Machine (Assembly) Language

Building a Modern Computer From First Principles

www.nhand?2tetris.org

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 1

Where we are at:

Abstract design Software
» abstract interface hi h
lerarc
Chapters 9, 12 H.L. Language | Compiler 4
& > abstract interface
. h 10-11
Operating Sys. Chapters 10
Virtual VM Translator
. » abstract interface
Machine Chapters 7 - 8
Assembly
Language
Assembler ‘
v Chapter 6
abstract interface
Computer
Machine Architecture
» abstract interface
Language
Chapters 4-5)
Hardware Gate Logic .
latform » abstract interface
FEE Chapters 1-3 Electrical
Hardware Chips & Englneerlng‘
hierarchy Logic Gates

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 2

Machine language

Abstraction - implementation duality:

® Machine language (= instruction set) can be viewed as a programmer-
oriented abstraction of the hardware platform

B The hardware platform can be viewed as a physical means for realizing
the machine language abstraction

Another duality:

B Binary version

® Symbolic version

Loose definition:

B Machine language = an agreed-upon formalism for manipulating
a memory using a processor and a set of registers

B Same spirit but different syntax across different hardware platforms.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 3

Lecture plan

B Machine languages at a glance
B The Hack machine language:

e Symbolic version

e Binary version

B Perspective

(The assembler will be covered in lecture 6).

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language

slide 4

Typical machine language commands

B ALU operations

B Memory access operations
e Immediate addressing, LDA R1, 67 // R1=67
e Direct addressing, LD R1, 67 // R1=M[67]
e Indirect addressing, LDI R1, R2 // R1=M[R2]

B Flow control operations

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 5

Typical machine language commands (a small sample)

ADD R1,R2,R3
ADDI R1,R2,addr
AND R1,R1,R2
JMP addr

JEQ R1,R2,addr

LOAD R1, addr

//

//

//

//

//

//

// In what follows R1,R2,R3 are registers, PC 1s program counter,
// and addr i1s some

value.

R1 € R2 + R3

R1 € R2 + addr

Rl € R1 and R2 (bit-wise)

PC € addr

IF R1 == R2 THEN PC €« addr ELSE PC++

R1 € RAM[addr]

STORE R1, addr // RAM[addr] < R1
NOP // Do nothing
// Etc. — some 50-300 command variants

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 6

The Hack computer

A 16-bit machine consisting of the following elements:

Data memory: RAM - an addressable sequence of registers

Instruction memory: ROM - an addressable sequence of registers

Registers: D, A, M, whereM stands for RAM[A]

Processing: ALU, capable of computing various functions

Program counter: PC, holding an address

Control: The ROM is loaded with a sequence of 16-bit instructions, one per memory
location, beginning at address 0. Fetch-execute cycle: later

Instruction set: Two instructions: A-instruction, C-instruction.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 7

The A-Instruction

@value // A €« value

Where value is either a number or a symbol referring to some number.
Why A-instruction? It is impossible to pack both addr and instr into 16 bits.

Used for: Coding example:
B Entering a constant value

(A =value) @17 // A =17

D=A //D=17

B Selecting a RAM location 017 // A = 17

(register =RAM[A]) D=M // D = RAM[17]
B Selecting a ROM location eir // A =17

(PC=A) JMP // fetch the instruction

// stored in ROM[17]

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 8

The C-instruction (first approximation)

dest = x + y Exercise: Implement the following tasks
using Hack commands:
dest = X -y
o Set D to A-1
dest = x
dest = O o Setboth Aand D to A + 1
dest = 1 2 Set D to 19
dest = -1
o Setboth Aand D to A + D

X = {A, D, M}
y : {AI DIMll}
dest = {A,D, M, MD, A, AM, AD, AMD, nul I}

a Set RAM[5034] to D - 1
a Set RAM[53] to 171

a Add 1 to RAM[7],
and store the result in D.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 9

The C-instruction (first approximation)

dest = x + vy
dest = x -y
dest = X
dest = O
dest = 1
dest = -1

X = {A,D, M}
y = {A,D,M,1}

dest = {A,D, M, MD, A, AM, AD, AMD, nul I}

Symbol table:
3 3012
sum 4500
q 3812
arr 20561

(All symbols and values
are arbitrary examples)

Exercise: Implement the following tasks

using Hack commands:

o sum = O
aj=j+1

o g =sum + 12 — j
o arr[3] = -1

o arr[j] =0

o arr[j] = 17

o etc.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 10

Control (focus on the yellow chips only)

D register D
a-bit >
A —
Aregistef —» -
= AIM
e —
address | RAM M R
input -
O > (selected
T In the Hack architecture:
= ROM = instruction memory
= Program = sequence of 16-bit
v address | ROM Instruction numbers, starting at
PC |nput: g ROM [O]
(selected
register)

m Current instruction = ROM[PC]

m To select instruction n from the ROM,
we set A to n, using the instruction @n

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 11

Coding examples (practice)

Exercise: Implement the following
tasks using Hack commands:

o goto 50

o if D==0 goto 112

o if D<9 goto 507

o if RAM[12] > 0 goto 50

o if sum>0 goto END

Hack commands:

A-command: @value // set A to value
C-command: dest=comp;jump //dest= and ;jump
// are optional

Where:

comp=0,1,-1,D,A,!D,!A,-D,-A,D+1,
A+1,D-1,A-1, D+A,D-A,A-D, D&A,
DIA,M,IM,-M,M+1, M-1, D+M, D-M,
M-D, D&M ,D|M

dest=M,D,MD,A,AM, AD, AMD, or null
jump =JGT, JEQ, JGE, JLT, JNE, JLE, JMP, or null

In the command dest = comp; jump, the jump materialzes
if (comp jump O) is true. For example, in D=D+1,JLT,
we jump if D+1<O0.

- Symbol table:
o if x[i]<=0 goto NEXT.
. sum 2200

Hack convention: 1000
X (All symbols and

0 True is represented by -1 ' 6151 | values in are
END 50 arbitrary examples)

0 False is represented by O NEXT 120

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 12

IF logic — Hack style

High level: Hack:
if condition { D €« not condition
code block 1} @1F_TRUE
else { D;JEQ
lock 2
code block 2} code block 2
code block 3
@END
0;JMP
Hack convention: (IF_TRUE)
code block 1
0 True is represented by -1
(END)
0 False is represented by O code block 3

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 13

WHILE logic — Hack style

High level: Hack:
while condition { (LOOP)
code block 1 D € not condition)
+ @END
Code block 2 D:JEQ
code block 1
@LOOP
Hack convention: LHIE
(END)
0 True is represented by -1 code block 2

0 False is represented by O

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 14

Side note (focus on the yellow chip parts only)

D register D
a-bit >
A —
Aregister — -
= A/M
c —
X
address RAM M R
input -
O > (sel_ected
TR In the Hack architecture, the A register
addresses both the RAM and the ROM,
simultaneously. Therefore:
= Command pairs like @addr followed by
' address | ROM _ D=M; someJumpDirective make no sense
input Instruction . . .
PC " cceced [m Best practice: in well-written Hack
selecie . . .
register) programs, a C-instruction should contain
0 either a reference to M, or

0 a jump directive,
but not both.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 15

Complete program example

C language code:

Hack assembly code:

/[Adds 1+...+100.
int 1 = 1;
int sum = O;
while (i <= 100){
sum += 1;
1++;

Hack assembly convention:

0 Variables: lower-case
0 Labels: upper-case

0 Commands: upper-case

Demo
CPU emulator

/[Adds 1+...+100.
@n /I 1 refers to some RAM location
M=1 Il 1=1
@sum /I sum refers to some RAM location
M=0 /I sum=0

(LOOP)
@i
D=M /I D =1
@100
D=D-A // D = i - 100
@END
D;JGT /I I¥f (i-100) > 0 goto END
@i
D=M /I D =1
@sum
M=D+M /[sum += 1|
@i
M=M+1 Il 1++
@LOOP
0;JIMP // Got LOOP
(END)
@END

O;JIMP /I Infinite loop

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 16

: // Typical symboli
Symbols in Hack assembly programs 77 Hack sode. meaning
// not Important
Symbols created by Hack programmers and code generators: @RO
B Label symbols: Used to label destinations of goto commands. Declared by gTI\IGFINITE LOOP
the pseudo command (XXX). This directive defines the symbol XXX to D-JLE -
refer to the instruction memory location holding the next command in @(,:ounter
the program (within the program, XXX is called “label") M=D
B Variable symbols: Any user-defined symbol xxx appearing in an assembly @SCREEN
program that is not defined elsewhere using the (xxx) directive is D=A
treated as a variable, and is "automatically” assigned a unique RAM @addr
address, starting at RAM address 16 M=D
By convention, Hack programmers use lower-case and upper-case letters (LOOP()]I q
for variable names and labels, respectively. gi‘M r
Predefined symbols: M=-1
|) . " @addr
B I/0 pointers: The symbols SCREEN and KBD are “automatically D=M
predefined to refer fo RAM addresses 16384 and 24576, respectively @32
(base addresses of the Hack platform's screen and keyboard memory D=D+A
maps) @addr
Virtual registers: covered in future lectures. M=D
: : counter
VM control registers: covered in future lectures. SDzM—l
. . @LOOP
Q: Who does all the "automatic” assignments of symbols to RAM addresses? D-JGT
A: The assembler, which is the program that translates symbolic Hack (INFINITE_LOGP)
programs into binary Hack program. As part of the translation process, @!NF'N'TE_LOOP
the symbols are resolved to RAM addresses. (more about this in future lectures) 0;JMP

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 17

Perspective

® Hack is a simple machine language
B User friendly syntax: D=D+A instead of ADD D,D,A

B Hack is a "3-address machine": any operation that needs to operate on the
RAM must be specified using two commands: an A-command to address the
RAM, and a subsequent C-command to operate on it

B A Macro-language can be easily developed
o D=D+M[XXX]=> @XXX followed by D=D+M
e GOTO YYY => @YYY followed by O; TMP

B A Hack assembler is needed and will be discusses and developed later in
the course.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand?2tetris.org , Chapter 4: Machine Language slide 18

