Computer Architecture

Building a Modern Computer From First Principles
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Von Neumann machine (circa 1940)

CPU
Input
«— )
. ) . evice
Memory Arithmetic Logic
Unit (ALU)
(data < >
+ Registers
instructions)
I Output
Control device

Stored
program

concept!

John Von Neumann (and others) ... made it possible Andy Grove (and others) ... made it small and fast.
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Processing logic: fetch-execute cycle

CPU
Input
«— )
. : . evice
Memory Arithmetic Logic
Unit (ALU)
(data < >
+ Registers
instructions)
I Output
Control device

Executing the current instruction involves one or more of
the following micro-tasks:

0 Have the ALu compute some function out = f (register values)
0 Werite the ALu output to selected registers

0 As aside-effect of this computation,
figure out which instruction to fetch and execute next.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 5: Computer Architecture slide 3




The Hack chip-set and hardware platform

Elementary logic gates

Nand

And

Oor

Xor

Mux

Dmux
Notl6
Andl16
Oorile
Mux16
Or8Way
Mux4Way16
Mux8Way16
DMux4Way
DMux8Way

Combinational chips

HalfTAdder
Ful l1Adder
Add16
Incl6

= ALU

Sequential chips Computer Architecture

DEF = Memory
Bit = CPU
Register = Computer
RAM8
RAM64
RAM512
RAM4K
RAM16K
PC
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The Hack computer

= A 16-bit Von Neumann platform

" The /nstruction memory and the data memory are physically separate
= Screen: 512 rows by 256 columns, black and white

= Keyboard: standard

= Designed to execute programs written in the Hack machine language

= Can be easily built from the chip-set that we built so far in the course

Main parts of the Hack computer:

0 Instruction memory (ROM)
0  Memory (RAM):
* Data memory
* Screen (memory map)
* Keyboard (memory map)
o CPU
0 Computer (the logic that holds everything together).
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Lecture / construction plan

:> m Instruction memory
= Memory:
0 Data memory
O Screen
0 Keyboard
= CPU

m Computer
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Instruction memory

address out
—AieP ROM32K o
15 16
Function:

m  The RoM is pre-loaded with a program written in the Hack machine language

= The rRoM chip always emits a 16-bit number:

out = ROM32K[address]

m  This number is interpreted as the current instruction.
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Data memory

Low-level (hardware) read/write logic:

To read RAM[K]: set address to K,

load

probe out
in out
To write RAM[k]=x: set address to K, —<—p RAM16K —<X—p
set in to X, 16 16
set load to 1,
run the clock address
15
High-level (OS) read/write logic:
To read RaM[K]: use the OS command out = peek(k)
To write RAM[k]=x: use the OS command poke(k, Xx)
peek and poke are OS commands whose implementation should effect the same
behavior as the low-level commands
More about peek and poke this later in the course, when we'll write the OS.
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Lecture / construction plan

\/ m Instruction memory
= Memory:
\/ 0 Data memory
:> 0O Screen
0 Keyboard
= CPU

= Computer
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Screen

load

The bit contents of the

Screen chip is called the

“screen memory map”

16

address

15

Screen

out

16

~~

Physical
Screen

The Screen chip has a basic RAM chip functionality:

0 read logic: out = Screen[address]

0 write logic: if load then Screen[address] = in

Side effect:

Continuously refreshes a 256 by 512 black-and-white

screen device

Simulated screen:

.;."»'» R U nY L

=
— om

The simulated
256 by 512

B&W screen

When loaded into the
hardware simulator, the
built-in screen.hdl chip
oEens up a screen window;
the simulator then
refreshes this window
from the screen memory
map several times each
second.
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Screen memory map

0 [0011000000000000| 0123465067 £11
1 /0000000000000000
In the Hack platform, row 0 H
the screen is 31 |0000000000000000| |
implemenTed as an 8K 32 /0001110000000000| |
, ) 33 /0000000000000000
16-bit RAM chip.
s row 1
63 |0000000000000000
~ 55, I | | | |
Screen v
8129 |0100100000000000| A
8130 |0000000000000000
~  row
255 refresh several times
8160 0000000000000000| each second
How to set the (row,col) pixel of the screen to black or to white:
0 Low-level (machine language): Set the col%16 bit of the word found at
Screen[row*32+col/16] to1o0r too
(col/16 is integer division)
0 High-level: Use the OS command drawPixel(row,col)
(effects the same operation, discussed later in the course, when we'll write the OS).
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Keyboard

=)

EDD
Keyboard

Keyboard
A

out

16

Keyboard chip:  a single 16-bit register

Input: scan-code (16-bit value) of the currently
pressed key, or O if no key is pressed

Output: same

Special keys:  Key

pressed

newline
backspace
left arrow
up arrow
right arrow
down arrow
home

Simulated keyboard:

Keyhoard Eey Keyhoard
output pressed output
128 end 135

12% page up 136

130 page down 137

131 insert 138

132 delete 139

133 Bsc 140

134 f1-f12 141-152

How to read the keyboard:

The simulated
keyboard
enabler button

The keyboard is implemented as
a built-in Keyboard.-hdl chip.
When this java chip is loaded
into the simulator, it connects
to the regular keyboard and

pipes the scan-code of the

currently pressed key to the

keyboard memory map.

0 Low-level (hardware): probe the contents of the Keyboard chip

0 High-level:

use the OS command keyPressed()

(effects the same operation, discussed later in the course, when we'll write the OS).
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Lecture / construction plan

\/ m Instruction memory

|:> = Memory:

\/ 0 Data memory

\/ O Screen

\/ 0 Keyboard

= CPU

= Computer
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Memory: conceptual / programmer’s view

Memory

Data

Screen
memory
Screen

Keyboard map 1T

‘ ] Keyboard

Using the memory:

O To record or recall values (e.g. variables, objects, arrays), use the first 16K words of
the memory

O To write to the screen (or read the screen), use the next 8K words of the memory

To read which key is currently pressed, use the next word of the memory.
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Memory: physical implementation

load The Memory chip is essentially a
Memory ¢ package that integrates the three chip-
parts RAM16K, Screen, and Keyboard
_ 0 into a single, contiguous address space.
n
—_—P This packaging effects the
16 RAMI6K programmer’s view of the memory, as
(16K mem. chip) out well as the necessary I/0 side-effects.
16383 16
address 16384 Screen
—i—P (8K mem. chip) \\Q/
15 24575 Screen
Keyboard
24576/ (e register) F_ \ | ———=
[
O Keyboard

Access logic:
O Access to any address from O to 16,383 results in accessing the rRaM16K chip-part

O Access to any address from 16,384 to 24,575 results in accessing the screen chip-part
0O Access to address 24,576 results in accessing the keyboard chip-part
O Access to any other address is invalid.
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Lecture / construction plan

\/ m Instruction memory

\/ = Memory:

\/ 0 Data memory

‘/ QO Screen

v/ O Keyboard

) = CPU

= Computer
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CPU

from .
data memory inM——<—>
16 ﬁL» outM
16
. to data
from ] ) D) 74? writeM memory
instruction Instruction +> 0 1
memory 16 QO —4X» addressM
15
%, pc to instruction
a Hack machine language reset—~<— 15 memory
instruction like M=D+M, 1

stated as a 16-bit value

CPU internal components (invisible in this chip diagram): ALU and 3 registers: A, D, PC

CPU execute logic:

The CPU executes the instruction according to the Hack language specification:

O The D and A values, if they appear in the instruction, are read from (or written to) the
respective CPU-resident registers

O The M value, if there is one in the instruction's RHS, is read from inm

O If the instruction's LHS includes M, then the ALU output is placed in outM, the value of
the CPU-resident A register is placed in addressM, and writeM is asserted.
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CPU

from .
data memory inM——<—>
16 ﬁL» outM
16
. to data
from ] ) D) 74? writeM memory
instruction Instruction +> 0 1
memory 16 QO —4X» addressM
15
%, pc to instruction
a Hack machine language reset—~<— 15 memory
instruction like M=D+M, 1

stated as a 16-bit value

CPU internal components (invisible in this chip diagram): ALU and 3 registers: A, D, PC

CPU fetch logic:

Recall that:

1. the instruction may include a jump directive (expressed as non-zero jump bits)

2. the ALU emits two control bits, indicating if the ALU output is zero or less than zero

If reset==0: the CPU uses this information (the jump bits and the ALU control bits) as follows:
If there should be a jump, the PC is set to the value of A; else, PC is set to PC+1

If reset==1: the PC is set to @. (restarting the computer)
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The C-instruction revisited

dest = comp; jump

comp

dest jump

cl c2 c3 c4

c5 c6 dl1 d2

| \
d3 j1 j2 j3

binary: 1 1 1 a
(when 2=0) el [ o3 4 o5 (a3 (when a=1)
camp canp
] 1 a 1 ] 1 ]
1 1 i 1 1 i 1
-1 1 1 1 ] 1 ]
D ] ] 1 1 ] ]
A 1 1 u] ] m] m] i
'D ] 0 1 1 0 1
LA 1 1 0 ] 0 1 'H
=D 0 o 1 1 1 1
=4 1 1 ] 0 1 1 =1
D+1 0 1 1 1 1 1
A+l 1 1 ] 1 1 1 M+1
D=1 ] 1] 1 1 1 1]
A-1 1 1 0 ] 1 0 M-1
D+A4 ] ] a ] 1 a L+H
D-4 ] 1 ] ] 1 1 -1
A-T ] ] ] 1 1 1 N-Tr
Dl ] ] ] ] ] ] el
D| A ] 1 O 1 ] 1 DN

d1 42 43 | Mremeanic | Destindtion brhere fo store the compiuiied vedua)
o o0 0 null The value 15 not stored anywhere
o o 1 H Memory[A] (memory register addressed by 4)
o1 0 L D register
o1 1 MD MWemory[A] and D register
1 0o 0 L A register
i o0 1 LM A register and Memory[ 4]
i 1 0 AD A register and D register
i 1 1 LMD & register, Memory[ 4], and D register
i1 12 13
(GH:; <0y (au.:ifl =0 (au? =0 Mnemonic | Effect
o 0 0 null o ump
a 0 1 JGT It out =0 ump
0 1 0 JEQ If out =0 qump
a 1 1 JGE It out =0 ump
1 o o JLT If out <0 ump
1 0 1 JHE It out = 0 ump
1 1 o JLE If out =0 ump
1 1 1 JMF Jump
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CPU implementation = dest = comp; jump | comp ' dest ' jump |

binary: 1 1 1 a c1 c2 c3 c4 <c5 c6 dl d2 d3 j1 j2 j3

Chip diagram:

0 Includes most of the
CPU's execution logic

ALU output

<

0 The CPU's control logic is
hinted: each circled “c"
represents one or more
control bits, taken from
the instruction

a The “"decode”
bar does not
represent a
chip, but .
rather indicates : M

that the M — O e witem

7 e o

niv

XN

A F—»O—p :
AM

instruction

XN\

instruction bits

are decoded : x A *» addressM
somehow. ; ;
reset Gj)

: A Y

X » PC > pc
Cycle: Execute logic:  Fetch logic: Resetting the computer:
0 Execute 0 Decode If there should be a jump, Set reset to 1,

set PC to A then set it to o.

0 Fetch 0 Execute
else set PC to PC+1
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Lecture / construction plan

\/ m Instruction memory
\/ = Memory:
0 Data memory
O Screen

0 Keyboard

‘/l CPU
|:> = Computer
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Computer-on-a-chip interface

reset —\Q/ Screen

—> Computer
— N\ /=
O Keyboard
Chip Hame: Computer [/ Topmost chip in the Hack platform
Input: reset
Function: When reszet iz 0, the program stored in the

computer's BROM executes. When reset 1z 1, the
execution of the program restarts. Thus, to start a
program’ s exXecution, reset must he pushed “up” (1)

and “down”™ (0.

From thiz point onward the user iz at the mercy of
the software. In particular, depending on the
program' s code, the screen may show =ome output and
the user mway be able to interact with the Ccomputer
via the kevhoard.
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Computer-on-a-chip Implementation

CHIP Computer {
IN reset;

Data
Memory

(Memory)

inM
writeM
Instruction ) ) outM
Memory instruction 5
"G addressM
(ROM32K) pc
reset
Implementation:

PARTS:

// implementation missing

Simple, the chip-parts do all the hard work.
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Perspective: from here to a “real” computer

B Caching

B More I/0 units

B Special-purpose processors (I/0, graphics, communications, ...)
B Multi-core / parallelism

B Efficiency

B Energy consumption considerations

B And more ...
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