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Basic architecture



Basic microcomputer design

• clock synchronizes CPU operations
• control unit (CU) coordinates sequence of 

execution steps
• ALU performs arithmetic and logic operations
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Basic microcomputer design

• The memory storage unit holds instructions and 
data for a running program

• A bus is a group of wires that transfer data from 
one part to another (data, address, control)
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Clock

• synchronizes all CPU and BUS operations
• machine (clock) cycle measures time of a single 

operation
• clock is used to trigger events

one cycle

1

0

• Basic unit of time, 1GHz→clock cycle=1ns
• An instruction could take multiple cycles to 

complete, e.g. multiply in 8088 takes 50 cycles



Instruction execution cycle

• Fetch
• Decode
• Fetch 

operands
• Execute 
• Store output
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Pipeline



Multi-stage pipeline

• Pipelining makes it possible for processor to 
execute instructions in parallel

• Instruction execution divided into discrete stages
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Pipelined execution

• More efficient use of cycles, greater throughput 
of instructions: (80486 started to use pipelining)
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• Pipelining requires buffers
– Each buffer holds a single value
– Ideal scenario: equal work for each stage

• Sometimes it is not possible
• Slowest stage determines the flow rate in the 

entire pipeline

Pipelined execution



Pipelined execution

• Some reasons for unequal work stages
– A complex step cannot be subdivided conveniently
– An operation takes variable amount of time to 

execute, e.g. operand fetch time depends on where 
the operands are located

• Registers 
• Cache 
• Memory

– Complexity of operation depends on the type of 
operation

• Add: may take one cycle
• Multiply: may take several cycles



• Operand fetch of I2 takes three cycles
– Pipeline stalls for two cycles

• Caused by hazards
– Pipeline stalls reduce overall throughput

Pipelined execution



Wasted cycles (pipelined)

• When one of the stages requires two or more 
clock cycles, clock cycles are again wasted.
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Superscalar

A superscalar processor has multiple execution 
pipelines. In the following, note that Stage S4 
has left and right pipelines (u and v).
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Pipeline stages

• Pentium 3: 10
• Pentium 4: 20~31
• Next-generation micro-architecture: 14
• ARM7: 3



Hazards

• Three types of hazards
– Resource hazards

• Occurs when two or more instructions use the same 
resource, also called structural hazards

– Data hazards
• Caused by data dependencies between instructions, 

e.g. result produced by I1 is read by I2
– Control hazards

• Default: sequential execution suits pipelining
• Altering control flow (e.g., branching) causes 

problems, introducing control dependencies



Data hazards
add r1, r2, #10 ; write r1
sub r3, r1, #20 ; read r1

fetch decode reg ALU wb

fetch decode reg ALUstall wb



Data hazards

• Forwarding: provides output result as soon as 
possible

fetch decode reg ALU wb

fetch decode reg ALUstall

add r1, r2, #10 ; write r1
sub r3, r1, #20 ; read r1

wb



Data hazards

• Forwarding: provides output result as soon as 
possible

fetch decode reg ALU wb

fetch decode reg ALUstall

add r1, r2, #10 ; write r1
sub r3, r1, #20 ; read r1

fetch decode reg ALUstall wb

wb



Control hazards

fetch decode reg ALU wb

fetch decode reg ALU wb

fetch decode reg ALU wb

fetch decode reg ALU

fetch decode reg ALU

bz r1, target
add r2, r4, 0
...

target: add r2, r3, 0

wb



Control hazards

• Braches alter control flow
– Require special attention in pipelining
– Need to throw away some instructions in the 

pipeline
• Depends on when we know the branch is taken
• Pipeline wastes three clock cycles

– Called branch penalty
– Reducing branch penalty

• Determine branch decision early



Control hazards

• Delayed branch execution
– Effectively reduces the branch penalty
– We always fetch the instruction following the branch

• Why throw it away?
• Place a useful instruction to execute
• This is called delay slot
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. . .
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add     R2,R3,R4

sub     R5,R6,R7

. . .

Delay slot



Branch prediction

• Three prediction strategies
– Fixed

• Prediction is fixed
– Example: branch-never-taken

» Not proper for loop structures

– Static
• Strategy depends on the branch type

– Conditional branch: always not taken
– Loop: always taken

– Dynamic
• Takes run-time history to make more accurate predictions



Branch prediction

• Static prediction
– Improves prediction accuracy over Fixed

Instruction type Instruction 
Distribution 

(%) 

Prediction: 
Branch 
taken? 

Correct 
prediction 

(%) 
Unconditional 
branch 

70*0.4 = 28 Yes 28 

Conditional 
branch 

70*0.6 = 42 No 42*0.6 = 25.2 

Loop 10 Yes 10*0.9 = 9 

Call/return 20 Yes 20 

 Overall prediction accuracy = 82.2% 
 

 



Branch prediction

• Dynamic branch prediction
– Uses runtime history

• Takes the past n branch executions of the branch type and 
makes the prediction

– Simple strategy
• Prediction of the next branch is the majority of the 

previous n branch executions
• Example: n = 3

– If two or more of the last three branches were taken, the 
prediction is “branch taken”

• Depending on the type of mix, we get more than 90% 
prediction accuracy



Branch prediction

• Impact of past n branches on prediction 
accuracy

 Type of mix 
n Compiler Business Scientific
0 64.1 64.4 70.4 
1 91.9 95.2 86.6 
2 93.3 96.5 90.8 
3 93.7 96.6 91.0 
4 94.5 96.8 91.8 
5 94.7 97.0 92.0 
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Multitasking

• OS can run multiple programs at the same time.
• Multiple threads of execution within the same 

program.
• Scheduler utility assigns a given amount of CPU 

time to each running program.
• Rapid switching of tasks

– gives illusion that all programs are running at once
– the processor must support task switching
– scheduling policy, round-robin, priority



Cache



SRAM vs DRAM

Tran. Access  Needs
per bit    time    refresh?  Cost         Applications

SRAM 4 or 6    1X No       100X cache memories

DRAM 1      10X Yes         1X Main memories,
frame buffers
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The CPU-Memory gap

The gap widens between DRAM, disk, and CPU speeds.
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Memory hierarchies

• Some fundamental and enduring properties of 
hardware and software:
– Fast storage technologies cost more per byte, have 

less capacity, and require more power (heat!). 
– The gap between CPU and main memory speed is 

widening.
– Well-written programs tend to exhibit good locality.

• They suggest an approach for organizing 
memory and storage systems known as a 
memory hierarchy.



Memory system in practice

Larger, slower, and 
cheaper (per byte) 
storage devices

registers
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cache (SRAM)
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local secondary storage (virtual memory)
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off-chip L2
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Reading from memory

• Multiple machine cycles are required when reading 
from memory, because it responds much more slowly 
than the CPU (e.g.33 MHz). The wasted clock cycles are 
called wait states.

Processor Chip

L1 Data
1 cycle latency

16 KB
4-way assoc

Write-through
32B lines

L1 Instruction
16 KB, 4-way

32B lines

Regs. L2 Unified
128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

Main
Memory

Up to 4GB

Pentium III cache hierarchy



Cache memory

• High-speed expensive static RAM both inside 
and outside the CPU.
– Level-1 cache: inside the CPU
– Level-2 cache: outside the CPU

• Cache hit: when data to be read is already in 
cache memory

• Cache miss: when data to be read is not in 
cache memory. When? compulsory, capacity 
and conflict.

• Cache design: cache size, n-way, block size, 
replacement policy



Caching in a memory hierarchy
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General caching  concepts

• Program needs object d, which is 
stored in some block b.

• Cache hit
– Program finds  b  in the cache at 

level k.  E.g.,  block 14.

• Cache miss
– b is not at level k, so level k cache  

must fetch it from level k+1.             
E.g.,  block 12.

– If level k cache is full, then some 
current block must be replaced 
(evicted). Which one is the “victim”? 

• Placement policy: where can the new 
block go? E.g., b mod 4

• Replacement policy: which block 
should be evicted? E.g., LRU
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Locality
• Principle of Locality: programs tend to reuse 

data and instructions near those they have used 
recently, or that were recently referenced 
themselves.
– Temporal locality: recently referenced items are 

likely to be referenced in the near future.
– Spatial locality: items with nearby addresses tend to 

be referenced close together in time.
• In general, programs with good locality run 

faster then programs with poor locality
• Locality is the reason why cache and virtual 

memory are designed in architecture and 
operating system. Another example is web 
browser caches recently visited webpages.



Locality example

• Data
– Reference array elements in succession (stride-1 

reference pattern):
– Reference sum each iteration:

• Instructions
– Reference instructions in sequence:
– Cycle through loop repeatedly: 

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Spatial locality

Temporal locality

Temporal locality



Locality example

• Being able to look at code and get a qualitative 
sense of its locality is important. Does this 
function have good locality?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

} stride-1 reference pattern



Locality example

• Does this function have good locality?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

} stride-N reference pattern



Blocked matrix multiply performance
• Blocking (bijk and bikj) improves performance 

by a factor of two over unblocked versions (ijk 
and jik)
– relatively insensitive to array size.
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Cache-conscious programming

• make sure that memory is cache-aligned

• Split data into hot and cold (list example)

• Use union and bitfields to reduce size and 
increase locality



RISC v.s. CISC



Trade-offs of instruction sets

• Before 1980, the trend is to increase instruction 
complexity (one-to-one mapping if possible) to 
bridge the gap. Reduce fetch from memory. 
Selling point: number of instructions, 
addressing modes. (CISC)

• 1980, RISC. Simplify and regularize instructions 
to introduce advanced architecture for better 
performance, pipeline, cache, superscalar.

high-level language machine code
semantic gap

compiler

C, C++
Lisp, Prolog, Haskell…



RISC

• 1980, Patternson and Ditzel (Berkeley),RISC
• Features

– Fixed-length instructions
– Load-store architecture
– Register file

• Organization
– Hard-wired logic
– Single-cycle instruction
– Pipeline

• Pros: small die size, short development time, 
high performance

• Cons: low code density, not x86 compatible 



RISC Design Principles

• Simple operations
– Simple instructions that can execute in one cycle

• Register-to-register operations
– Only load and store operations access memory
– Rest of the operations on a register-to-register basis

• Simple addressing modes
– A few addressing modes (1 or 2)

• Large number of registers
– Needed to support register-to-register operations
– Minimize the procedure call and return overhead



RISC Design Principles

• Fixed-length instructions
– Facilitates efficient instruction execution

• Simple instruction format
– Fixed boundaries for various fields 

• opcode, source operands,…



CISC and RISC

• CISC – complex instruction set
– large instruction set
– high-level operations (simpler for compiler?)
– requires microcode interpreter (could take a long 

time)
– examples: Intel 80x86 family

• RISC – reduced instruction set
– small instruction set
– simple, atomic instructions
– directly executed by hardware very quickly
– easier to incorporate advanced architecture design
– examples: ARM (Advanced RISC Machines) and DEC 

Alpha (now Compaq), PowerPC, MIPS



CISC and RISC

CISC
(Intel 486)

RISC
(MIPS R4000)

#instructions 235 94

Addr. modes 11 1

Inst. Size (bytes) 1-12 4

GP registers 8 32



Why RISC?

• Simple instructions are preferred
– Complex instructions are mostly ignored by 

compilers
• Due to semantic gap

• Simple data structures
– Complex data structures are used relatively 

infrequently
– Better to support a few simple data types efficiently

• Synthesize complex ones
• Simple addressing modes

– Complex addressing modes lead to variable length 
instructions

• Lead to inefficient instruction decoding and scheduling



Why RISC? (cont’d)

• Large register set
– Efficient support for procedure calls and returns

• Patterson and Sequin’s study
– Procedure call/return: 1215% of HLL statements

» Constitute 3133% of machine language instructions
» Generate nearly half (45%) of memory references

– Small activation record
• Tanenbaum’s study

– Only 1.25% of the calls have more than 6 arguments
– More than 93% have less than 6 local scalar variables
– Large register set can avoid memory references 


