy
293

Screen
01234567 Lo 81

refresh several times
each second

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 24

Pixel drawing

drawPixel (x,)

Hardware-specific.

N Assuming a memory mapped screen;
TWrite a predetermined value in the R AN

location cofresponding to screen location (x, ¥).

B Implementation: using poke(address,value)

program

screen
driver

application part of the

operating system

screen
memory map

refresh

part of the physical
hardware screen

Image representation: bitmap versus vector graphics

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System

slide 25

ﬂ 7x Magnification

Vector.

yice |
/S atg

|
e -
e —

'K
Bitmap
vector s
] BiTmap file: 00100, 01010,01010,10001,11111,10001,00000, . . .
m Vector graphics file: drawLine(2,0,0,5), drawLine(2,0,4,5), drawLine(1,4,3,4)
m Pros and cons of each method.
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 26

Vector graphics: basic operations

w N P o

© o ~NO UM WNPRO

0123 .

Screen =

grid of pixels

23456 7 8 910111213

—
o

-
h

drawPixel(x,y) (Primitive operation)

drawLine(x1,y1,x2,y2)
drawCircle(x,y,r)
drawRectangle(x1,y1,x2,y2)

drawTriangle(x1,y1,x2,y2,x3,y3)

etc. (a few more similar operations)

drawLine(0,3,0,11)
drawRectangle(1,3,5,9)
drawlLine(1,12,2,12)
drawLine(3,10,3,11)
drawLine(6,4,6,9)
drawLine(7,0,7,12)
drawLine(8,1,8,12)

How to draw a line?

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System

slide 27

[[]
drawLine(x1,y1,x2,y2)

m Basic idea: drawline is implemented through a sequence of drawPixel operations
m Challenge 1: which pixels should be drawn ?
m Challenge 2: how to draw the line fast?

m Simplifying assumption: the line that we are asked to draw goes north-east.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 28

Line Drawing

Line Drawing algorithm

B Given: drawLine(x1,y1,x2,y2)

B Notation: x=x1, y=y1, dx=x2-x1, dy=y2-y1

B Using the new notation:
We are asked to draw a line
between (x,y) and (x+dx,y+dy)

set (a,b) = (0,0)

while there is more work to do
drawPixel(x+a,y+b)
decide if you want to go right, or up

if you decide to go right, set a=a+1;
if you decide to go up, set b=b+1

(x+dr,y+dv)

dy

dx

(%) dx

set (a,b) = (0,0)

while (a < dx) and (b < dy)
drawPixel(x+a,y+b)
decide if you want to go right, or up

if you decide to go right, set a=a+1;
if you decide to go up, set b=b+1

{(x+dr,y+dv)
—9
(x+a,y+E)
a+r+
- ‘ ﬁ
a.) dx
B

(xy)

overshooting

drawLine(xy x+dx,y+dy)

set (a,b) = (0,0)
while (a < dx) and (b < dy)

drawPixel(x+a,y+b)

decide if you want to go right, or up COSTY mmp

if you decide to go right, set a=a+1;
if you decide to go up, set b=b+1

{(x+dxy+a)

drawLine(x,y x+dx,y+dy)

set (a,b) = (0,0)

while (a < dx) and (b < dy)
drawPixel(x+a,y+b)

if b/a > dy/dx spt a=a+1
e set b=b+1

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 29 Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 30
Line Drawing algorithm, optimized Circle drawing
S 7Y L ==
: Motivation The screen
drawLine(x,y x+dx y+dy) E—— origin (0,0)
_ B When you draw polygons, e.g. in animation is at the to dr =-2
eaiial)= @) or video, you need to draw millions of lines left P
il s YL C) Therefore, drawlLine must be ultra fast d=-1
drawPixel(x+a,y+b) . .
Division is a very slow operation
if b/a > dy/dx set a=a+1 L n =0
else set b=b+1 Addition is ultra fast (hardware based)
At =1
CA - I -r'lj dr =2
b/a>dy/dx is the same as a*dy < b*dx “ . b
drawline(x,y x+dx,y+dy) Define diff = a*dy-b*dx | T -7
e ()= (O, eliff =0 Let's take a close look at this diff: ot @ = (x = afr "=y Ty o+ dp) point b = (x4 ofr* —dp F Ly +dp)
wiilia(Ecejae (g ey) 1. b/a>dy/dx is the same as diff < O drawCirdle()
i rawCircle(x, y, 7
drawPixel(x+ay+b) 2 When we set (a,0)=(0,0), diff = 0 i o y)
if di = iff = di Or £ac e—r..rdo
i Chiswesia _a+1, dl-ff - dl-ff +dx 3. When we set a=a+1, diff goes up by dy -
else set b=b+1, diff = diff - dy . - - - -
4. When we set b=b+1, diff goes down by dx drawLine from (x—r" —dy®, v +dy) to (x+.r" —dy” .y +dv)
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 31 Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 32

An anecdote about efficiency and design

... Jobs obsessed about the look of what would appear on
the screen. One day Bill Atkinson burst into his office all
excited. He had just come up with a brilliant algorithm

that could draw circles onscreen quickly. The math for -
Library

¥ Podcasts

& Party Shuffle

making circles usually required calculating square roots,

which the Motorola 68000 microprocessor didn’t support. [Purchased Music

% 90's Music
[# My Top Rated
[#] Recently Added

But Atkinson did a workaround based on the fact that the
sum of a sequence of odd numbers produces a sequence of

perfect squares (e.9. 1 +3=4,1+3+5=9, etc.)

When Atkinson fired up his demo, everyone was

impressed except Jobs. “Well, circles are nice,” he said,

“but how about drawing rectangles with rounded .
corners?” R e—
(Steve Jobs, by Walter Isaacson, 2012) ‘

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System

slide 33

To sum up (vector graphics)...

B To do vector graphics (e.g. display a PPT file), you have to draw polygons
B To draw polygons, you need to draw lines
B To draw lines, you need to divide

B Division can be
re-expressed as multiplication

B Multiplication can be
reduced to addition

B Addition is easy.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 34

Ivan Sutherland

B Bornin 1938
B PhD dissertation on Sketchpad (3D demo), 1963

one of the most influential computer programs ever
written. This work was seminal in Human-Computer
Interaction, Graphics and Graphical User Interfaces
(6UIs), Computer Aided Design (CAD), and
contraint/object-oriented programming.

TX-2 computer (built circa 1958) on which the software
ran was built from discrete transistors (not integrated |
circuits -it was room-sized) and contained just 64K of
36-bit words (~272k bytes). g

B PhD advisor: Claude Shannon

B Father of computer graphics
B Turing Award, 1988

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System

slide 35

class Math {

Character output primitives (n the Jack 0S)

class String {

class Array {

%

class Keyboard {

class Sys {
function (.)

¥

class Output {

function void moveCursor(int i, int j)

function void printChar(char c)

function void printString(String s)
function void printint(int i)
function void printinQ)

function void backSpace()

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 36

Character output

Font implementation in the Jack 0s)

class Output {
static Array charMaps;
function void initMap(Q {
let charMaps = Array.new(127);
// Assign a bitmap for each character

do Output.create(32,0,0,0,0,0,0,0,0,0,0,0); // space
do Output.create(33,12,30,30,30,12,12,0,12,12,0,0); // !
do Output.create(34,54,54,20,0,0,0,0,0,0,0,0); /7

do Output.create(35,0,18,18,63,18,18,63,18,18,0,0); // #

do Output.create(48,12,30,51,51,51,51,51,30,12,0,0); // O
do Output.create(49,12,14,15,12,12,12,12,12,63,0,0); // 1
do Output.create(50,30,51,48,24,12,6,3,51,63,0,0); /7 2

do Output.create(65,0,0,0,0,0,0,0,0,0,0,0); // A ** TO BE FILLED **
do Output.create(66,31,51,51,51,31,51,51,51,31,0,0); // B
do Output.create(67,28,54,35,3,3,3,35,54,28,0,0); // C

B Given display: a physical screen, say 256 rows by 512 columns

B We can allocate an 11 by 8 grid for each character

B Hence, our output package should manage a 23 lines by 64 characters screen
B Font: each displayable character must have an agreed-upon bitmap

B TIn addition, we have to manage a “cursor”.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 37

return;
3} // Creates a character map array
function void create(int index, int a, int b, int c, int d, int e,
int f, int g, int h, int i, int j, int k) {
var Array map;
let map = Array.new(11);
let charMaps[index] = map;
let map[0] = a;
let map[1] = b;
let map[2] = c;
let map[10] = k;
return; }
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 38

Keyboard primitives in the Jack 0s)

class Math {

class String {

class Array {

W

class Keyboard {

Keyboard input

class Sys {
function (.)

Class Keyboard {

function char keyPressed()

function char readChar()

function String readLine(String message)

3

function int readlnt(String message)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 39

keyPressed():
/f Depends on the specifics of the keyboard interface
if a key 1z presently pressed on the keyboard
return the ASCIT walue of the key
else
return 0

B If the RAM address of the keyboard's memory map is known,
the above logic can be implemented using a peek function

B Problem I: the elapsed time between a “key press” and key release”
events is unpredictable

B Problem II: when pressing a key, the user should get some visible
feedback (cursor, echo, ...).

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 40

A historic moment remembered

... Wozniak began writing the software that
would get the microprocessor to display images
on the screen. After a couple of month he was
ready to test it. “I typed a few keys on the
keyboard and | was shocked! The letters were

displayed on the screen.”

It was Sunday, June 29, 1975, a milestone for the

personal computer. “It was the first time in

Keyboard input (cont.)

readChar():
{f Fead and echo a single character
display the cursor
while no kev 15 pressed on the keyboard
do nothing /¥ weait till the uzer presses a key
¢ = code of currently pressed key
while a key is pressed
do nothing /f wait for the userto let go
print o at the current cursor location

move the cursor one position to the right

readLine():
ff Fead and echo a “line” (until newline)
5 = empty string
repeat
¢ = readChar)

if ¢ = newline character

history,” Wozniak lat id, “ had d e ‘ print newline
I1story, 0znlak later said, “anyone ha ed a
Y Y p return g
character on a keyboard and seen it show up on else if ¢ = backspace character
their own computer’s screen right in front of remove last character from s
move the cursor | position back
them else
5 = s.append(z)
(Steve Jobs, by Walter Isaacson, 2012) S —
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 41 Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 42
Jack OS recap Perspective

class Math { ‘

class Output { ‘

Class Screen { ‘

class Memory { ‘

Project 12:

Class string { | Build it.

Class Array { ‘ e

Class Keyboard {

Class Sys {
function void halt(Q):
function void error(int errorCode)
function void wait(int duration)

Implementation: just like GNU Unix and Linux were built:

Start with an existing system,
and gradually replace it with a new system,
one library at a time.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System

slide 43

B What we presented can be described as a:

e mini OS

e Standard library

B Many classical OS functions are missing

B No separation between user mode and OS mode

B Some algorithms (e.g. multiplication and division) are standard

B Other algorithms (e.g. line- and circle-drawing) can be accelerated

with special hardware

B And, by the way, we've just finished building the computer.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 44

Typical computer system

OS as a resource manager

mouse keyboard printer monitor User
: 1 User User User
disks o
es 0 = 2 3 "
I I
\ / | compiler assembler Text editor Database
disk raphics SR
Sl controller U=B oot gd: ter it
| | r System and Application Programs
memory
Computer
Hardware
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 45 Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 46
A detailed view of OS OS History
1, T !,
Users MVS (60s) Multics (60's)
~ N
~ - N
~ ~
A A A MS/DOS (70's) VMS (70'5) UNIX (70'5) _
User- P P P | N
mode P P P System N
Library | VMware
Windaows (80's) I BSD UNIX (807) Mach (80’s)
File Virtual | Kernel-user ! ST~ < -
Kernel- System TCP (g Memory | Interface | . -’ -~ -
mode L CPU (Abstract ! T
networking scheduling virtual machine) Windows Windows Free Linux NEXT MacOS
Hardware-Specific Software E MobileNT (90'5) BSD (905 - pres)
o Device Dri Hardware \
and Device Drivers Abstraction
Layer Android MacOS X
CPU Address /
Hardware Transiation Windows 8 (2012) i0S
Graphics
Processor Network e = == Influence
Slide by Tom Anderson Slide by Tom Anderson ——Descendant
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 48

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 47

Increasing software complexity

Computer Performance Over Time

60 7

50

40 —

30 —1=i

20 — —

et IR

NASA WindowsWindows Solaris WindowsWindowsWindows RedHat RedHat Windows Vista

Millions of lines of
source code

space 31 NT (1938) 95 98 NT 5.0 Linux 6.2Linux 7.1 XP
shuttle (1992) (1992) (1998) (2000) (2001)
ctrl
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 49

1981 1996 2011 factor
MIPS 1 300 10000 10K
MIPS/$ $100K $30 $0.50 200K
DRAM 128KB 128MB 10GB 100K
Disk 10MB 4GB 1TB 100K
Home Inter- 256
et 9.6 Kbps Kbps 5 Mbps 500

3 Mbps)
LAN network (shared) 10 Mbps 1 Gbps 300
Users per 100 1 <<1 100+
machine
Slide by Tom Anderson

OS Challenges

Early Operating Systems: Computers Very Expensive

B Performance

e Latency/response time
0 How long does an operation take to complete?

Throughput
0 How many operations can be done per unit of time?

Overhead
0 How much extra work is done by the OS?

Fairness
0 How equal is the performance received by different users?

Predictability
0 How consistent is the performance over time?

Slide by Tom Anderson

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 51

B One application at a time

e Had complete control of hardware

e OS was runtime library

e Users would stand in line to use the computer
B Batch systems

e Keep CPU busy by having a queue of jobs

e OS would load next job while current one runs

e Users would submit jobs, and wait, and wait, and

Slide by Tom Anderson

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 52

Time-Sharing Operating Systems: Computers and People Expensive

B Multiple users on computer at same time

e Multiprogramming: run multiple programs at same time

e Interactive performance: try to complete everyone's tasks

quickly

e As computers became cheaper, more important to optimize for

user time, not computer time

Slide by Tom Anderson

Process and context switching

Main Processor
Memory Registers

Process index T

. LS
Process Base
list i —| Limit | i EI
—‘ —
Other :
registers .
| I—
Context
Process Data
A
Program
(code)
b
Context
l’l'l;l"l'.‘;‘\ b Data
Program
(code)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 53 Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 54
Scheduling Memory management
Operating System Real
| — " '
EpR— [| Memory Address
Service Call Service [| Management
) Virtual P
from Process Call [] Unit .
Handler (code) i i Address Main
I I Memory
—
[|
| |
L |
Long- Short- /o
Interrupt 15 Disk
" N Term Term Queues
from Process Interrupt Address
. Quene Queue
Interrupt N Handler (code)
from /O .
Short-Term
Scheduler
(code) Secondary
Memory
v
Pass Control
to Process
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nandz2tetris.org , Chapter 12: Operating System slide 55 Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nandz2tetris.org , Chapter 12: Operating System slide 56

S -
Al (A2 S S
L] 0
s L L
1 1
BO| B1| B2 |B3 2 G
3 3
4 4
5 5
AT 16 L& |
A9 ’T_ User
8 program
b B
A8 i
10
User
. program
Figure 2.9 A
Virtual Memory B4 | BS |B.6
Concepts ~—~
Main Memory Disk

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System

slide 57

Hierarchical file systems

Root directory

/\

bin cse

6 aculty grads
Is ps cp csh / \ / ~.

elm sbrandt kag amer4
classes research é}
stuff stuff
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 58

Today’s Operating Systems: Computers Cheap

Smartphones
Embedded systems

Web servers

Tablets

[|
[|

[|

B |aptops
[

B Virtual machines
[|

Slide by Tom Anderson

Tomorrow’s Operating Systems

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System

slide 59

B Giant-scale data centers
B Increasing numbers of processors per computer
B Increasing numbers of computers per user

B Very large scale storage

Slide by Tom Anderson

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 60

