
Advanced Architecture

Yung-Yu Chuang

with slides by S. Dandamudi, Peng-Sheng Chen, Kip Irvine, Robert Sedgwick and Kevin Wayne

Basic architecture

Basic microcomputer design

• clock synchronizes CPU operations
• control unit (CU) coordinates sequence of

execution steps
• ALU performs arithmetic and logic operations

Central Processor Unit
(CPU)

Memory Storage
Unit

registers

ALU clock

I/O
Device

#1

I/O
Device

#2

data bus

control bus

address bus

CU

Basic microcomputer design

• The memory storage unit holds instructions and
data for a running program

• A bus is a group of wires that transfer data from
one part to another (data, address, control)

Central Processor Unit
(CPU)

Memory Storage
Unit

registers

ALU clock

I/O
Device

#1

I/O
Device

#2

data bus

control bus

address bus

CU

Clock

• synchronizes all CPU and BUS operations
• machine (clock) cycle measures time of a single

operation
• clock is used to trigger events

one cycle

1

0

• Basic unit of time, 1GHz→clock cycle=1ns
• An instruction could take multiple cycles to

complete, e.g. multiply in 8088 takes 50 cycles

Instruction execution cycle

• Fetch
• Decode
• Fetch

operands
• Execute
• Store output

I-1 I-2 I-3 I-4

PC program

I-1
instruction
register

op1
op2

memory fetch

ALU

registers

w
rit

e

decode

execute

read

w
rit

e

(output)

registers

flags

program counter
instruction queue

Pipeline

Multi-stage pipeline

• Pipelining makes it possible for processor to
execute instructions in parallel

• Instruction execution divided into discrete stages

S1 S2 S3 S4 S5
1

C
yc

le
s

Stages
S6

2
3
4
5
6
7
8
9

10
11
12

I-1

I-2

I-1

I-2

I-1

I-2

I-1

I-2

I-1

I-2

I-1

I-2

Example of a non-
pipelined processor.
For example, 80386.
Many wasted cycles.

Pipelined execution

• More efficient use of cycles, greater throughput
of instructions: (80486 started to use pipelining)

S1 S2 S3 S4 S5
1

C
yc

le
s

Stages
S6

2
3
4
5
6
7

I-1
I-2 I-1

I-2 I-1
I-2 I-1

I-2 I-1
I-2 I-1

I-2

For k stages and
n instructions, the
number of
required cycles is:

k + (n – 1)

compared to k*n

• Pipelining requires buffers
– Each buffer holds a single value
– Ideal scenario: equal work for each stage

• Sometimes it is not possible
• Slowest stage determines the flow rate in the

entire pipeline

Pipelined execution

Pipelined execution

• Some reasons for unequal work stages
– A complex step cannot be subdivided conveniently
– An operation takes variable amount of time to

execute, e.g. operand fetch time depends on where
the operands are located

• Registers
• Cache
• Memory

– Complexity of operation depends on the type of
operation

• Add: may take one cycle
• Multiply: may take several cycles

• Operand fetch of I2 takes three cycles
– Pipeline stalls for two cycles

• Caused by hazards
– Pipeline stalls reduce overall throughput

Pipelined execution

Wasted cycles (pipelined)

• When one of the stages requires two or more
clock cycles, clock cycles are again wasted.

S1 S2 S3 S4 S5
1

C
yc

le
s

Stages

S6

2
3
4
5
6
7

I-1
I-2
I-3

I-1
I-2
I-3

I-1
I-2
I-3

I-1

I-2 I-1
I-1

8
9

I-3 I-2
I-2

exe

10
11

I-3
I-3

I-1

I-2

I-3

For k stages and n
instructions, the
number of required
cycles is:

k + (2n – 1)

Superscalar

A superscalar processor has multiple execution
pipelines. In the following, note that Stage S4
has left and right pipelines (u and v).

S1 S2 S3 u S5
1

C
yc

le
s

Stages

S6

2
3
4
5
6
7

I-1
I-2
I-3
I-4

I-1
I-2
I-3
I-4

I-1
I-2
I-3
I-4

I-1

I-3 I-1
I-2 I-1

v

I-2

I-4

S4

8
9

I-3
I-4

I-2
I-3

10 I-4

I-2

I-4

I-1

I-3

For k states and n
instructions, the
number of required
cycles is:

k + n

Pentium: 2 pipelines
Pentium Pro: 3

Pipeline stages

• Pentium 3: 10
• Pentium 4: 20~31
• Next-generation micro-architecture: 14
• ARM7: 3

Hazards

• Three types of hazards
– Resource hazards

• Occurs when two or more instructions use the same
resource, also called structural hazards

– Data hazards
• Caused by data dependencies between instructions,

e.g. result produced by I1 is read by I2
– Control hazards

• Default: sequential execution suits pipelining
• Altering control flow (e.g., branching) causes

problems, introducing control dependencies

Data hazards
add r1, r2, #10 ; write r1
sub r3, r1, #20 ; read r1

fetch decode reg ALU wb

fetch decode reg ALUstall wb

Data hazards

• Forwarding: provides output result as soon as
possible

fetch decode reg ALU wb

fetch decode reg ALUstall

add r1, r2, #10 ; write r1
sub r3, r1, #20 ; read r1

wb

Data hazards

• Forwarding: provides output result as soon as
possible

fetch decode reg ALU wb

fetch decode reg ALUstall

add r1, r2, #10 ; write r1
sub r3, r1, #20 ; read r1

fetch decode reg ALUstall wb

wb

Control hazards

fetch decode reg ALU wb

fetch decode reg ALU wb

fetch decode reg ALU wb

fetch decode reg ALU

fetch decode reg ALU

bz r1, target
add r2, r4, 0
...

target: add r2, r3, 0

wb

Control hazards

• Braches alter control flow
– Require special attention in pipelining
– Need to throw away some instructions in the

pipeline
• Depends on when we know the branch is taken
• Pipeline wastes three clock cycles

– Called branch penalty
– Reducing branch penalty

• Determine branch decision early

Control hazards

• Delayed branch execution
– Effectively reduces the branch penalty
– We always fetch the instruction following the branch

• Why throw it away?
• Place a useful instruction to execute
• This is called delay slot

add R2,R3,R4

branch target

sub R5,R6,R7

. . .

branch target

add R2,R3,R4

sub R5,R6,R7

. . .

Delay slot

Branch prediction

• Three prediction strategies
– Fixed

• Prediction is fixed
– Example: branch-never-taken

» Not proper for loop structures

– Static
• Strategy depends on the branch type

– Conditional branch: always not taken
– Loop: always taken

– Dynamic
• Takes run-time history to make more accurate predictions

Branch prediction

• Static prediction
– Improves prediction accuracy over Fixed

Instruction type Instruction
Distribution

(%)

Prediction:
Branch
taken?

Correct
prediction

(%)
Unconditional
branch

70*0.4 = 28 Yes 28

Conditional
branch

70*0.6 = 42 No 42*0.6 = 25.2

Loop 10 Yes 10*0.9 = 9

Call/return 20 Yes 20

 Overall prediction accuracy = 82.2%

Branch prediction

• Dynamic branch prediction
– Uses runtime history

• Takes the past n branch executions of the branch type and
makes the prediction

– Simple strategy
• Prediction of the next branch is the majority of the

previous n branch executions
• Example: n = 3

– If two or more of the last three branches were taken, the
prediction is “branch taken”

• Depending on the type of mix, we get more than 90%
prediction accuracy

Branch prediction

• Impact of past n branches on prediction
accuracy

 Type of mix
n Compiler Business Scientific
0 64.1 64.4 70.4
1 91.9 95.2 86.6
2 93.3 96.5 90.8
3 93.7 96.6 91.0
4 94.5 96.8 91.8
5 94.7 97.0 92.0

10

Predict
branch

01

Predict
no branch

Branch prediction

00

Predict
no branch

11

Predict
branch

branch

branch

no
branch

no
branch

branch

no
branch

no
branch branch

Multitasking

• OS can run multiple programs at the same time.
• Multiple threads of execution within the same

program.
• Scheduler utility assigns a given amount of CPU

time to each running program.
• Rapid switching of tasks

– gives illusion that all programs are running at once
– the processor must support task switching
– scheduling policy, round-robin, priority

Cache

SRAM vs DRAM

Tran. Access Needs
per bit time refresh? Cost Applications

SRAM 4 or 6 1X No 100X cache memories

DRAM 1 10X Yes 1X Main memories,
frame buffers

Central Processor Unit
(CPU)

Memory Storage
Unit

registers

ALU clock

I/O
Device

#1

I/O
Device

#2

data bus

control bus

address bus

CU

The CPU-Memory gap

The gap widens between DRAM, disk, and CPU speeds.

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

1980 1985 1990 1995 2000

year

ns

Disk seek time
DRAM access time
SRAM access time
CPU cycle time

register cache memory disk

Access time
(cycles)

1 1-10 50-100 20,000,000

Memory hierarchies

• Some fundamental and enduring properties of
hardware and software:
– Fast storage technologies cost more per byte, have

less capacity, and require more power (heat!).
– The gap between CPU and main memory speed is

widening.
– Well-written programs tend to exhibit good locality.

• They suggest an approach for organizing
memory and storage systems known as a
memory hierarchy.

Memory system in practice

Larger, slower, and
cheaper (per byte)
storage devices

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage (virtual memory)
(local disks)

remote secondary storage
(tapes, distributed file systems, Web servers)

off-chip L2
cache (SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller, faster, and
more expensive (per
byte) storage devices

Reading from memory

• Multiple machine cycles are required when reading
from memory, because it responds much more slowly
than the CPU (e.g.33 MHz). The wasted clock cycles are
called wait states.

Processor Chip

L1 Data
1 cycle latency

16 KB
4-way assoc

Write-through
32B lines

L1 Instruction
16 KB, 4-way

32B lines

Regs. L2 Unified
128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

Main
Memory

Up to 4GB

Pentium III cache hierarchy

Cache memory

• High-speed expensive static RAM both inside
and outside the CPU.
– Level-1 cache: inside the CPU
– Level-2 cache: outside the CPU

• Cache hit: when data to be read is already in
cache memory

• Cache miss: when data to be read is not in
cache memory. When? compulsory, capacity
and conflict.

• Cache design: cache size, n-way, block size,
replacement policy

Caching in a memory hierarchy

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper
Storage device at level
k+1 is partitioned into
blocks.

Data is copied between levels
in block-sized transfer units

8 9 14 3
Smaller, faster, more
Expensive device at
level k caches a
subset of the blocks
from level k+1

level k

level
k+1

4

4

4 10

10

10

Request
14

Request
12

General caching concepts

• Program needs object d, which is
stored in some block b.

• Cache hit
– Program finds b in the cache at

level k. E.g., block 14.

• Cache miss
– b is not at level k, so level k cache

must fetch it from level k+1.
E.g., block 12.

– If level k cache is full, then some
current block must be replaced
(evicted). Which one is the “victim”?

• Placement policy: where can the new
block go? E.g., b mod 4

• Replacement policy: which block
should be evicted? E.g., LRU

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

level
k

level
k+1

1414

12

14

4*

4*12

12

0 1 2 3

Request
12

4*4*12

Locality
• Principle of Locality: programs tend to reuse

data and instructions near those they have used
recently, or that were recently referenced
themselves.
– Temporal locality: recently referenced items are

likely to be referenced in the near future.
– Spatial locality: items with nearby addresses tend to

be referenced close together in time.
• In general, programs with good locality run

faster then programs with poor locality
• Locality is the reason why cache and virtual

memory are designed in architecture and
operating system. Another example is web
browser caches recently visited webpages.

Locality example

• Data
– Reference array elements in succession (stride-1

reference pattern):
– Reference sum each iteration:

• Instructions
– Reference instructions in sequence:
– Cycle through loop repeatedly:

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Spatial locality

Temporal locality

Temporal locality

Locality example

• Being able to look at code and get a qualitative
sense of its locality is important. Does this
function have good locality?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

} stride-1 reference pattern

Locality example

• Does this function have good locality?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

} stride-N reference pattern

Blocked matrix multiply performance
• Blocking (bijk and bikj) improves performance

by a factor of two over unblocked versions (ijk
and jik)
– relatively insensitive to array size.

0

10

20

30

40

50

60

25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

Array size (n)

C
yc

le
s/

ite
ra

tio
n

kji
jki
kij
ikj
jik
ijk
bijk (bsize = 25)
bikj (bsize = 25)

Cache-conscious programming

• make sure that memory is cache-aligned

• Split data into hot and cold (list example)

• Use union and bitfields to reduce size and
increase locality

RISC v.s. CISC

Trade-offs of instruction sets

• Before 1980, the trend is to increase instruction
complexity (one-to-one mapping if possible) to
bridge the gap. Reduce fetch from memory.
Selling point: number of instructions,
addressing modes. (CISC)

• 1980, RISC. Simplify and regularize instructions
to introduce advanced architecture for better
performance, pipeline, cache, superscalar.

high-level language machine code
semantic gap

compiler

C, C++
Lisp, Prolog, Haskell…

RISC

• 1980, Patternson and Ditzel (Berkeley),RISC
• Features

– Fixed-length instructions
– Load-store architecture
– Register file

• Organization
– Hard-wired logic
– Single-cycle instruction
– Pipeline

• Pros: small die size, short development time,
high performance

• Cons: low code density, not x86 compatible

RISC Design Principles

• Simple operations
– Simple instructions that can execute in one cycle

• Register-to-register operations
– Only load and store operations access memory
– Rest of the operations on a register-to-register basis

• Simple addressing modes
– A few addressing modes (1 or 2)

• Large number of registers
– Needed to support register-to-register operations
– Minimize the procedure call and return overhead

RISC Design Principles

• Fixed-length instructions
– Facilitates efficient instruction execution

• Simple instruction format
– Fixed boundaries for various fields

• opcode, source operands,…

CISC and RISC

• CISC – complex instruction set
– large instruction set
– high-level operations (simpler for compiler?)
– requires microcode interpreter (could take a long

time)
– examples: Intel 80x86 family

• RISC – reduced instruction set
– small instruction set
– simple, atomic instructions
– directly executed by hardware very quickly
– easier to incorporate advanced architecture design
– examples: ARM (Advanced RISC Machines) and DEC

Alpha (now Compaq), PowerPC, MIPS

CISC and RISC

CISC
(Intel 486)

RISC
(MIPS R4000)

#instructions 235 94

Addr. modes 11 1

Inst. Size (bytes) 1-12 4

GP registers 8 32

Why RISC?

• Simple instructions are preferred
– Complex instructions are mostly ignored by

compilers
• Due to semantic gap

• Simple data structures
– Complex data structures are used relatively

infrequently
– Better to support a few simple data types efficiently

• Synthesize complex ones
• Simple addressing modes

– Complex addressing modes lead to variable length
instructions

• Lead to inefficient instruction decoding and scheduling

Why RISC? (cont’d)

• Large register set
– Efficient support for procedure calls and returns

• Patterson and Sequin’s study
– Procedure call/return: 1215% of HLL statements

» Constitute 3133% of machine language instructions
» Generate nearly half (45%) of memory references

– Small activation record
• Tanenbaum’s study

– Only 1.25% of the calls have more than 6 arguments
– More than 93% have less than 6 local scalar variables
– Large register set can avoid memory references

