Computer Vision

What is computer vision ? E

e The goal of computer vision is to write
computer programs that can interpret images
and understand the scene. The holy grail is to
mimic human vision system.
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Can computer match human perceptioncé Computer vision vs Human Vision E
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e Yes and no (but mostly no!)
- computers can be better at “easy” things
- humans are much better at “hard” things
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What we see What a computer sees
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Srinivasa Narasimhan'’s slide




Components of a computer vision syste&

Computer

|

Scene Interpretation

Srinivasa Narasimhan'’s slide

Camera

Camera trial #1 %

scene film

Put a piece of film in front of an object.

Pinhole camera E

pinhole camera

=

scene barrier film

Add a barrier to block off most of the rays.

e It reduces blurring
» The pinhole is known as the aperture
» The image is inverted




Shrinking the aperture E
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0.6mm 0.35 mm

Why not making the aperture as small as possible?

e Less light gets through
= Diffraction effect

Adding a lens E

dcircle of
confusion”

scene lens film

A lens focuses light onto the film

* There is a specific distance at which objects are “in focus”
« other points project to a “circle of confusion” in the image

Lenses (2

Oibject

iy ' el
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Thin lens equation: —+ =~
a do i f
= Any object point satisfying this equation is in focus
e Thin lens applet:
http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html

Exposure = aperture + shutter speed (2

aperture

optical axis__

» Aperture of diameter D restricts the range of rays
(aperture may be on either side of the lens)

e Shutter speed is the amount of time that light is
allowed to pass through the aperture




Exposure ﬁ

e Two main parameters:

- Aperture (in f stop)
Full aperture Medium aperture Stopped down

- Shutter speed (in fraction of a second)

Exposure

e Two main parameters:
- Aperture (in f stop)
- Shutter speed (in fraction of a second)
e Reciprocity
The same exposure is obtained with

an exposure twice as long and an
aperture area half as big

- Hence square root of two progression of
f stops vs. power of two progression of
shutter speed

- Reciprocity can fail for very long

e 73 e '8

exposures
Blade (closing) Blade (open) Focal plane (closed) Focal plane (open)
From Photography, London et al.
Effects of shutter speeds % Depth of field E
= Slower shutter speed => more light, but more motion blur Changing the aperture size affects depth of field.

- hi hy, d I
- Faster shutter speed freezes motion From Photography, London et &

Walking people Running people Car Fast train

1/1000

A smaller aperture increases the range in which
the object is approximately in focus

Diaphragm

Point in focus

sensor  len Object with texture




Depth of field % Depth of field %

LESS DEPTH OF FIELD MORE DEPTH OF FIELD

Changing the aperture size affects depth of field.
A smaller aperture increases the range in which
the object is approximately in focus

Diaphragm

Point in fo

eraperture o i 5"“"“” y f/1
sensor  lenS Object with texture ( /' q%

From Photography, London et al.

Film camera § Digital camera §

aperture aperture
& shutter & shutter

scene lens & film scene lens & sensor
motor motor array

< A digital camera replaces film with a sensor array

« Each cell in the array is a light-sensitive diode that
converts photons to electrons




CCD v.s. CMOS E

e CCD is less susceptible to noise (special process, higher
fill factor)

 CMOS is more flexible, less expensive (standard
process), less power consumption
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SLR (Single-Lens Reflex) E

e Reflex (R in SLR) means that we see through
the same lens used to take the image.

= Not the case for compact cameras

SLR view finder %
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Color E

So far, we’ve only talked about monochrome
sensors. Color imaging has been implemented in a
number of ways:

e Field sequential
e Multi-chip
 Color filter array
e X3 sensor




Field sequential

°

Field sequential

Field sequential

®

Prokudin-Gorskii (early 1900’s)

| Lantern
projector

http://www.loc.gov/exhibits/empire/




Prokudin-Gorskii (early 1990°s)

Multi-chip

CCD(R)

wavelength
dependent

Color filter array

R|G|B R|G|B| @G Ye| G|Cy| G
R|G|B R|G|B|G Ye| G|Cy| G
R|G|B R|G|B| @G Ye| G|Cy| G 1%
ARlc|B Rla|lB|a ve| G |Cy|'G
Stripes
Cy| W| Ye| G G |Mg| G |Mg R|G|[R |G
Ye| G| Cy| W Cy | Ye|Cy|Ye G|B|G|B
Cy| W| Ye| G Mg| G |[Mg| G RIG|IR |G
Ye| G| Cy| W Cy | Ye|Cy|Ye G|B|G|B

Mosaics

Bayer pattern

Color filter arrays (CFAs)/color filter mosaics

Bayer’s pattern




Demosaicking CFA’s E

Demosaicking CFA’s E
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Digital camera review website E Now, we have images (2

e A cool video of digital camera illustration
e http://www.dpreview.com/

« We can think of an image as a function, f: R22>R:
- f(x, y) gives the intensity atposition (X, y)

62 79 23 119 120 105 4 0
10 10 9 G2 12 75 34 0
10 58 197 46 46 0 0 48
176 135 5 188 191 a5 0 49
2 1 1 29 26 37 0 77
0 89 144 147 187 102 a2 208
285 262 0 166 123 a2 0 31
166 a3 127 17 1 0 99 30

e What about color images?




Write a program to interpret images E

A Lighting Computer vision programs

Computer

Scene Interpretation

Srinivasa Narasimhan'’s slide

Low-level vision (early vision) E Mid-level vision

» Considers local = Grouping and
properties of an segmentation

image

“There’s an edge!” “There’s an object
and a background!”




High-level vision

“It’s a chair!”

e Recognition

Low-level vision

Detection

e Edges
e Lines
e Corners

Image filtering

e Convolution with a mask

0(0 1100
82 79 23 [E 120 105 4 i
10 10 9 a2 12 78 34 0 0Ol1111110
10 ] 197 46 48 o o 45
174 135 5 1683 161 ] [ 49 1(1 111111
2 1 1 20 28 57 [ 77
0 83 144 147 187 102 §2 208 O 1 1 1 O
55 252 0 166 103 i i Bl
168 83 127 17 1 o 99 30 olol11010




Image filtering (motion blur) &

e Convolution with a mask

vy

Image filtering (sharpening)

e Convolution with a mask

T 3

1/0 /0|0 |0 0l0 [0 |0 |O
0/11]0]0 |0 0 (-1 (-1 (-1 1|0
0lo|1]0 |0 01(-119 |-1 /0
0l0|0]|1|0 0 |-1 (-1 (-1 1|0 Demo with
0|0 (0|0 |1 0|0 (0 (0 |O PaintShop Pro
Gaussian filters (2 Gaussian filters (2

e One-dimensional Gaussian

G0 =——¢

o2x

e Two-dimensional Gaussian

1 Byt
G, (%, y)=—r—e 2
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Gaussian filters

Computing Discrete Convolutions E

Out(x,y) = 2.2 f i, j) M(x—i,y~ )

e If Inis nxn, fis mxm, takes time
0(m?n?)
e OK for small filter kernels, bad for large
ones

Example: smoothing

Original

Smoothed with
Gaussian kernel

Canny edge detector (2

Smooth

Find derivative
Thresholding
Thinning




Canny edge detector % Canny edge detector &

e First, smooth with a Gaussian of « Next, find “derivative”
some width & - What is derivative in 2D? Gradient:

woun-(2.2)

00 (0 |0]0 0o [0 |0]0
0/0[0|0]0 00 [-1/0]0
TloTalo 1 o YloTofo oo
2 [olo (o oo 2 [ofo |10 |0
| 00 (0|0]0 00 [0 |0]0
Original Image mage
Canny edge detector % Canny edge detector

Horizontal gradient Vertical gradient Original Image Smoothed Gradient Magnitude




Canny edge detector

« thresholding

Original Image Threshold Gradient Magnitude

Canny edge detector

e Thinning

Original Image Edges

Canny edge detector (2

e Nonmaximum suppression

- Eliminate all but local maxima in magnitude
of gradient

- At each pixel look along direction of gradient:
if either neighbor is bigger, set to zero

- In practice, quantize direction to horizontal,
vertical, and two diagonals

- Result: “thinned edge image”

Canny demo

Detecting lines (2

 What is the difference between line detection
and edge detection?
- Edges = local
- Lines = nonlocal

« Line detection usually performed on the output
of an edge detector




Hough transform E

e General idea: transform from image
coordinates to parameter space of feature
- Need parameterized model of features

- For each pixel, determine all parameter values that
might have given rise to that pixel; vote

- At end, look for peaks in parameter space

Hough transform for lines

e Generic line: y = ax+b
e Parameters: aand b

Hough transform for lines (2

1. Initialize table of buckets, indexed by
a and b, to zero
2. For each detected edge pixel (X,y):
a. Determine all (a,b) such that y = ax+b
b. Increment bucket (a,b)

3. Buckets with many votes indicate
probable lines

Hough transform for lines




Issues i Detection of corners i

» Slope / intercept parameterization not ideal « Also known as featurs, interesting points,
- Non-uniform sampling of directions salient points or keypoints. Points that you can
- Can’t represent vertical lines easily point out their correspondences in

« Angle / distance parameterization multiple images using only local information.

- Line represented as (r,d) where
Xcos @+ysin 8=r

N\
Hough transform demo »
Hough transform demo?2 % <
Moravec corner detector (1980) % Moravec corner detector %

» We should easily recognize the point by looking
through a small window

» Shifting a window in any direction should give a
large change in intensity

flat




Moravec corner detector E

flat

Moravec corner detector E

flat edge

Moravec corner detector

corner
isolated point

flat edge

Moravec corner detector E

Change of intensity for the shift [u,Vv]:

E(u,v) =Y w(x, Y)[1(x+u,y+v)—1(x,y)[

X,y
window shifted intensity
function intensity
Window function W( x,y) =

. . 1 in window, O outside

Four shifts: (u,v) = (1,0), (1,1), (0,1), (-1, 1)
Look for local maxima in min{E}




Problems of Moravec detector KE

» Noisy response due to a binary window function

e Only a set of shifts at every 45 degree is
considered

e Only minimum of E is taken into account

= Harris corner detector (1988) solves these
problems.

Harris corner detector E

Noisy response due to a binary window function
» Use a Gaussian function

w(x, ) = exp[— %}

Window function W( x,y) =

Gaussian

Harris corner detector (2

Only a set of shifts at every 45 degree is considered
» Consider all small shifts by Taylor’'s expansion

Harris corner detector (2

Only a set of shifts at every 45 degree is considered
» Consider all small shifts by Taylor’s expansion

E(u,v) = > w(x, Y)[I(x+u, y +v) = 1(x, y)[
= > w(x, y)[lxu + va+O(u2,v2)]2

E(u,v) = Au® + 2Cuv + Bv?
A= WX VI (xY)
Xy

B=> w(x,y)IZ(x,y)

C =2 wix YL, N1, (xy)




Harris corner detector E

Equivalently, for small shifts [u,v] we have a bilinear approximation:

E(u,v)=(u v]M m

, Where M is a 2x2 matrix computed from image derivatives:

Harris corner detector E

Only minimum of E is taken into account

»A new corner measurement by investigating the
shape of the error function

u'Mu represents a quadratic function; Thus, we
can analyze E’s shape by looking at the property
of M

1211
M:Zw(x,y) N |zy
X,y X"y y
Harris corner detector (2 Harris corner detector E

High-level idea: what shape of the error function
will we prefer for features?

corner

Intensity change in shifting window: eigenvalue analysis

u

E(u,v) = [U , V] M A1, A, - eigenvalues of M
\'

direction of the

fastest change direction of the
slowest change

Ellipse E(u,v) = const




Harris corner detector

Harris corner detector E

Classification of image ) -—
points using eigenvalues 2 edge
of M: Ay >> My

@ Corner
L, and A, are large,
Ay~ A
E increases in all
directions

%, and A, are small;
E is almost constant
in all directions

> Only for reference,
9y tayE \/(aoo —ay,;)" +4a,,3,; you do not need
- 2 them to compute R

A

Measure of corner response:
R = detM —k(traceM )’

detM = A4,
traceM =4, + 4,

(k - empirical constant, k = 0.04-0.06)

Harris corner detector

iso-response contours

amplitude of response function

Summary of Harris detector (2

1. Compute x and y derivatives of image
I, =G} =*I Iy:GCZ*I

2. Compute products of derivatives at every pixel

3. Compute the sums of the products of
derivatives at each pixel

_ — * _
S, =G, *l, S;=G,*l, S =G_xl,




Summary of Harris detector E Harris corner detector (input) E

4. Define the matrix at each pixel

Se(%y) Sy(xy)
M y):[sxxx, M) S, y)}

5. Compute the response of the detector at each

ixel
P R = det M —k(traceM )’

6. Threshold on value of R; compute nonmax
suppression.

Corner response R % Threshold on R E




Local maximum of R

Harris corner detector

Mid-level vision

Segmentation and clustering

e Defining regions

- Should they be compact? Smooth boundary?
e Defining similarity

- Color, texture, motion, ...
e Defining similarity of regions

- Minimum distance, mean, maximum




Clustering based on color

e Let’s make a few concrete choices:

- Arbitrary regions

- Similarity based on color only

- Similarity of regions =
distance between mean colors

k-means Clustering E

1. Pick number of clusters k

2. Randomly scatter k “cluster centers” in color
space

3. Repeat:

a.Assign each data point to its closest cluster
center

b.Move each cluster center to the mean of
the points assigned to it

k-means Clustering

k-means Clustering (2




k-means Clustering

k-means Clustering

k-means Clustering

k-means Clustering




k-means Clustering E k-means Clustering E
[ ] X [ )
[} [ ] ° [ ] >.< °
Results of Clustering (2 Results of Clustering E

Original Image k-means, k=5

k-means, k=11

Sample clusters with k-means clustering
based on color




Other Distance Measures E

e Suppose we want to have compact regions

» New feature space: 5D
(2 spatial coordinates, 3 color components)

= Points close in this space are close both in color
and in actual proximity

Interactive segmentation

Matting

High-level vision




Recognition

Recognition problems E

 What is it?
- Object detection

e Who is it?
- Recognizing identity

» What are they doing?
- Activities

« All of these are classification problems
- Choose one class from a list of possible candidates

Face detection

One simple method: skin detection E

» How to tell if a face is present?

|

R

« Skin pixels have a distinctive range of colors
- Corresponds to region(s) in RGB color space
= for visualization, only R and G components are shown above
Skin classifier
» Apixel X = (R,G,B) is skin if it is in the skin region
» But how to find this region?




Skin detection
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= Learn the skin region from examples

- Manually label pixels in one or more “training images” as skin or not skin

- Plot the training data in RGB space
« skin pixels shown in orange, non-skin pixels shown in blue
= some skin pixels may be outside the region, non-skin pixels inside. Why?
Skin classifier
* Given X = (R,G,B): how to determine if it is skin or not?

Skin classification techniques
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Skin classifier
+ Given X = (R,G,B): how to determine if it is skin or not?
» Nearest neighbor
— find labeled pixel closest to X
— choose the label for that pixel
» Data modeling
— fit a model (curve, surface, or volume) to each class
+ Probabilistic data modeling
— fit a probability model to each class

Probability (2

- Basic probability o
- Xis a random variable

- P(X) is the probability that X achieves a certain
value

called a PDF
-probability distribution/density function

P(X)

X

- Conditional probability: P(X ] Y)
= probability of X given that we already know Y

Probabilistic skin classification

P(skin|R)
i

P(~ skin|R)

T T =
Ri R R
« Now we can model uncertainty
- Each pixel has a probability of being skin or not skin
e P(~skin|R) =1 — P(skin|R)

Skin classifier
+ Given X = (R,G,B): how to determine if it is skin or not?
» Choose interpretation of highest probability
— set X to be a skin pixel ifand only if R{ < X < Ro

Where do we get P(skin|R) and P(~ skin|R) ?




Learning conditional PDF’s %

P(R|skin) — #skin pixels with color R
#skin pixels

* We can calculate P(R | skin) from a set of training images
- Itis simply a histogram over the pixels in the training images
= each bin R; contains the proportion of skin pixels with color R;

This doesn’t work as well in higher-dimensional spaces. Why not?

Learning conditional PDF’s E

P(R|skin) = #skin pixels with color R
#£skin pixels

= We can calculate P(R | skin) from a set of training images
- It is simply a histogram over the pixels in the training images
= each bin R; contains the proportion of skin pixels with color R;
But this isn’t quite what we want
* Why not? How to determine if a pixel is skin?

G Approach: fit parametric PDF functions . We want P(skin | R) not P(R | skin)
+ common choice is rotated Gaussian - How can we get it?
@ — center c = X '
— covariance » (X — X)(X — x)T
X
R » orientation, size defined by eigenvecs, eigenvals
Bayes rule é Bayesian estimation é
P(X|Y) = PY|X)P(X) P(R|skin) '
P(Y) < P(R|skin)P(skiny ~ P(skin) = 075
oA P(~skin) = 0.25
e In terms of our problem: P(R| ~ skin) P(R| ~ skin)P(~ skin)
what we measure  domain knowledge
(likelihood) (prior) | i
. . T R ' 2, R
, P(R|skin) P(skin) fo Rz fo R
P(skin|R) = P(R) likelihood posterior (unnormalized)
what we want normalization term

(posterior) P(R) = P(R|skin)P(skin)+P(R| ~ skin) P(~ skin)

The prior: P(skin)
* Could use domain knowledge
— P(skin) may be larger if we know the image contains a person
— for a portrait, P(skin) may be higher for pixels in the center
* Could learn the prior from the training set. How?
— P(skin) may be proportion of skin pixels in training set

= Bayesian estimation

- Goal is to choose the label (skin or ~skin) that maximizes the
posterior
« this is called Maximum A Posteriori (MAP) estimation

= minimize probability of misclassification
T




Skin detection results

Viola/Jones: features E

“Rectangle filters”
° — I

Differences between sums of
pixels in adjacent rectangles

. .

!g — )

L ) i L _.I-" \

h(x) = +1 i f(x) > 6, 60,000x100 = 6,000,000
' -1 otherwise Unique Features

Y (x)=3 ah(x) Select 200 by Adaboost

o face,  ifY(x)>0
Detection = { non-face, otherwise

Robust Realtime Face Detection, IJCV 2004, Viola and Jones

Viola/Jones: handling scale E

Juuuy

JyJy

JuJujsujsupyearts
=} e

Smallest
Scale

50,000 Locations/Scales

Viola/Jones results:

Run-time: 15fps (384x288 pixel image on a 700 Mhz Pentium III)




Application E

= -
UBEF iy g

Smart cameras: auto focus, red eye removal, auto color correction

Application E

Hosted on AutoSpies com m

Lexus LS600 Driver Monitor System

Face recognition E

= Suppose you want to recognize a
particular face

How does this face differ from average face
Consider variation from average face

Not all variations equally important
- Variation in a single pixel relatively unimportant

If image is high-dimensional vector, want to
find directions in this space with high variation

PCA E

» Principal Components Analysis (PCA):
approximating a high-dimensional data set
with a lower-dimensional subspace

Second principal component First principal component

Original axes

Data points




PCA &

PC, component

PC, component

PCA on Faces: “Eigenfaces™ %

First principal component
Average

face \

Other
components

For all except average,
“gray” = 0,
“white” > 0,
“black” < 0

Using PCA for Recognition §

e Store each person as coefficients of projection
onto first few principal components

[
image = ) aEigenface,
=0
« Compute projections of target image, compare
to database (“nearest neighbor classifier’)

a1vi azvz G3V3 a4V4 as5Vs agVe arVy agvg

Choosing the dimension K §

eigenvalues ;

= K NM

< How many eigenfaces to use?

» Look at the decay of the eigenvalues

- the eigenvalue tells you the amount of variance
“in the direction” of that eigenface

- ignore eigenfaces with low variance




Advanced topics

High dynamic range imaging/display i

Image warping/morphing %

someone not
that famous

someone very
famous

. video

Image warping/morphing %




E Image stitching E

Tracking
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Feature tracking

MatchMove

E Matchmove E
e ‘ ,I —.‘F ] TR

Move matching using scene planes

Move matching using scene planes




Matchmove E Photo tourism E

Move matching using scene planes

Video matching E Video matching E

Matrix MOCO (Motion control camera) Video matching




Mattlng and compositing E

Titanic

Matting

Image manipulation E

Image manipulation

GraphCut Texture




Image-based modeling % Image-based modeling &

photogrammetric modeling and projective texture-mapping photogrammetric modeling and projective texture-mapping

Image-based modeling % Image-based modeling E

photogrammetric modeling and projective texture-mapping Tour into a picture




Image-based modeling

Tour into a picture

Structured Light and Ranging Scanning E

http://graphics.stanford.edu/projects/mich/

3D photography (active)

Cyberware whole body scanner

3D photography (active)

3
i

Photometric stereo




Image-based rendering

Stereo Surface lightfield
View interpolation % View interpolation E
232y
s P
Rl I‘ ,E.Ilu
Nl NNl f

Bullet time video

High-Quality Video View Interpolation




Making face

ORD#RINGG

OLLUM

Video rewrite

‘

Trainable videorealistic speech animation

Inpainting

Texture synthesis/replacement

Texture replacement




Semi-automatic matting painting

3

Video editing

Input (looped) Synthesized Result

Image analogies

Flow-based video editing

Face Detection and Recognition

Motion Estimation

Application

Andy Serkis, Gollum, Lord of the Rings




Novel Cameras and Displays

http://www1.cs.columbia.edu/CAVE/projects/cc.htm

Capturing Light Field

Camera Arrays, Graphics Lab, Stanford University

Digital visual effects

Digital Visual Effects

[ T O




Reality?

Retouching

Irag War, LA Times, April 2003 %

iy




Texture synthesis and inpainting

Original photograph

Domestic example E

The Liberty Times
2007.12.17

Production pipeline

Production pipeline (2

Preproduction Production
Storyboard | Reference | Stills

Post-production
|
v

Film




Preproduction

HE RET-URN’OF‘THE KlNG NS\ > “
Book S1x.‘f-hapter'[ll‘~ ;

"Mount Doom"

Storyboard

Preproduction

. [ - S8 ’
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- C:J\\f e,
R R
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D-

Artwork

Preproduction

Reference & Research

Production

Shooting




Post-production KE

Visual effects production E

Preproduction

Storyboard )| _Artwork § Reference |

Production
Stills

Scanning l

Post-production

Matchmove and Matchmodel

Effects Character
Animation Animation

Model Geometry ju—

l ,/ \, l Lighting _and /
Eve ey KESE -

Assets |

Film Recording

Visual effects post-production (2 YoYo Flight (2

ENVIRONMENT LIVE ACTION

ANIMATION MASSIVE

B87506003 Tian-Hau Chang
B90902003 Yu-Hsin Chang
B90902096 Yu-Ting Tseng
B90902099 Pei-Shiuan He

PLAY ALL . COMMENTARY ON

RETURN OFF 4




What’s next?

Related courses
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