Computer Architecture

Building a Modern Computer From First Principles

www.nhand?2tetris.org

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 1

Von Neumann machine (circa 1940)

CPU
Input
«—)
.) . evice
Memory Arithmetic Logic
Unit (ALU)
(data < >
+ Registers
instructions)
I Output
Control device

Stored
program

concept!

John Von Neumann (and others) ... made it possible Andy Grove (and others) ... made it small and fast.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 2

Processing logic: fetch-execute cycle

CPU
Input
«—)
. : . evice
Memory Arithmetic Logic
Unit (ALU)
(data < >
+ Registers
instructions)
I Output
Control device

Executing the current instruction involves one or more of
the following micro-tasks:

0 Have the ALu compute some function out = f (register values)
0 Werite the ALu output to selected registers

0 As aside-effect of this computation,
figure out which instruction to fetch and execute next.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 3

The Hack chip-set and hardware platform

Elementary logic gates

Nand

And

Oor

Xor

Mux

Dmux
Notl6
Andl16
Oorile
Mux16
Or8Way
Mux4Way16
Mux8Way16
DMux4Way
DMux8Way

Combinational chips

HalfTAdder
Ful l1Adder
Add16
Incl6

= ALU

Sequential chips Computer Architecture

DEF = Memory
Bit = CPU
Register = Computer
RAM8
RAM64
RAM512
RAM4K
RAM16K
PC

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 4

The Hack computer

= A 16-bit Von Neumann platform

" The /nstruction memory and the data memory are physically separate
= Screen: 512 rows by 256 columns, black and white

= Keyboard: standard

= Designed to execute programs written in the Hack machine language

= Can be easily built from the chip-set that we built so far in the course

Main parts of the Hack computer:

0 Instruction memory (ROM)
0 Memory (RAM):
* Data memory
* Screen (memory map)
* Keyboard (memory map)
o CPU
0 Computer (the logic that holds everything together).

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 5

Lecture / construction plan

:> m Instruction memory
= Memory:
0 Data memory
O Screen
0 Keyboard
= CPU

m Computer

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 6

Instruction memory

address out
—AieP ROM32K o
15 16
Function:

m The RoM is pre-loaded with a program written in the Hack machine language

= The rRoM chip always emits a 16-bit number:

out = ROM32K[address]

m This number is interpreted as the current instruction.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 7

Data memory

Low-level (hardware) read/write logic:

To read RAM[K]: set address to K,

load

probe out
in out
To write RAM[k]=x: set address to K, —<—p RAM16K —<X—p
set in to X, 16 16
set load to 1,
run the clock address
15
High-level (OS) read/write logic:
To read RaM[K]: use the OS command out = peek(k)
To write RAM[k]=x: use the OS command poke(k, Xx)
peek and poke are OS commands whose implementation should effect the same
behavior as the low-level commands
More about peek and poke this later in the course, when we'll write the OS.
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 8

Lecture / construction plan

\/ m Instruction memory
= Memory:
\/ 0 Data memory
:> 0O Screen
0 Keyboard
= CPU

= Computer

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 9

Screen

load

The bit contents of the

Screen chip is called the

“screen memory map”

16

address

15

Screen

out

16

~~

Physical
Screen

The Screen chip has a basic RAM chip functionality:

0 read logic: out = Screen[address]

0 write logic: if load then Screen[address] = in

Side effect:

Continuously refreshes a 256 by 512 black-and-white

screen device

Simulated screen:

.;."»'» R U nY L

=
— om

The simulated
256 by 512

B&W screen

When loaded into the
hardware simulator, the
built-in screen.hdl chip
oEens up a screen window;
the simulator then
refreshes this window
from the screen memory
map several times each
second.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 10

Screen memory map

0 [0011000000000000| 0123465067 £11
1 /0000000000000000
In the Hack platform, row 0 H
the screen is 31 |0000000000000000| |
implemenTed as an 8K 32 /0001110000000000| |
,) 33 /0000000000000000
16-bit RAM chip.
s row 1
63 |0000000000000000
~ 55, I | | | |
Screen v
8129 |0100100000000000| A
8130 |0000000000000000
~ row
255 refresh several times
8160 0000000000000000| each second
How to set the (row,col) pixel of the screen to black or to white:
0 Low-level (machine language): Set the col%16 bit of the word found at
Screen[row*32+col/16] to1o0r too
(col/16 is integer division)
0 High-level: Use the OS command drawPixel(row,col)
(effects the same operation, discussed later in the course, when we'll write the OS).
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 11

Keyboard

=)

EDD
Keyboard

Keyboard
A

out

16

Keyboard chip: a single 16-bit register

Input: scan-code (16-bit value) of the currently
pressed key, or O if no key is pressed

Output: same

Special keys: Key

pressed

newline
backspace
left arrow
up arrow
right arrow
down arrow
home

Simulated keyboard:

Keyhoard Eey Keyhoard
output pressed output
128 end 135

12% page up 136

130 page down 137

131 insert 138

132 delete 139

133 Bsc 140

134 f1-f12 141-152

How to read the keyboard:

The simulated
keyboard
enabler button

The keyboard is implemented as
a built-in Keyboard.-hdl chip.
When this java chip is loaded
into the simulator, it connects
to the regular keyboard and

pipes the scan-code of the

currently pressed key to the

keyboard memory map.

0 Low-level (hardware): probe the contents of the Keyboard chip

0 High-level:

use the OS command keyPressed()

(effects the same operation, discussed later in the course, when we'll write the OS).

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture

slide 12

Lecture / construction plan

\/ m Instruction memory

|:> = Memory:

\/ 0 Data memory

\/ O Screen

\/ 0 Keyboard

= CPU

= Computer

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 13

Memory: conceptual / programmer’s view

Memory

Data

Screen
memory
Screen

Keyboard map 1T

‘] Keyboard

Using the memory:

O To record or recall values (e.g. variables, objects, arrays), use the first 16K words of
the memory

O To write to the screen (or read the screen), use the next 8K words of the memory

To read which key is currently pressed, use the next word of the memory.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 14

Memory: physical implementation

load The Memory chip is essentially a
Memory ¢ package that integrates the three chip-
parts RAM16K, Screen, and Keyboard
_ 0 into a single, contiguous address space.
n
—_—P This packaging effects the
16 RAMI6K programmer’s view of the memory, as
(16K mem. chip) out well as the necessary I/0 side-effects.
16383 16
address 16384 Screen
—i—P (8K mem. chip) \\Q/
15 24575 Screen
Keyboard
24576/ (e register) F_ \ | ———=
[
O Keyboard

Access logic:
O Access to any address from O to 16,383 results in accessing the rRaM16K chip-part

O Access to any address from 16,384 to 24,575 results in accessing the screen chip-part
0O Access to address 24,576 results in accessing the keyboard chip-part
O Access to any other address is invalid.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 15

Lecture / construction plan

\/ m Instruction memory

\/ = Memory:

\/ 0 Data memory

‘/ QO Screen

v/ O Keyboard

) = CPU

= Computer

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 16

CPU

from .
data memory inM——<—>
16 ﬁL» outM
16
. to data
from]) D) 74? writeM memory
instruction Instruction +> 0 1
memory 16 QO —4X» addressM
15
%, pc to instruction
a Hack machine language reset—~<— 15 memory
instruction like M=D+M, 1

stated as a 16-bit value

CPU internal components (invisible in this chip diagram): ALU and 3 registers: A, D, PC

CPU execute logic:

The CPU executes the instruction according to the Hack language specification:

O The D and A values, if they appear in the instruction, are read from (or written to) the
respective CPU-resident registers

O The M value, if there is one in the instruction's RHS, is read from inm

O If the instruction's LHS includes M, then the ALU output is placed in outM, the value of
the CPU-resident A register is placed in addressM, and writeM is asserted.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 17

CPU

from .
data memory inM——<—>
16 ﬁL» outM
16
. to data
from]) D) 74? writeM memory
instruction Instruction +> 0 1
memory 16 QO —4X» addressM
15
%, pc to instruction
a Hack machine language reset—~<— 15 memory
instruction like M=D+M, 1

stated as a 16-bit value

CPU internal components (invisible in this chip diagram): ALU and 3 registers: A, D, PC

CPU fetch logic:

Recall that:

1. the instruction may include a jump directive (expressed as non-zero jump bits)

2. the ALU emits two control bits, indicating if the ALU output is zero or less than zero

If reset==0: the CPU uses this information (the jump bits and the ALU control bits) as follows:
If there should be a jump, the PC is set to the value of A; else, PC is set to PC+1

If reset==1: the PC is set to @. (restarting the computer)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 18

The C-instruction revisited

dest = comp; jump

comp

dest jump

cl c2 c3 c4

c5 c6 dl1 d2

| \
d3 j1 j2 j3

binary: 1 1 1 a
(when 2=0) el [o3 4 o5 (a3 (when a=1)
camp canp
] 1 a 1] 1]
1 1 i 1 1 i 1
-1 1 1 1] 1]
D]] 1 1]]
A 1 1 u]] m] m] i
'D] 0 1 1 0 1
LA 1 1 0] 0 1 'H
=D 0 o 1 1 1 1
=4 1 1] 0 1 1 =1
D+1 0 1 1 1 1 1
A+l 1 1] 1 1 1 M+1
D=1] 1] 1 1 1 1]
A-1 1 1 0] 1 0 M-1
D+A4]] a] 1 a L+H
D-4] 1]] 1 1 -1
A-T]]] 1 1 1 N-Tr
Dl]]]]]] el
D| A] 1 O 1] 1 DN

d1 42 43 | Mremeanic | Destindtion brhere fo store the compiuiied vedua)
o o0 0 null The value 15 not stored anywhere
o o 1 H Memory[A] (memory register addressed by 4)
o1 0 L D register
o1 1 MD MWemory[A] and D register
1 0o 0 L A register
i o0 1 LM A register and Memory[4]
i 1 0 AD A register and D register
i 1 1 LMD & register, Memory[4], and D register
i1 12 13
(GH:; <0y (au.:ifl =0 (au? =0 Mnemonic | Effect
o 0 0 null o ump
a 0 1 JGT It out =0 ump
0 1 0 JEQ If out =0 qump
a 1 1 JGE It out =0 ump
1 o o JLT If out <0 ump
1 0 1 JHE It out = 0 ump
1 1 o JLE If out =0 ump
1 1 1 JMF Jump

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture

slide 19

CPU implementation = dest = comp; jump | comp ' dest ' jump |

binary: 1 1 1 a c1 c2 c3 c4 <c5 c6 dl d2 d3 j1 j2 j3

Chip diagram:

0 Includes most of the
CPU's execution logic

ALU output

<

0 The CPU's control logic is
hinted: each circled “c"
represents one or more
control bits, taken from
the instruction

a The “"decode”
bar does not
represent a
chip, but .
rather indicates : M

that the M — O e witem

7 e o

niv

XN

A F—»O—p :
AM

instruction

XN\

instruction bits

are decoded : x A *» addressM
somehow. ; ;
reset Gj)

: A Y

X » PC > pc
Cycle: Execute logic: Fetch logic: Resetting the computer:
0 Execute 0 Decode If there should be a jump, Set reset to 1,

set PC to A then set it to o.

0 Fetch 0 Execute
else set PC to PC+1

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 20

Lecture / construction plan

\/ m Instruction memory
\/ = Memory:
0 Data memory
O Screen

0 Keyboard

‘/l CPU
|:> = Computer

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 21

Computer-on-a-chip interface

reset —\Q/ Screen

—> Computer
— N\ /=
O Keyboard
Chip Hame: Computer [/ Topmost chip in the Hack platform
Input: reset
Function: When reszet iz 0, the program stored in the

computer's BROM executes. When reset 1z 1, the
execution of the program restarts. Thus, to start a
program’ s exXecution, reset must he pushed “up” (1)

and “down”™ (0.

From thiz point onward the user iz at the mercy of
the software. In particular, depending on the
program' s code, the screen may show =ome output and
the user mway be able to interact with the Ccomputer
via the kevhoard.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture

slide 22

Computer-on-a-chip Implementation

CHIP Computer {
IN reset;

Data
Memory

(Memory)

inM
writeM
Instruction)) outM
Memory instruction 5
"G addressM
(ROM32K) pc
reset
Implementation:

PARTS:

// implementation missing

Simple, the chip-parts do all the hard work.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture

slide 23

Perspective: from here to a “real” computer

B Caching

B More I/0 units

B Special-purpose processors (I/0, graphics, communications, ...)
B Multi-core / parallelism

B Efficiency

B Energy consumption considerations

B And more ...

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 24

