Elements of Computing Systems, Nisan & Schocken, MIT Press www.idc.ac.il/tecs

Operating Systems

Building a Modern Computer From First Principles

www.nhand?2tetris.org

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 1

Where we are at:

Abstract design Software
» abstract interface hi h
lerarc
Chapters 9, 12 H.L. Language | Compiler 4
& > abstract interface
. h 10-11
Operating Sys. Chapters 10
Virtual VM Translator
. » abstract interface
Machine Chapters 7 - 8
Assembly
Language
Assembler ‘
v Chapter 6
abstract interface
Computer
Machine Architecture
» abstract interface
Language
Chapters 4-5)
Hardware Gate Logic .
latform » abstract interface
LA Chapters 1-3 Electrical
Hardware Chips & Engineering‘
hierarchy Logic Gates

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 2

Jack revisited

/** Computes the average of a sequence of iIntegers. */
class Main {
function void main() {
var Array a;
var int length;
var Int 1, sum;

let length = Keyboard.readlnt(’How many numbers? ’’);
let a = Array.new(length); // Constructs the array
let 1 = O;

while (i < length) {
let a[i] = Keyboard.readInt(”Enter the next number:);
let sum = sum + a[i];

let 1 =1 + 1;

}

do Output.printString(’The average i1s: ”);
do Output.printint(sum / length);

do Output.printin();

return;

}
+

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 3

Jack revisited

/** Computes the average of a sequence of iIntegers. */
class Main {
function void main() {
var Array a;
var int length;
var Int 1, sum;

let length = Keyboard.readlnt(’How many numbers? ’’);
let a = Array.new(length); // Constructs the array
let 1 = 0;

while (i < length) {
let a[i] = Keyboard.readlnt(”Enter the next number:);
let sum = sum + a[i];

let 1 =1 + 1;

}

do Output.printString(’The average i1s:);
do Output.printint(sum / length);

do Output.printin();

return;

}
+

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 4

Typical OS functions

Language extensions / standard library ~ System-oriented services

B Mathematical operations B Memory management
(abs, sqgrt, ...) (objects, arrays, ...)

B Abstract data types B T/O device drivers
(String, Date, ...) B Mass storage

B Output functions -

(printChar, printString ... File system

, B Multi-tasking
B Tnput functions

(readChar, readLine ...) B UI management (shell / windows)

B Graphics functions B Security
(drawPixel, drawCircle, ..)
B Communications

B And more ...
B And more ...

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 5

The Jack OS

® Math: Provides basic mathematical operations;

B String: Implements the String type and string-related operations:;
B Array: Implements the Array type and array-related operations;
B Output: Handles text output to the screen;

m Screen: Handles graphic output to the screen;

B Keyboard: Handles user input from the keyboard;
® Memory: Handles memory operations;

H Sys: Provides some execution-related services.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 6

Jack OS API

class Math {

Class String {

Class Array {
class Output {
Class Screen {
s ks
class Memory {
Class Keyboard {
}
Class Sys {
} function void halt():
h y function void error(int errorCode)
function void wait(int duration)
s
s

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 7

A typical OS:

d

d

Is modular and scalable

Empowers programmers (language extensions)

Empowers users (file system, GUI, ...)

Closes gaps between software and hardware

Runs in "protected mode”

Typically written in some high level language

Typically grows gradually, assuming more and more functions

Must be efficient.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System

slide 8

Efficiency

We have to implement various operations on #-bit binary numbers
(n=16, 32, 64, ...).

For example, consider mu/tiplication

BNaive algorithm: to multiply x*y: { fori=1..y do sum = sum + x }
Run-time is proportional to y
In a 64-bit system, y can be as large as 2%+
Multiplications can take years to complete

BMAlgorithms that operate on #-bit inputs can be either:

e Ndive: run-time is proportional to the value of the n-bit inputs

e (Good: run-time is proportional to n, the input’s size.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 9

Example |: multiplication

The “steps” The algorithm explained
(first 4 of 16 1teration)

?311— £ 0001011
yio 00 0 0 1 01 jfthbitofy
0 él g é L 0001 o011 1
10 1 1 oo 1 01 10 (]
B 01 01 1 00 1
110111 =255 1011000 0
xv 0O 1 1 0 1 1 1 ST
multiply{x, y):
{f Where x,y = () B Run-time: proportional to #
st =)
shiftedX = x ® Can be implemented in SW or HW
fori =0...n-1) do
if (j-th bit of) = 1 then B Division: similar idea.

stipn = sy + shiftedX
shiftedX = shiftedX * 2

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 10

Example Il: square root

The square root function has two convenient properties:
e It's inverse function is computed easily
e Monotonically increasing

Functions that have these two properties can be computed by binary search:

sqrtix):
ff Compute the integer part of v = x strate gy
if Find an integer v such that »* <z <{»+1)* (for 02 x<2")

i By performing a binary search in the range 0... 2% -1,
v =1
for i=n/2-1...0 do

if (y4+299% < x then y=y+27

refurn

Number of loop iterations is bounded by n/2, thus the run-time is O(n).

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 11

Math operations (in the Jack 0s)

class Math {

class String {

class Math {

class Array {

class Output { |

class Screen { |

class Memory {

class Keyboard {

function void initQ) feete ne N
function i1nt abs(int x) i
‘//}hnction int multiply(int x, Int y)
/function int divide(int x, Int y)
function int min(int X, Int y)
function int max(int x, Int y)
\//,function int sgrt(int x)
+
The remaining functions are simple to implement.
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 12: Operating System slide 12

class Math { |

String processing (in the Jack 0S)

class String { |

class Array {

class Output { |

Class String {

class Screen { |

class Memory {

constructor String new(int maxLength)

class Keyboard { |

method void dispose()

class Sys {
function (.)

method Int length(Q) 4

method char charAt(int j)

method void setCharAt(int j, char c¢)
method String appendChar(char c)
method void eraseLastChar()

method Int intValue()

method void setint(int j)

function char backSpace()
function char doubleQuote()

function char newLine()

}

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 13

Single digit ASCII conversions

Character: ‘o "1° "2 ‘37 ‘4 ‘5 ‘g A - M=
ASCHeode: 458 43 50 51 22 53 34 55 586 57
B asciiCode(digit) == digit + 48
B digit(asciiCode) == asciiCode - 48
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 14

Converting a number to a string

B SingleDigit-to-character conversions: done

B Number-to-string conversions:

i Conwert a non-negative number to a string
int2String (#x):
fastiigit = xn % 10
¢ = character representing fast L 5os
if # < 10
returti ¢ (as a string)
else

return int2Stringz f 10 append(e)

A Convert a string to a non-negative number
string2Int(s):
y=I
teri=1... length of = do
« = integer value of the digit =7]
v=v*10+4
return v

A Assuming that s[1] 15 the most
i significant digit character of 2

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 15

class Math { |

Memory management (in the Jack 0S)

class String { |

class Array {

class Output { |

class Screen { |

class Memory {

class Keyboard { |

class Sys {
function (.)

}

class Memory {
function int peek(int address)
function void poke(int address, Int value)

function Array alloc(int size)

function void deAlloc(Array o)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 16

Memory management (naive)

® When a program constructs (destructs) an object, the OS has to allocate
(de-allocate) a RAM block on the heap:

e alloc(size): returns a reference to a free RAM block of size size

e deAlloc(object): recycles the RAM block that object refers to

Initiahization: jfree = heap Sase

i Allocate a memory block of size words.

alloc(size: O Th.e data structure that
this algorithm manages

pointer = free is a single pointer: free.

free = free + size

return poinier

ff De-allocate the memory space of a given abjeck.
deAllocicbiect):
do nothing

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 17

Memory management (improved)

Initialization:
Jreelisi = heapBbase
Freelist fength = heapLengih

Freelist.next = null

i Allocate a memory space of size words.
alloc(size):
weatch freelist using best-fit or first-fit heuristics
to obtain a segment with segment length = size

It no such segment 15 found, return fatlure
(or attempt defragmentation)

block = needed part of the found segment
(or all of it, if the segment remainder 15 too small)

Tpdate freelist to reflect the allocation
dlock[-1]=gize + 1 [/ Eemember block size, for de-allocation

Eeturn block

i Deallocate a decommissioned abject.
deAllociebiect):

segrment = abject - 1

segment fength = objeci[-1]

Insert segrment into the freelis

Diata structure

freelist —m 4| 9

After alloc(D)

freelist —w 4 3

returned block —m

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System

slide 18

Peek and poke

class Memory {

function i1nt peek(int address)

function void poke(int address, int value)

function Array alloc(int size)

function void deAlloc(Array o)

B Implementation: based on our ability to exploit exotic casting in Jack:

ff To create a Jack-lewvel "proxy™ of the RLM:
War LArray memor v

let memory = 0O;

ff From this point on we can use code like:

let x = memory[i] 7 Where j iz any BAM address
let mwemory[i] = v fF Where j iz any BAM address

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 19

class Math { |

Graphics primitives (in the Jack 0S)

class String { |

class Array {

class Output { |

class Screen { |

class Memory {

class Keyboard { |

class Sys {
function (.)

, -

Class Screen {
function void clearScreen()
function void setColor(boolean b)

function void drawPixel(int x, Int y)

function void drawLine(int x1, int yl, Int x2, iInt y2)

function void drawRectangle(int x1, iInt yl,int X2, Int y2)

function void drawCircle(int x, Int y, iInt r)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 20

Memory-mapped screen

rAErm oy SCreen
mapBase+ = 0 |0011000000000000) — 01 2 3 4 5§F 7 511

1 [0000000000000000 ;

31 |000oodocooaoooc
32 0001 110000000000
43 |000000000a0000000

J\

" orow]

63 |000000000a0000a00 B 955 . .

5129 |0100100000000000|) A

8130 (0O00000000000000

oy
255

refresh several times
each second

8160 (0000000000000000

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 21

Pixel drawing

drawPixel (x, v):
ff Hardware-specific.
ff Assuming a memory mapped screen:
Write a predetermined wvalue 1n the EAT

location corresponding to screen location (x,).

B Tmplementation: using poke(address,value)

screen — 000 HHHHHH refresh
rogram : :
Prog driver oo 528 [mechanism
application part of the screen part of the physical
operating system memory map hardware screen

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 22

Image representation: bitmap versus vector graphics

pixel a 7x Magnification

\ Vector.}

rice |

Digcomar Frofeot corraisa nar ke
e i \

EEE

lce Cream -|
(LY - —
I oa I
Bitmap
bitmap oy

m Bitmap file: 00100, 01010,01010,10001,11111,10001,00000, . . .
m Vector graphics file: drawLine(2,0,0,5), drawLine(2,0,4,5), drawLine(1,4,3,4)

m Pros and cons of each method.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 23

Vector graphics: basic operations

0123 . .. - drawPixel(x,y) (Primitive operation)

/ drawLine(x1,y1,x2,y2)
Screen = ‘ drawCircle(x,y,r)

grid of pixels - drawRectangle(x1,y1,x2,y2)

w N - O

‘ drawTriangle(x1,y1,x2,y2,x3,y3)

etc. (a few more similar operations)

012 3 45¢6 7 8 910111213

drawLine(0,3,0,11)
drawRectangle(1,3,5,9)
I drawLine(1,12,2,12)
drawLine(3,10,3,11)
drawLine(6,4,6,9)

drawLine(7,0,7,12)
drawLine(8,1,8,12)

© 0O NO Ol hWDN - O

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 24

How to draw a line?

drawLine(x1,y1,x2,y2)

m Basic idea: drawline is implemented through a sequence of drawPixel operations

m Challenge 1: which pixels should be drawn ?

m Challenge 2: how to draw the line fast?

m Simplifying assumption: the line that we are asked to draw goes north-east.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 25

Line Drawing

(x+afx, ¥+ dyv)
.-"'-.
B Given: drawLine(x1,y1,x2,y2)
B Notation: x=x1, y=y1, dx=x2-x1, dy=y2-y:]
y
B Using the new notation: dv
We are asked to draw a line dx
between (x,y) and (x+dx,y+dy) L
(x,¥) dx
set (a,b) = (0,0) set (a,b) = (0,0)
while there is more work to do =) | while (a<dx)and (b< dy)
drawPixel(x+a,y+b) drawPixel(x+a,y+b)
decide if you want to go right, or up decide if you want to go right, or up
if you decide to go right, set a=a+1; if you decide to go right, set a=a+1;
if you decide to go up, set b=b+1 if you decide to go up, set b=b+1

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 26

Line Drawing algorithm

(x+dlx, v +cv) (x+dx, v+
e —o
(x+a ¥+ &)) f L
) Sl

&y ’ dy

I (x+a, ¥+ &) T
P
(x,7) [x, ¥

overshooting

undershooting

drawLine(x,y, x+dx,y+dy)
set (a,b) = (0,0)
while (a < dx) and (b < dy)

drawPixel(x+a,y+b)

if you decide to go right, set a=a+1;
if you decide to go up, set b=b+1

decide if you want to go right, orup C(

drawline(x,y, x+dx y+dy)
set (a,b) = (0,0)
while (a < dx) and (b < dy)

drawPixel(x+a,y+b)

Sty if b/a > dy/dx spt a=a+1
set b=b+1

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System

slide 27

Line Drawing algorithm, optimized

Motivation

drawlLine(x,y, x+dx y+dy)

set (a,b) = (0,0)

while (a < dx) and (b < dy)
drawPixel(x+a,y+b)

if b/a > dy/dx set a=a+1 o
else set b=b+1 M Addition is ultra fast (hardware based)

!

drawLine(x,y, x+dx,y+dy)

set (a,b) = (0,0), diff =0

while (a < dx) and (b < dy)
drawPixel(x+a,y+b)

if diff < O set a=a+1, diff = diff + dx :
else set b=b+1, diff = diff - dy 3. When we set a=a+1, diff goes up by dy

4. When we set b=b+1, diff goes down by dx

B When you draw polygons, e.g. in animation
or video, you need to draw millions of lines

Therefore, drawLine must be ultra fast

Division is a very slow operation

b/a>dy/dx is the same as a*dy < b*dx
Define diff = a*dy - b*dx

Let's take a close look at this diff:

1. b/a>dy/dx is the same as diff < 0

2. When we set (a,b)=(0,0), diff =0

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 28

Circle drawing

=TT T . = —}
The screen : ¥
origin (0,0) . o2
is at the top B
left.
£ - dy =—1
;" (X0 p
:I - *\'L_"-\. : Iﬂ:})=|:|
I|" -7 - f‘f i \\. - - ‘-._.I.lll ﬂ:}):l
-"\\.-' :F f“"" EI:::P ; - |'ll
. .-'-l]"2 _IQ})I : k'\. .-'-l
k : » =2
a ‘n\ . PR ¥
&y =v

point @ = (x — Afri—adr Ly +dp) point b =(x+ Ayt —ade® .y +dp)

drawCircle(x, v,)
tor each dv e —r...r do

drawline from (x— Jr® —ady® ., y+ay) to (x+.Jr° —ay .y +ay)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 29

An anecdote about efficiency and design

... Jobs obsessed about the look of what would appear on
the screen. One day Bill Atkinson burst into his office all

excited. He had just come up with a brilliant algorithm

that could draw circles onscreen quickly. The math for —Source
Library
0 = = = ¥ Podcasts
making circles usually required calculating square roots, Party Shaiffc

" Tﬂ ‘Music Store

which the Motorola 68000 microprocessor didn’t support.

|£| Purchased Music
[g! 90's Music

But Atkinson did a workaround based on the fact that the & My Top Rated
|!'} Recently Added

sum of a sequence of odd numbers produces a sequence of

perfect squares (e.g. 1 +3=4,1+3+5=9, etc.)

When Atkinson fired up his demo, everyone was

impressed except Jobs. “Well, circles are nice,” he said,

“but how about drawing rectangles with rounded - .

g g \ m —
corners?” '
(Steve Jobs, by Walter Isaacson, 2012) ‘

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 30

To sum up (vector graphics)...

B To do vector graphics (e.g. display a PPT file), you have to draw polygons
B To draw polygons, you need to draw lines
B To draw lines, you need to divide

B Division can be
re-expressed as multiplication

® Multiplication can be
reduced to addition

M Addition is easy.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 31

Character output primitives (in the Jack 0S)

class Math { |

class String { |

class Array {

class Output { |

class Screen { |

class Memory {

class Keyboard {

function

function

class Output {

moveCursor(int i, int j)

printChar(char c)

function

function

function

function

printString(String s)
printint{int 1)
printin()

backSpace()

class Sys {
function (.)

, -

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 32

Character output

Given display: a physical screen, say 256 rows by 512 columns
We can allocate an 11 by 8 grid for each character
Hence, our output package should manage a 23 lines by 64 characters screen

Font: each displayable character must have an agreed-upon bitmap

In addition, we have Yo manage a "cursor”.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 33

Font implementation (in the Jack 0s)

class Output {
static Array charMaps;
function void initMap(Q {
let charMaps = Array.new(127);

//
do
do
do
do

do

do
do

do

do
do

Assign

Output.
Output.
Output.
Output.

Output.
Output.
Output.

Output.
Output.
Output.

return;

a bitmap for each character

space

create(32,0,0,0,0,0,0,0,0,0,0,0); //
create(33,12,30,30,30,12,12,0,12,12,0,0); //
create(34,54,54,20,0,0,0,0,0,0,0,0); // -

create(35,0,18,18,63,18,18,63,18,18,0,0); //

create(48,12,30,51,51,51,51,51,30,12,0,0); //
create(49,12,14,15,12,12,12,12,12,63,0,0); //
create(50,30,51,48,24,12,6,3,51,63,0,0); //

create(65,0,0,0,0,0,0,0,0,0,0,0); //
create(66,31,51,51,51,31,51,51,51,31,0,0); //
create(67,28,54,35,3,3,3,35,54,28,0,0); //

A ** TO BE FILLED **

// Creates a character map array
function void create(int index,
int g, int h,

= map;

int F,
var Array map;
let map = Array.new(11);
let charMaps[index]
let map[0] = a;
let map[1l] = b;
let map[2] = c;
let map[10] = Kk;
return; }

int a, int

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System

slide 34

class Math { |

Keyboard primitives (in the Jack 0S)

class String { |

class Array {

class Output { |

class Screen { |

class Memory {

class Keyboard { |

class Sys {
function (.)

}

Class Keyboard {

function char keyPressed()

function char readChar()

function String readLine(String message)

function int readlnt(String message)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 35

Keyboard input

keyPressed():

ff Depends on the specifics of the kevboard interface
it a kevy is presently pressed on the kevboard

return the A5CIT walue of the key
else

return [

B If the RAM address of the keyboard's memory map is known,
the above logic can be implemented using a peek function

B Problem I: the elapsed time between a “"key press” and key release”
events is unpredictable

B Problem II: when pressing a key, the user should get some visible
feedback (cursor, echo, ...).

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 36

A historic moment remembered

... Wozniak began writing the software that
would get the microprocessor to display images
on the screen. After a couple of month he was
ready to test it. “I typed a few keys on the
keyboard and I was shocked! The letters were

displayed on the screen.”

It was Sunday, June 29, 1975, a milestone for the
personal computer. “It was the first time in
history,” Wozniak later said, “anyone had typed a
character on a keyboard and seen it show up on
their own computer’s screen right in front of

them”

(Steve Jobs, by Walter Isaacson, 2012)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 37

Keyboard input (cont.)

readChar();

ff Bead and echo a single character
display the cursor
while no key 1z pressed on the kevhoard
do nothing Y wait till the user presses a key
¢ = code of currently pressed key
while a kev 15 pressed
do nothing /f wait for the user to let go

print ¢ at the current cursor location
tnove the cursor one position to the nght

refurn o

readLine():

ff Fead and echo a “hine™ (until newline)
5 = empty stnng
repeat
¢ = readChar)
if ¢ = newline character
print newline
refurn s
else if ¢ = backspace character
remnove last character from =
move the cursor 1 position back

else
5 = rappend(e)
refurh 5

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 38

Jack OS recap T’

Project 12:
Build it.

class Math {

Class String {

Class Array {

class Output {

Class Screen {

class Memory {

Class Keyboard {

Class Sys {
function void halt():
function void error(int errorCode)
function void wait(int duration)

B TImplementation: just like GNU Unix and Linux were built:

B Start with an existing system,
and gradually replace it with a new system,
one library at a time.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 39

Perspective

B What we presented can be described as a:
e mini OS
e Standard library
B Many classical OS functions are missing
® No separation between user mode and OS mode
B Some algorithms (e.g. multiplication and division) are standard

B Other algorithms (e.g. line- and circle-drawing) can be accelerated
with special hardware

B And, by the way, we've just finished building the computer.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 12: Operating System slide 40

