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What is computer vision ?

• The goal of computer vision is to write 
computer programs that can interpret images computer programs that can interpret images 
and understand the scene. The holy grail is to 
mimic human vision system  mimic human vision system. 
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Can computer match human perception? 

• Yes and no (but mostly no!)
t   b  b tt  t “ ” thi g– computers can be better at “easy” things

– humans are much better at “hard” things

Computer vision vs Human Vision

What we see What a computer seesWhat we see What a computer sees

Srinivasa Narasimhan’s slide



Components of a computer vision system

Camera

Lighting

Computer

Scene

S I t t tiScene Interpretation
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Camera

Camera trial #1

scene film

Put a piece of film in front of an objectPut a piece of film in front of an object.

Pinhole camera

pinhole camerapinhole camera

scene filmbarrier

Add a barrier to block off most of the rays.
• It reduces blurring
• The pinhole is known as the aperture
• The image is inverted



Shrinking the aperture

Why not making the aperture as small as possible?
• Less light gets through
• Diffraction effect

Adding a lens

“circle of 
confusion”

scene filmlens

confusion”

A lens focuses light onto the film
• There is a specific distance at which objects are “in focus”
• other points project to a “circle of confusion” in the imageother points project to a circle of confusion  in the image

Lenses

Thin lens equation:
• Any object point satisfying this equation is in focus
• Thin lens applet:  

htt // h t d t /j /L /l ht lhttp://www.phy.ntnu.edu.tw/java/Lens/lens_e.html

Exposure = aperture + shutter speed

F

• Aperture of diameter D restricts the range of rays 
(aperture may be on either side of the lens)(aperture may be on either side of the lens)

• Shutter speed is the amount of time that light is 
allowed to pass through the aperturep g p



Exposure
• Two main parameters: 

Aperture (in f stop)– Aperture (in f stop)

– Shutter speed (in fraction of a second)

Exposure

• Two main parameters: 
A t  (i  f t )– Aperture (in f stop)

– Shutter speed (in fraction of a second)

• Reciprocity
The same exposure is obtained with 

  i   l  d  an exposure twice as long and an 
aperture area half as big
H   t f t  g i  f – Hence square root of two progression of 
f stops vs. power of two progression of 
shutter speedshutter speed

– Reciprocity can fail for very long 
exposuresp

From Photography, London et al. 

Effects of shutter speeds

• Slower shutter speed => more light, but more motion blur

• Faster shutter speed freezes motion From Photography, London et al. 

Walking people Running people Car Fast train

1/125 1/250 1/500 1/1000

Depth of field

Changing the aperture size affects depth of field. 
A smaller aperture increases the range in which A smaller aperture increases the range in which 
the object is approximately in focus

Di hDiaphragm

Point in focus

lenssensor Object with texture



Depth of field

Changing the aperture size affects depth of field. 
A smaller aperture increases the range in which A smaller aperture increases the range in which 
the object is approximately in focus

Di hDiaphragm

Point in focus

lenssensor Object with texture

Depth of field

From Photography, London et al. 

Film camera
aperture 
& shutter

scene filmlens &
motor

Digital camera
aperture 
& shutter

scene sensor lens &
arraymotor

A digital camera replaces film with a sensor array• A digital camera replaces film with a sensor array
• Each cell in the array is a light-sensitive diode that 

converts photons to electronsconverts photons to electrons



CCD v.s. CMOS
• CCD is less susceptible to noise (special process, higher 

fill factor))
• CMOS is more flexible, less expensive (standard 

process), less power consumption

CCD CMOSCCD CMOS

SLR (Single-Lens Reflex)

• Reflex (R in SLR) means that we see through 
the same lens used to take the image  the same lens used to take the image. 

• Not the case for compact cameras

SLR view finder

Prism Your eye

MirrorMirror 
(flipped for exposure)

Film/sensor

Mirror 
(when viewing)

Light from scene

lens

Color

So far, we’ve only talked about monochrome 
sensors  Color imaging has been implemented in a sensors. Color imaging has been implemented in a 
number of ways:

Fi ld ti l• Field sequential
• Multi-chip
• Color filter array
• X3 sensor• X3 sensor



Field sequential Field sequential

Field sequential Prokudin-Gorskii (early 1900’s) 

L  Lantern 
projector

http://www.loc.gov/exhibits/empire/



Prokudin-Gorskii (early 1990’s) Multi-chip

wavelength
dependent

Color filter array

Bayer pattern

Color filter arrays (CFAs)/color filter mosaicsColor filter arrays (CFAs)/color filter mosaics

Bayer’s pattern



Demosaicking CFA’s

bilinear interpolation

i i l i t li  i t l tioriginal input linear interpolation

Demosaicking CFA’s

bili C k F L R hbilinear Cok Freeman LaRoche

Digital camera review website

• A cool video of digital camera illustration
h // d i /• http://www.dpreview.com/

Now, we have images

• We can think of an image as a function, f: R2 R:
f(  ) i  th  i t it t iti  (  ) – f(x, y) gives the intensity at position (x, y) 

x
f

y

• What about color images?



Write a program to interpret images

Camera

Lighting

Computer

Scene

S I t t tiScene Interpretation
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Computer vision programs

Low-level vision (early vision)

• Considers local 
properties of an 
imageg

“There’s an edge!”

Mid-level vision 

• Grouping and p g
segmentation

“There’s an object   
and a background!”and a background!



High-level vision

• Recognitiong

“It’s a chair!”

Low-level vision

Detection

• Edges
Li• Lines

• Corners

Image filtering

• Convolution with a mask

0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0



Image filtering (motion blur)

• Convolution with a mask

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Image filtering (sharpening)

• Convolution with a mask

0 0 0 0 0
0 -1 -1 -1 0
0 -1 9 -1 0
0 -1 -1 -1 0 Demo with 
0 0 0 0 0

Demo with 
PaintShop Pro

Gaussian filters

• One-dimensional Gaussian
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Gaussian filters Computing Discrete Convolutions

∑∑ −−⋅=
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• If In is n×n, f is m×m, takes time
O( 2 2)

i j

O(m2n2)
• OK for small filter kernels, bad for large 

ones

Example: smoothing

Original Smoothed with
Gaussian kernelGaussian kernel

Canny edge detector

• Smooth
Fi d d i i• Find derivative

• Thresholding
• Thinning



Canny edge detector

• First, smooth with a Gaussian of
some width σsome width σ

Original Image blurred Image

Canny edge detector

• Next, find “derivative”
Wh  i  d i i  i  2D?  G di• What is derivative in 2D?  Gradient:
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Canny edge detector

Horizontal gradient Vertical gradient

Canny edge detector

Original Image Smoothed Gradient Magnitude



Canny edge detector

• thresholding

Original Image Threshold Gradient Magnitude

Canny edge detector

• Thinning

Original Image Edges

Canny edge detector

• Nonmaximum suppression
Eli i t  ll b t l l i  i  it d– Eliminate all but local maxima in magnitude
of gradient
At each pixel look along direction of gradient:– At each pixel look along direction of gradient:
if either neighbor is bigger, set to zero

– In practice  quantize direction to horizontal  In practice, quantize direction to horizontal, 
vertical, and two diagonals

– Result: “thinned edge image”Result: thinned edge image

Canny demo

Detecting lines

• What is the difference between line detection 
and edge detection?and edge detection?
– Edges = local

Li   l l– Lines = nonlocal

• Line detection usually performed on the output 
f  d  dof an edge detector



Hough transform

• General idea: transform from image 
coordinates to parameter space of featurecoordinates to parameter space of feature
– Need parameterized model of features

F  h i l  d t i  ll t  l  th t – For each pixel, determine all parameter values that 
might have given rise to that pixel; vote
At end  look for peaks in parameter space– At end, look for peaks in parameter space

Hough transform for lines

• Generic line: y = ax+b
P  d b• Parameters: a and b

Hough transform for lines

1. Initialize table of buckets, indexed by
a and b  to zeroa and b, to zero

2. For each detected edge pixel (x,y):
a. Determine all (a,b) such that y = ax+b
b. Increment bucket (a,b)

3. Buckets with many votes indicate
probable lines

Hough transform for lines

aa

bb



Issues

• Slope / intercept parameterization not ideal
N if  li  f di ti– Non-uniform sampling of directions

– Can’t represent vertical lines

l d• Angle / distance parameterization
– Line represented as (r,θ) where

    x cos θ + y sin θ = r

Hough transform demo rr

θθ

Hough transform demo
Hough transform demo2

Detection of corners

• Also known as featurs, interesting points, 
salient points or keypoints  Points that you can salient points or keypoints. Points that you can 
easily point out their correspondences in 
multiple images using only local informationmultiple images using only local information.

?

Moravec corner detector (1980)

• We should easily recognize the point by looking 
through a small windowthrough a small window

• Shifting a window in any direction should give a 
l  h i  i t itlarge change in intensity

Moravec corner detector

flat



Moravec corner detector

flat

Moravec corner detector

flat edgeg

Moravec corner detector

flat edge
corner
i l t d i tg isolated point

Moravec corner detector

Change of intensity for the shift [u,v]:

[ ]∑ −++=
yx

yxIvyuxIyxwvuE
,
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window 
f ti

intensityshifted 
i t itfunction

y
intensity

Four shifts: (u,v) = (1,0), (1,1), (0,1), (-1, 1)( ) ( ) ( ) ( ) ( )
Look for local maxima in min{E}



Problems of Moravec detector

• Noisy response due to a binary window function
O l    f hif    45 d  i  • Only a set of shifts at every 45 degree is 
considered

• Only minimum of E is taken into account

Harris corner detector (1988) solves these 
problemsproblems.

Harris corner detector

Noisy response due to a binary window function
U   G i  f iUse a Gaussian function

Harris corner detector

Only a set of shifts at every 45 degree is considered
C id  ll ll hif  b  T l ’  iConsider all small shifts by Taylor’s expansion

Harris corner detector

Only a set of shifts at every 45 degree is considered
C id  ll ll hif  b  T l ’  iConsider all small shifts by Taylor’s expansion
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Harris corner detector

Equivalently, for small shifts [u,v] we have a bilinear approximation:
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Harris corner detector

Only minimum of E is taken into account
A    b  i i i  h  A new corner measurement by investigating the 

shape of the error function

represents a quadratic function; Thus, we 
can analyze E’s shape by looking at the property 

MuuT

can analyze E s shape by looking at the property 
of M

Harris corner detector

High-level idea: what shape of the error function 
will we prefer for features?will we prefer for features?
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Harris corner detector

Intensity change in shifting window: eigenvalue analysis

λ1, λ2 – eigenvalues of M[ ] ⎥
⎦
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direction of the 
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Ellipse E(u,v) = const
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(λmax)-1/2

(λmin)-1/2



Harris corner detector

λ2 edge
Classification of image 
points using eigenvalues 2

Corner
λ1 and λ2 are large,

edge 
λ2 >> λ1

points using eigenvalues 
of M:

1 2
λ1 ~ λ2;
E increases in all 
directionsdirections

λ1 and λ2 are small;
E is almost constant edge 

λ >> λflat

λ1

in all directions λ1 >> λ2
flat

1

Harris corner detector

4)( 0110
2

11001100 aaaaaa +−±+
=λ

Only for reference, 
you do not need 
h    R

Measure of corner response:
2

=λ them to compute R

Measure of corner response:
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Harris corner detector Summary of Harris detector

1. Compute x and y derivatives of image

IGI x
x ∗= σ IGI y

y ∗= σ

2. Compute products of derivatives at every pixel

3 C t  th   f th  d t  f 

xxx III ⋅=2 yyy III ⋅=2 yxxy III ⋅=

3. Compute the sums of the products of 
derivatives at each pixel

22 ' xx IGS ∗= σ 22 ' yy IGS ∗= σ xyxy IGS ∗= 'σ



Summary of Harris detector

4. Define the matrix at each pixel 

⎤⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ),(),(

),(),(
),(

2

2

yxSyxS
yxSyxS

yxM xyx

5 Compute the response of the detector at each 
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5. Compute the response of the detector at each 
pixel

( )2tracedet MkMR −=

6. Threshold on value of R; compute nonmax 
i

( )

suppression.

Harris corner detector (input)

Corner response R Threshold on R



Local maximum of R Harris corner detector

Mid-level vision

Segmentation and clustering

• Defining regions
Sh ld th  b  t?  S th b d ?– Should they be compact?  Smooth boundary?

• Defining similarity
– Color, texture, motion, …

• Defining similarity of regions
– Minimum distance, mean, maximum



Clustering based on color

• Let’s make a few concrete choices:
A bit  i– Arbitrary regions

– Similarity based on color only
Si il it  f i  – Similarity of regions =
distance between mean colors

k-means Clustering

1. Pick number of clusters k
2. Randomly scatter k “cluster centers” in color 

spacep
3. Repeat:

a Assign each data point to its closest cluster a.Assign each data point to its closest cluster 
center

b M  h l t  t  t  th   f b.Move each cluster center to the mean of 
the points assigned to it

k-means Clustering k-means Clustering



k-means Clustering k-means Clustering

k-means Clustering k-means Clustering



k-means Clustering k-means Clustering

Results of Clustering

Original Image k-means, k=5 k-means, k=11

Results of Clustering

Sample clusters withSample clusters with kk--means clusteringmeans clustering
based on colorbased on color



Other Distance Measures

• Suppose we want to have compact regions
N  f   5D• New feature space: 5D
(2 spatial coordinates, 3 color components)

• Points close in this space are close both in color 
and in actual proximity

Interactive segmentation

video1 video2

Matting

High-level vision



Recognition Recognition problems

• What is it?
Obj t d t ti– Object detection

• Who is it?
– Recognizing identity

• What are they doing?• What are they doing?
– Activities

• All of these are classification problems
Ch   l  f   li  f ibl  did– Choose one class from a list of possible candidates

Face detection

• How to tell if a face is present?

One simple method:  skin detection

skin

• Skin pixels have a distinctive range of colors
– Corresponds to region(s) in RGB color space

• for visualization, only R and G components are shown above 

Skin classifier
• A pixel X = (R G B) is skin if it is in the skin regionA pixel X  (R,G,B) is skin if it is in the skin region
• But how to find this region?



Skin detection

L th  ki  i  f  l• Learn the skin region from examples
– Manually label pixels in one or more “training images” as skin or not skin
– Plot the training data in RGB space

• skin pixels shown in orange, non-skin pixels shown in blue
• some skin pixels may be outside the region, non-skin pixels inside.  Why?

Skin classifierSkin classifier
• Given X = (R,G,B):  how to determine if it is skin or not?

Skin classification techniques

Skin classifier
• Given X = (R,G,B):  how to determine if it is skin or not?
• Nearest neighbor

find labeled pixel closest to X– find labeled pixel closest to X
– choose the label for that pixel

• Data modeling
fit d l ( f l ) t h l– fit a model (curve, surface, or volume) to each class

• Probabilistic data modeling
– fit a probability model to each class

Probability
• Basic probability

– X is a random variableX is a random variable
– P(X) is the probability that X achieves a certain 

value

called a PDF
-probability distribution/density function

– Conditional probability:   P(X | Y)
• probability of X given that we already know Yprobability of X given that we already know Y

Probabilistic skin classification

• Now we can model uncertainty
– Each pixel has a probability of being skin or not skin

•

Skin classifier
• Given X = (R,G,B):  how to determine if it is skin or not?( , , )
• Choose interpretation of highest probability

– set X to be a skin pixel if and only if 

Wh d t d ?Where do we get                    and                        ? 



Learning conditional PDF’s

• We can calculate P(R | skin) from a set of training images
– It is simply a histogram over the pixels in the training images

• each bin Ri contains the proportion of skin pixels with color Rii p p p i

This doesn’t work as well in higher-dimensional spaces.  Why not?

Approach: fit parametric PDF functionsApproach:  fit parametric PDF functions 
• common choice is rotated Gaussian 

– center 
covariance– covariance

» orientation, size defined by eigenvecs, eigenvals

Learning conditional PDF’s

• We can calculate P(R | skin) from a set of training images
– It is simply a histogram over the pixels in the training images

• each bin Ri contains the proportion of skin pixels with color Rii p p p i

But this isn’t quite what we want
• Why not?  How to determine if a pixel is skin?

W t P( ki | R) t P(R | ki )• We want P(skin | R) not P(R | skin)
• How can we get it?

Bayes rule

• In terms of our problem:
what we measure domain knowledge

(likelihood)
g

(prior)

what we want normalization termwhat we want
(posterior)

normalization term

The prior:  P(skin)p ( )
• Could use domain knowledge

– P(skin) may be larger if we know the image contains a person
– for a portrait, P(skin) may be higher for pixels in the centerfor a portrait, P(skin) may be higher for pixels in the center

• Could learn the prior from the training set.  How?
– P(skin) may be proportion of skin pixels in training set

Bayesian estimation

likelihood posterior (unnormalized)

• Bayesian estimation
– Goal is to choose the label (skin or ~skin) that maximizes the 

posterior

= minimize probability of misclassification

posterior
• this is called Maximum A Posteriori (MAP) estimation



Skin detection results

Classifier

Viola/Jones:  features

“Rectangle filters”

Differences between sums of 
pixels in adjacent rectangles

{ht(x)  =
+1   if ft(x) > θt
-1    otherwise

000,000,6100000,60 =×
Unique Features

Y(x)=∑αtht(x) Select 200 by Adaboost

{Detection =
face,        if Y(x) > 0
non-face, otherwise{

Robust Realtime Face Detection, IJCV 2004, Viola and Jones

Viola/Jones:  handling scale

Larger
ScaleScale

Smallest
Scale

50,000 Locations/Scales

Viola/Jones results:  

Run-time:  15fps  (384x288 pixel image on a 700 Mhz Pentium III)



Application

Smart cameras: auto focus, red eye removal, auto color correction

Application

Lexus LS600 Driver Monitor System

Face recognition

• Suppose you want to recognize a
particular faceparticular face

• How does this face differ from average face
• Consider variation from average face
• Not all variations equally importantq y p

– Variation in a single pixel relatively unimportant

• If image is high-dimensional vector  want to • If image is high dimensional vector, want to 
find directions in this space with high variation

PCA

• Principal Components Analysis (PCA): 
approximating a high dimensional data setapproximating a high-dimensional data set
with a lower-dimensional subspace

****

**
**

**

** **
**

** **

**

**
First principal componentFirst principal componentSecond principal componentSecond principal component

Original axesOriginal axes
**

**
**

**

**

**
** **

**
**

**

**
**

****
**

Data pointsData points



PCA PCA on Faces: “Eigenfaces”

AverageAverage
First principal componentFirst principal component

AverageAverage
faceface

OtherOther
componentscomponents

For all except averageFor all except averageFor all except average,For all except average,
“gray” = 0,“gray” = 0,

“white” > 0,“white” > 0,
“black” < 0“black” < 0black  < 0black  < 0

Using PCA for Recognition

• Store each person as coefficients of projection 
onto first few principal componentsonto first few principal components

∑
max

Eigenfaceimage
i

• Compute projections of target image, compare 

∑
=

=
0

iEigenfaceimage
i

ia

p p j g g , p
to database (“nearest neighbor classifier”)

Choosing the dimension K

eigenvalues

K NMi = K NMi = 

• How many eigenfaces to use?
• Look at the decay of the eigenvalues

– the eigenvalue tells you the amount of variance g y
“in the direction” of that eigenface

– ignore eigenfaces with low variance



Advanced topics

High dynamic range imaging/display

Image warping/morphing

someone very 
famous

someone not 
th t f famousthat famous

video

Image warping/morphing



Tracking

Feature trackingFeature tracking

Image stitching

MatchMove

Move matching using scene planesMove matching using scene planes

Matchmove

Move matching using scene planesMove matching using scene planes



Matchmove

Move matching using scene planesMove matching using scene planes

Photo tourism

Video matching

MOCO (Motion control camera)Matrix MOCO (Motion control camera)Matrix

Video matching

Video matchingVideo matching



Matting and compositing

Titanic

Matting

Image manipulation

GraphCut TextureGraphCut Texture

Image manipulation

Poisson blendingPoisson blending



Image-based modeling

photogrammetric modeling and projective texture-mappingphotogrammetric modeling and projective texture-mapping

Image-based modeling

photogrammetric modeling and projective texture-mappingphotogrammetric modeling and projective texture-mapping

Image-based modeling

photogrammetric modeling and projective texture-mappingphotogrammetric modeling and projective texture-mapping

Image-based modeling

Tour into a pictureTour into a picture



Image-based modeling

Tour into a pictureTour into a picture

Structured Light and Ranging Scanning

http://graphics.stanford.edu/projects/mich/

3D photography (active)

Cyberware whole body scannerCyberware whole body scanner

3D photography (active)

Photometric stereoPhotometric stereo



3D photography (passive)

left right

Stereo

depth

Stereo

Image-based rendering

Surface lightfieldSurface lightfield

View interpolation

Bullet time videoBullet time video

View interpolation

High Quality Video View InterpolationHigh-Quality Video View Interpolation



Making face

Spacetime faceGollum

Video rewrite

Trainable videorealistic speech animationTrainable videorealistic speech animation

Inpainting (wire removal)

InpaintingInpainting

Texture synthesis/replacement

Texture replacementTexture replacement



Semi-automatic matting painting

Image analogiesImage analogies

Video editing

Flow based video editingFlow-based video editing

Face Detection and Recognition Motion Estimation

Application

Andy Serkis, Gollum, Lord of the Rings



Novel Cameras and Displays

http://www1.cs.columbia.edu/CAVE/projects/cc.htm

Capturing Light Field 

Camera Arrays, Graphics Lab, Stanford University

Digital visual effects

Digital Visual Effects
?



Reality? Retouching

Iraq War, LA Times, April 2003

Digital photomontage 

Bush campaign’s TV AD, 2004



Texture synthesis and inpainting Domestic example

The Liberty Times 
2007 12 172007.12.17

Production pipelineProduction pipeline

Production pipeline

Preproduction Production Effects
Artwork Reference Stills PlatesStoryboard

Post-production

EditingVFX g

MusicMusic

Sound

Film



Preproduction

StoryboardStoryboard

Preproduction

Artwork

Preproduction

Reference & ResearchReference & Research

Production

ShootingShooting



Post-production Visual effects production

Preproduction Production Effects
Artwork Reference Stills Plates

Scanning

Storyboard

Post-production

Matchmove and Matchmodel

Model Geometry
Effects

Animation
Character
Animation

Ski i

Lighting and
Rendering

Skeleton Textures

M i lSkinning Rendering

Compositing
Assets Shots

Materials

Assets Shots

Film Recording

Visual effects post-production YoYo Flight



What’s next?

Related courses

Related courses


