Advanced Architecture

Yung-Yn Chuang

with slides by S. Dandamudi, Peng-Sheng Chen, Kip Irvine, Robert Sedgwick and Kevin Wayne

Basic architecture

Basic microcomputer design st

e clock synchronizes CPU operations

« control unit (CU) coordinates sequence of
execution steps

e ALU performs arithmetic and logic operations

data bus

Central Processor Unit Memory Storage I/Q VC.)
(CPU) Unit Device Device
#1 #2
[AU | cu [clock |
I_ controlbus | _ J _______ | ______ J. -

address bus

Basic microcomputer design Tt

e The memory storage unit holds instructions and
data for a running program

e A bus is a group of wires that transfer data from
one part to another (data, address, control)

data bus

registers
Central Processor Unit Memory Storage VQ IIQ
- Device Device
(CPU) Unit #1 4

[ALu | cu] clock |

I_ controlbus _ _[_ _ _ J _______ | ______ J. —_

address bus

Clock iy

« synchronizes all CPU and BUS operations

machine (clock) cycle measures time of a single
operation

clock is used to trigger events

one cycle

0

Basic unit of time, 1GHz—clock cycle=1ns

An instruction could take multiple cycles to
complete, e.g. multiply in 8088 takes 50 cycles

Instruction execution cycle it

program counter
l instruction queue

program l = Fetch
[F1[12]1-3]1-4]
" retch = Decode
ry
op] T 7 e Fetch
registers registers operands
instruction
i —> register) Execute
ﬁ i 2 = Store output
2 = flags «— ALU
1
(output) i%execu)

Pipeline

Multi-stage pipeline Attt

» Pipelining makes it possible for processor to
execute instructions in parallel

= Instruction execution divided into discrete stages
Stages

S1 | S2 | S3 | S4 | S5 | S6
I-1

Example of a non-

pipelined processor.
For example, 80386.
Many wasted cycles.

Cycles

PR
DR BloloNolaslw N R
N

Pipelined execution it

Pipelined execution i

= More efficient use of cycles, greater throughput
of instructions: (80486 started to use pipelining)

Stages
For k stages and

n instructions, the

S1 | S2 | S3 | S4 | S5 | S6

e Pipelining requires buffers
- Each buffer holds a single value
- ldeal scenario: equal work for each stage
= Sometimes it is not possible

« Slowest stage determines the flow rate in the
entire pipeline

1 | 1
2 |12] 11 number of

$ s -2 | 11 required cycles is:

S 4 -2 | 11 | g Bl B2 B3 B4

= k+(n-1)

L e Instruction Instruction Operand Instruction Result
6 -2 -1 * ; : § {
7 -2 compared to kn fetch decode fetch execution write back

Pipelined execution i Pipelined execution Tt

« Some reasons for unequal work stages
- A complex step cannot be subdivided conveniently
- An operation takes variable amount of time to
execute, e.g. operand fetch time depends on where
the operands are located
= Registers
« Cache
= Memory
- Complexity of operation depends on the type of
operation
= Add: may take one cycle
= Multiply: may take several cycles

» Operand fetch of |12 takes three cycles
- Pipeline stalls for two cycles
e Caused by hazards
- Pipeline stalls reduce overall throughput

Clockcycle 1 2 3 4 5 6 7 8 9 10

T T T T
I1 IF ' ID 'OF ! IE 'WB
l l L

T T T
2 IF 1 ID 1 OF t IE 'WB
] |]

| 1 1
I3 IF | ID 10OF ' IE 'WB
| | |
I I

1
14 IF 1 ID 'OF 1 IE 'WB
1 1 | |

Wasted cycles (pipelined) ",-=~

Superscalar Tt

= When one of the stages requires two or more
clock cycles, clock cycles are again wasted.

A superscalar processor has multiple execution
pipelines. In the following, note that Stage S4
has left and right pipelines (u and v).

Stages
exe Stages
S1 | S2]S3]|salss] se For k states and n
1| 1 For k stages and n S instructions, the
2 |12 | 11 instructions, the S1|S2|S8 u v |S5]%6 :
3 |13 |12 | 11 ber of e i numbel_r of required
o[a 3| 2 | 1 nun|1 er otrequire 2 :; :i - cycles is:
o cycles is: 32 |
(% Z -3 :; - y Qa3 1 k+n
S k+((2n-1 S s 4 | 3 | 1| 2
7 I-2 I-1 () O | 6 4 [13 | 1.2 | 111
8 1-3 I-2 7 1-3 -4 1-2 -1
9 -3 -2 8 4| 13 | 2
10 -3 9 31 Pentium: 2 pipelines
11 -3 10 4 | Pentium Pro: 3
Pipeline stages Tt Hazards i

e Pentium 3: 10

e Pentium 4: 20~31

» Next-generation micro-architecture: 14
e ARM7: 3

e Three types of hazards
- Resource hazards

* Occurs when two or more instructions use the same
resource, also called structural hazards

- Data hazards

= Caused by data dependencies between instructions,
e.g. result produced by I1 is read by 12

- Control hazards
= Default: sequential execution suits pipelining

« Altering control flow (e.g., branching) causes
problems, introducing control dependencies

Data hazards el Data hazards et
add r1, r2, #10 ; write rl e Forwarding: provides output result as soon as
sub r3, rl, #20 ; read ri possible
add r1, r2, #10 ; write rl
sub r3, rl, #20 ; read rl
fetch |decode| reg ALU wb fetch |decode| reg | ALU wh
"""" stall
fetch |decode] — stafl reg | ALU | wb fetch |decode| stall reg | ALU | wb
Data hazards e Control hazards et
» Forwarding: provides output result as soon as bz rl1, target
possible add r2, r4, O
add ri1, r2, #10 ; write rl ¢ - dd 5 r3. 0
sub r3, ril, #20 ; read ri arget- add re, e,
fetch |decode| reg ALU wb
fetch |decode| reg | ALU WD |
. fetch {decodei reg ALU wb
fetch idecode; reg | ALU | wb
-------------- | fetch idecodei reg ALU wb
fetch |decode/stall| reg | ALU | Wb | | e
"""""""" fetch |decode| reg | ALU

Control hazards IS

bt

Control hazards =

= Braches alter control flow
- Require special attention in pipelining
- Need to throw away some instructions in the
pipeline
» Depends on when we know the branch is taken
= Pipeline wastes three clock cycles
- Called branch penalty

e Delayed branch execution
- Effectively reduces the branch penalty
- We always fetch the instruction following the branch
e Why throw it away?
« Place a useful instruction to execute

= This is called delay slot -

- Reducing branch penalty add R2,R3,R4 branch target/
» Determine branch decision early branch target add R2.R3.R4
sub R5,R6,R7 sub R5,R6,R7
- G — G
Branch prediction e Branch prediction e

» Three prediction strategies
- Fixed
= Prediction is fixed
- Example: branch-never-taken
» Not proper for loop structures
- Static
» Strategy depends on the branch type
- Conditional branch: always not taken
- Loop: always taken
- Dynamic
= Takes run-time history to make more accurate predictions

e Static prediction
- Improves prediction accuracy over Fixed

Instruction type Instruction Prediction: Correct

Distribution Branch prediction
(%) taken? (%)

Unconditional ~ 70*0.4 = 28 Yes 28

branch

Conditional 70*0.6 = 42 No 42*0.6 = 25.2

branch

Loop 10 Yes 10*0.9=9

Call/return 20 Yes 20

Overall prediction accuracy = 82.2%

Branch prediction I e

e Dynamic branch prediction

- Uses runtime history
« Takes the past n branch executions of the branch type and

Branch prediction I e

e Impact of past n branches on prediction
accuracy

makes the prediction Type of mix
- Simple strategy n Compiler Business Scientific
- Prediction of the next branch is the majority of the 0 64.1 64.4 70.4
previous n branch executions 1 91.9 95 2 86.6
e Example: n =3
- If two or more of the last three branches were taken, the 2 93.3 96.5 90.8
prediction is “branch taken” 3 93.7 96.6 91.0
= Depending on the type of mix, we get more than 90%
prediction accuracy 4 94.5 96.8 91.8
5 94.7 97.0 92.0
Branch prediction st Multitasking flo s

00

Predict
no bnanj
no

branch

no branch

branch

Predict
no branc

branch

:> branch

no

1
branch f

Predict
branch

10

Predict
branch

OS can run multiple programs at the same time.

Multiple threads of execution within the same
program.

Scheduler utility assigns a given amount of CPU
time to each running program.

Rapid switching of tasks

- gives illusion that all programs are running at once
- the processor must support task switching

- scheduling policy, round-robin, priority

Cache

SRAM vs DRAM Tt

data bus

Central Processor Unit Memory Storage I/Q o
(CPU) Unit Device Device
#1 #2
I__Coﬂ"_°|2”£ _____ J _______ |___- _J.____

address bus

Tran. Access Needs

per bit time refresh? Cost Applications

SRAM 4o0r6 1X No 100X cache memories
Main memories,

frame buffers

DRAM 1 10X Yes 1X

The CPU-Memory gap

The gap widens between DRAM, disk, and CPU speeds.

100,000,000 *

10,000,000 R S

\ g

1,000,000

100,000

10,000

1,000 e
100 gx‘\
10

- =

Memory hierarchies o

—o— Disk seek time

DRAM access time

—A— SRAM access time
—e— CPU cycle time

1980 1985 1990 1995 2000
year
register cache memory disk
Access time 1 1-10 50-100 20,000,000
(cycles)

e Some fundamental and enduring properties of
hardware and software:

- Fast storage technologies cost more per byte, have
less capacity, and require more power (heat!).

- The gap between CPU and main memory speed is
widening.
- Well-written programs tend to exhibit good locality.
e They suggest an approach for organizing
memory and storage systems known as a
memory hierarchy.

Memory system in practice 1125

h
LO:
egister

Smaller, faster, and :
more expensive (per L1, c:cm-ngspR;lM)
byte) storage devices

L2: off-chip L2
cache (SRAM)

L3: main memory
(DRAM)

Larger, slower, and

cheaper (per byte)

storage devices L4:/ local secondary storage (virtual memory)
(local disks)

L5: remote secondary storage
(tapes, distributed file systems, Web servers)

Reading from memory LIS

= Multiple machine cycles are required when reading
from memory, because it responds much more slowly
than the CPU (e.g.33 MHz). The wasted clock cycles are
called wait states.

L1 Data
<> 1cyclelatency
Regs. . wlfy 'f]*zsoc | L2 Unified
Write-through IE_SWIZB aislz\cB Main
32B lines Wr‘H};-bGCk g Memory
Werite allocate Up to 46B
L1 Instruction 32B lines
16 KB, 4-way [
32B lines

e Gl Pentium IlI cache hierarchy

Cache memory Tl

» High-speed expensive static RAM both inside
and outside the CPU.
- Level-1 cache: inside the CPU
- Level-2 cache: outside the CPU

e Cache hit: when data to be read is already in
cache memory

e Cache miss: when data to be read is not in
cache memory. When? compulsory, capacity
and conflict.

e Cache design: cache size, n-way, block size,
replacement policy

Caching in a memory hierarchy e
Smaller, faster, more
level k [L4 J[o J[10 |[3 | Expensive device at

level k caches a
subset of the blocks
from level k+1

[4 || Datais copied between levels
in block-sized transfer units

[o J[2 J 2 J| 3] Larger, slower, cheaper
level | T4][5 J[6 |[7]| Storage device at level
Kt f s][o][|[]| k+1is partitioned into

| 12 || 13 || 14 || 15 | blocks.

.

General caching concepts R

e Program needs object d, which is

ReqlgeSt stored in some block b.
0 1 2 3 e Cache hit
Ie\I/(eI 227 9 J[24][3] - Program finds b in the cache at

level k. E.g., block 14.

Request e Cache miss

12 - bis not at level k, so level k cache
must fetch it from level k+1.
oIl 121 3] E.g., block 12.

- If level k cache is full, then some
level | L4t][5]l 6 I 7| current block must be replaced
k+1 ([8 J[o J[10][1] (evicted). Which one is the “victim™?
[227][13 |[14 |[15 | - Placement policy: where can the new
block go? E.g., b mod 4

= Replacement policy: which block
should be evicted? E.g., LRU

Locality et

» Principle of Locality: programs tend to reuse
data and instructions near those they have used
recently, or that were recently referenced
themselves.

- Temporal locality: recently referenced items are
likely to be referenced in the near future.

- Spatial locality: items with nearby addresses tend to
be referenced close together in time.

= In general, programs with good locality run
faster then programs with poor locality

e Locality is the reason why cache and virtual
memory are designed in architecture and
operating system. Another example is web
browser caches recently visited webpages.

Locality example LSS

sum = O;

for (i = 0; 1 < nj; i++)
sum += a[i];

return sum;

e Data
- Reference array elements in succession (stride-1
reference pattern): Spatial locality
- Reference sum each iteration: Temporal locality
e Instructions
- Reference instructions in sequence: Spatial locality
- Cycle through loop repeatedly: Temporal locality

Locality example 1SS

e Being able to look at code and get a qualitative
sense of its locality is important. Does this
function have good locality?

int sum_array_rows(int a[M][N])

{
int i, j, sum = 0;
for (i = 0; 1 < M; i++)
for G = 0; j < N; j++)

< N3
sum += a[illjl;
return sum;
} stride-1 reference pattern

Locality example

Blocked matrix multiply performance I e

« Does this function have good locality?

int sum_array_cols(int a[M][N])
{

int i, jJ, sum = O;

for (= 0; J < N; j++)
for (i = 0; 1 < M; i++)
sum += ali][il;
return sum;
¥ stride-N reference pattern

» Blocking (bijk and bikj) improves performance
by a factor of two over unblocked versions (ijk
and jik)

- relatively insensitive to array size.

——kji
- ki
—A kij
< ikj
= jik
—o-ijk
- bijk (bsize = 25)
—o—bikj (bsize = 25)

Cyclesl/iteration

Array size (n)

Cache-conscious programming

R

» make sure that memory is cache-aligned

« Split data into hot and cold (list example)

e e e .
— ———

e Use union and bitfields to reduce size and
increase locality

RISC v.s. CISC

Trade-offs of instruction sets ‘;‘i‘[j-ﬂi

compiler

high-level language machine code
C, C++ semantic gap

Lisp, Prolog, Haskell...

» Before 1980, the trend is to increase instruction
complexity (one-to-one mapping if possible) to
bridge the gap. Reduce fetch from memory.
Selling point: number of instructions,
addressing modes. (CISC)

« 1980, RISC. Simplify and regularize instructions
to introduce advanced architecture for better
performance, pipeline, cache, superscalar.

1980, Patternson and Ditzel (Berkeley),RISC

Features

- Fixed-length instructions

- Load-store architecture

- Register file

Organization

- Hard-wired logic

- Single-cycle instruction

- Pipeline

Pros: small die size, short development time,
high performance

Cons: low code density, not x86 compatible

RISC Design Principles =

« Simple operations
- Simple instructions that can execute in one cycle
= Register-to-register operations
- Only load and store operations access memory
- Rest of the operations on a register-to-register basis
e Simple addressing modes
- A few addressing modes (1 or 2)
e Large number of registers
- Needed to support register-to-register operations
- Minimize the procedure call and return overhead

RISC Design Principles =

e Fixed-length instructions
- Facilitates efficient instruction execution
e Simple instruction format

- Fixed boundaries for various fields
= opcode, source operands,...

CISC and RISC gt CISC and RISC gt
e CISC — complex instruction set
- large instrucF'Zion set CISC RISC
- high-level operations (simpler for compiler?) (Intel 486) (MIPS R4000)
- requires microcode interpreter (could take a long #instructions 235 94
time)
- examples: Intel 80x86 family Addr. modes 11 1
= RISC — reduced instruction set Inst. Size (bytes) 1-12 4
- small instruction set _
- simple, atomic instructions GP registers 8 32
- directly executed by hardware very quickly
- easier to incorporate advanced architecture design
- examples: ARM (Advanced RISC Machines) and DEC
Alpha (now Compaq), PowerPC, MIPS
Why RISC? Tt Why RISC? (cont’d) Tt

« Simple instructions are preferred

- Complex instructions are mostly ignored by
compilers

« Due to semantic gap
e Simple data structures

- Complex data structures are used relatively
infrequently

- Better to support a few simple data types efficiently
= Synthesize complex ones

» Simple addressing modes

- Complex addressing modes lead to variable length
instructions
« Lead to inefficient instruction decoding and scheduling

e Large register set

- Efficient support for procedure calls and returns

= Patterson and Sequin’s study

- Procedure call/return: 12-15% of HLL statements
» Constitute 31-33% of machine language instructions
» Generate nearly half (45%) of memory references

- Small activation record
e Tanenbaum’s study
- Only 1.25% of the calls have more than 6 arguments

- More than 93% have less than 6 local scalar variables
- Large register set can avoid memory references

