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Introduction

3

e Instructor: Yung-Yu Chuang (%A 43)

« E-mail: cyy@csie.ntu.edu.tw

» Office: CSIE 527

« Grading: exam on the final exam week

What is computer graphics ? %

e Definition

- the pictorial synthesis of real or imaginary
objects from their computer-based models

OUTPUT

descriptions images

descriptions Computer Graphics

INPUT

images Computer Vision  Image Processing

Computer graphics

» Create a 2D image/animation of a 3D world




Applications Computer graphics

e Movies

Interactive entertainment
Industrial design
Architecture

Culture heritage

modeling rendering

A simple example %
(0,0) (2.5,0) # vertices
¢ 0.0, 0.0, 0.0
1.5, 0.0, 0.0
. 0.0, 1.5, 0.0
Modeling 1.5, 1.5, 0.0
# triangles
4 0,21
(0,1.5) (1.5,1.5) 1,2,3




The power of triangles %

« Every thing can be represented by triangles to a
degree of precision.

20 triangles 80 triangles 320 triangles

More complex examples

=

a real buddha 4K mesh render 2.4M mesh

Modeling % Triangle meshes %
» The position of the model can be acquired by
3D scanner or made by artists using modeling {f3:{v,,v,,v3} connectivity
tools. {2} {vs, vy, vy}
» There are other ways for representing {.:\'/.1} : (y.2)
geometric objects, but triangles have many Vo) : (Xy,2) geometry

advantages.

{fl} : “skin material”

f ttribut
{f,} : “brown hair” ace attributes

{VZ’fl} : (nx'nyinz) (U,V)

corner attributes
{va,fo} o (nny,n,) (u,v)

Copyright©1998, Microsoft




Composition of a scene

Graphics pipeline

scale, translate,
roale, ...

i 2
Model space
(Ohject space)
x E
5 22

World space
(Object space)

rotate, franslate

Eye space
(View space)

Transformations

Representation

We can represent a point, p = (x,y) in the plane

X
+ as a column vector
y

+ as arow vector [ X y]




Representation

We can represent a 2-D transformation M by a matrix

a b
c d

If p is a column vector, M goes on the left:

p'=Mp

e

M=

2D transformations E

Here's all you get with a 2 x 2 transformation matrix M:

X'| |a bjx
e el
X'=ax+ by
y'=cx+dy

So:

We will develop some intimacy with the elements a, b, ¢, d...

ldentity

Suppose we choose a=d=1, b=c=0:

+ Gives the identity matrix:

1 0
0 1

+ Doesn't move the points at all

Scaling E

Suppose we set b=c=0, but let a and d take on any positive value:

oo

+ Provides differential scaling in x and y:

+ Gives a scaling matrix:

Xx'=ax
y'=dy




Scaling (2 Reflection
v X Examples:
-1 0 1 0
. , {é 2} 0 1 0 -1
4 U ! y y
T + + + X ‘\ J\
A1 \
D 72 0 > X
g 0 2
Shearing (2 Rotation
The matrix | 1 P 3 A
0 1
x'=x+by .
gives: y'=y
y y x 2 .

1
1] cos(6)

0 ~ sm(é)
0] {—sin(@)} M =R(0) = |:
%
1 cos(8)

cos(d) —sin(8)
sin(@d) cos(@)




Limitations of a 2X2 matrix

Scaling
Rotation
Reflection
Shearing

What do we miss?

Homogeneous coordinate

3

Idea is to loft the problem up into 3-space, adding a third
component to every point:

And then transform with a 3 x 3 matrix:

X' x| |1 0 t,|x
y' =Tt y|=0 1 t, |y
w' 1 00 1|1
Translation (2 3D scaling E
o Some of the 3-D transformations are just like the 2-D ones. o
For example, scaling: X' s; 0 0 Ofx
y'' [0 s 0 0|y
z| |0 0 s 0]z
y It 1 0 0 0 1|1
) A
10 1 v v
0 1 12 T
1 1t 00 1 g

1
N




3D translation

X' 10 0 ¢, ][ x
y'| 1010 ¢ |y
Z| |00 1 ¢t]|z
1 000 1]1
y
A
. g

3D rotation

Rotation how has more possibilities in 3D:

(10 0
0 cos@ —sind
0 sin@d cosd
00 0
[ cos®@ 0 siné
0 1 0
—sin@ 0 cos@
0 0 0

cosf@ —sinf

Ry (0) =

Ry (6) =

N

sinf  cosé
0 0
| 0 0

R (6) =

—_ O O O = O O O = O O O

(=T = -]

X

Re
R

Use right hand rule

3D shearing

Shearing is also more complicated. Here is one example:

x' 1 b 0 0} x

y'| 10 1.0 0|y

Z| |0 0 10|z

1 0 0 0 1|1
% y

A
------ . A
zZ

Graphics pipeline

n iz
21 %2
.

Model space
(Object space)

World space
(Object space)

Eye space
(View space)




Projections

Imaging with the synthetic camera E

The 1image 1s rendered onto an image plane or projection plane (usually
in front of the camera).

Projectors emanate from the center of projection (COP) at the center of
the lens (or pinhole).

The image of an object point P is at the intersection of the projector
through P and the image plane.

Specifying a viewer E

Camera specification requires four kinds of parameters:

+ Position: the COP.

¢ Orientation: rotations about axes with origin at the COP.

+ Focal length: determines the size of the image on the film plane, or

the field of view.

¢ Film plane: 1ts width and height, and possibly orientation.

Projections E

Projections transform points in #-space to m-space, where m < n.

In 3D, we map points from 3-space to the projection plane (PP) along
projectors emanating from the center of projection (COP).

There are two basic types of projections:

¢  Perspective - distance from COP to PP fimte
+ Parallel - distance from COP to PP infinite




Parallel and perspective projections (2

DoP / , / .
/ PP % oo

COP

Orthographic transformation E

For parallel projections, we specify a direction of projection
(DOP) instead of a COP.

We can write orthographic projection onto the z=0 plane with
a simple matrix.

X
x] 1000
1) y
y'|=[o 100}’
][00 o 1)

orthographic perspective
Normally, we do not drop the z value right away. Why not?
Perspective projection (2 Perspective transform E
Q: How do we perform the perspective projection from eye We can write this transformation in matrix form:
space into screen space? Y 1 0o o ollx Y
y
Y 0O 1 0 Offy )
PP =MP = Yz !
VA 00 1 0fc¢z z
w 0 0 1/d 01 z/d

(x,y.2)

Perspective divide: - -

X
X /W z/d
Yiow| | v
ZIW | | z/d

wiw




Triangle meshes E

{f} :{vi.vo,v3} connectivity
{f} i {vs, v, vy}

Graphics pipeline review t‘-’.1} - (xy.2) geometry
v} (x.y.2)

{fl} : “skin material”

{f.} : “brown hair’ face attributes
2 .

{VZ’fl} : (nxiny'nz) (U,V)

corner attributes
{VZ’fZ} : (nx'ny'nz) (U,V)

Copyright©1998, Microsoft

Review of graphics pipeline E Review of graphics pipeline E
Transformation Projection & clipping
10 0 0
Yo 01 0 0
00 1 0
1 0 0 ¢t,||cos@ 0 singd 0 0 0 l/d 0 -
010t 0 1 0 0
:IU_ 0 0 1 t,[|—smé 0O cos@ 0
A 000 1 0o 0 0 1 .
P 2 /A‘
COP -
\-/l i




Review of graphics pipeline E

e Rasterization
« Visibility

it

Visibility (Hidden surface removal)

Hidden surface removal (2

« Determining what to render at each pixel.

« A point is visible if there exists a direct line-of-
sight to it, unobstructed by another other
objects (visible surface determination).

» Moreover, some objects may be invisible
because there are behind the camera, outside
of the field-of-view, too far away (clipping) or
back faced (backface culling).

Hidden surfaces: why care? E

» Occlusion: Closer (opaque) objects along same
viewing ray obscure more distant ones
» Reasons for removal
- Efficiency: As with
clipping, avoid wasting
work on invisible
objects
- Correctness: The image [
will look wrong if we
don’t model occlusion
properly

COP




Hidden surface removal algorithms (2

Painter’s algorithm
Binary space partitioning
Z-buffer

Ray casting

And many others

Painter’s algorithm

Draw primitives
from back to
front to avoid
need for depth
comparisons

Y

/

Em

“
Z

ol [ ).

from Shirley

Painter’s algorithm (2

« Idea: Sort primitives by minimum depth, then
rasterize from furthest to nearest

» When there are depth overlaps, do more tests
of bounding areas, etc. to see one actually
occludes the other

 Cyclical overlaps are a problem

Z-buffer algorithm

!

» Resolve depths at the pixel level

 Idea: add Z to frame buffer, when a pixel is
drawn, check whether it is closer than what’s
already in the framebuffer

» Proposed by Ed Catmull in 1975, widely used
today, especially in hardware.

o Z-buffer, texture, subdivsion
surface, RenderMan

» Co-founder of Pixar

e 3 Oscars (1993, 1996, 2001),

SIGGRAPH Steven Coons Award (1993)




Z-buffer algorithm E

for each pixel p;

{

Z-buffer[ p; ] = FAR
Fb[ p; 1 = BACKGROUND_COLOR

¥
for each polygon P

| for each pixel p, in the projection of P|

| Compute depth z and shade s of P at p. |
if z < Z-buffer[ p; ]
{

/-buffer[ p; ] =z
Fb[ p; 1 =5

Z-buffer algorithm

A
)}1 |-
Scan line
Vi
Vi
Vi
Z3

Y=V
=2z (Zl Zz)) ,
nw—x,
V.=V
21 <5
=4 (21 Z3
i = Vs
X, —X
_ b r
_Zb_(zb_zn N N
b ‘)"n

The z-Buffer Algorithm E
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Z-buffer: example

color buffer

depth buffer




Z-Buffer

» Benefits
- Easy to implement
- Works for any geometric primitive

- Parallel operation in hardware (independent of
order of polygon drawn)

« Limitations
- Memory required for depth buffer
- Quantization and aliasing artifacts
- Overfill
- Transparency does not work well

Clipping (view frustum culling) E

view frustum

¥

4~/ occlusion

eye

view frustum+,

Review of graphics pipeline

e Rasterization
« Visibility

it

Review of graphics pipeline (2
. Shadlng “E@Z”

I=k kI, +Y f(di)fh[k J(N'L), +k,(V -R)ﬁs}




Shading

Z-buffer algorithm

for each pixel p;

{
Z-buffer[ p; ] = FAR
Fb[ p; 1 = BACKGROUND_COLOR
}
for each polygon P
{
for each pixel p; in the projection of P
{
Compute depth z andmC P at p;
if z < Z-buffer[ p, ]
{
/-buffer[ p; ] =2
Fb[ p; 1 = s
}
}
¥

What is normal?

Normal for a triangle

plane n:(p-v,)=0

n=(Vy-Vy) X (V- Vp)

normalize n « n/|n| v
0

Note that right-hand rule determines outward face




Using average normals

N = true (geometric) normal

Using average normals

NNz

Using average normals

Using average normals

:(N1+N2+N3+N4)
"IN NG NG N

More generally,

It can also be area-weighted.




Definitions of Triangle Meshes E

Ml ive, Ve ol connectivity
{fZ}:{V;g,VZ ,V4}

{V }:(x,y,2)

{V;} L (XY,2) geometry

{fl} : “skin material”

{£.} : “brown hair” face attributes
2 .

{VZ’fl} : (nxlny’nz) (U,V)

corner attributes
{VZ’fZ} : (nx’ny’nz) (U,V)

Copyright©1998, Migcrosoft

llumination (shading) models E

« Interaction between light sources and objects
in scene that results in perception of intensity
and color at eye

» Local vs. global models

- Local: perception of a particular primitive only
depends on light sources directly affecting that one
primitive

« Geometry
» Material properties
» Shadows cast (global?)

- Global: also take into account indirect effects on

light of other objects in the scene
« Light reflected/refracted
« Indirect lighting

Local vs. global models %

Direct lighting Indirect lighting

Setup E

VE
P

Point P on a surface through a pixel p
Normal N at P

Lighting direction VL

Viewing direction ve

Compute color L for pixel p




Surface types E

« The smoother a surface, the more reflected light is
concentrated in the direction a perfect mirror would
reflected the light

« A very rough surface scatters light in all directions

smooth surface rough surface

Basics of local shading E

« Diffuse reflection
- light goes everywhere; colored by object color
» Specular reflection

- happens only near mirror configuration; usually
white

« Ambient reflection
- constant accounted for other source of illumination

color and ambient diffuse specularity

Ambient shading (2

« add constant color to account for disregarded

illumination and fill in black shadows; a cheap
hack. -

ambient light

I‘H — Alﬂ !{l

A v y
SR AP
“ -,
=45 e

ambient
coefficient

reflected
ambient
light

Diffuse shading E

» Assume light reflects equally in all directions
- Therefore surface looks same color from all views;

“view independent” qx\k
. |

Picture a rough surface with lots of tiny microfacets:

oot i
\\\%\W/‘\\iw




Diffuse shading E

« Illumination on an oblique surface is less than
on a normal one (Lambertian cosine law)

Diffuse shading (Gouraud 1971) E

» Applies to diffuse, Lambertian or matte
surfaces

illumination
e, A 2A )L{Q from source
7o ' 60° W ik l
¥ n /
VL " =K nax(0, n -
- Generally, illumination falls off as cos® /"/ La {‘f’ I max(0,n - vy)
diffuse
coefficient(albedo)
diffusely
reflected
light
Diffuse shading E Diffuse shading E

ambient and diffuse-reflection model with different ka

and 1, =1, =1.0,k, =0.4

For color objects, apply the formula for each
color channel separately




Specular shading E

« Some surfaces have highlights, mirror like
reflection; view direction dependent;
especially for smooth shinny surfaces

Specular shading (Phong 1975) E

» Also known as glossy, rough specular and
directional diffuse reflection

I\

e ¢ vVR=vp+2((n-vp)n—vy)
\ 4 =2(n-vp)n—vp
N ‘,L n ‘.rR &
//.//
Specular shading E Specular shading E

 Fall off gradually from the perfect reflection
direction

b4 vi=vr+2((n-vr)n—vp)

"'\_ .,/ =2(n-vy)n—vy,

Ls = ks I max(0,coso)”

T = k¢ I max(0,vg - vp)"
specularly
reflected
light

specular
coefficient

« Increasing n narrows the lobe




Specular shading E

k

S

0.1

0.25

0.5

n=27.0 n=200.0

n=3.0 n=>5.0 n=10.0

Specular shading

diffuse

diffuse + specular

Put it all together E

 Include ambient, diffuse and specular

L=L,+ Laq+ L,
=kolo + I (kgmax(0,n-vy) + ks max(0,n - vg)™)

« Sum over many lights
L=L,+ Z(Ld)i + (Ls)i

= kols + Z I; (kg max(0,n - (vy);) + ks max(0,n - (vg);)")

Choosing the parameters

!

n, in the range [0,100]
Try k,+k,+k <1
Use a small &, (~0.1)

A kd ks
Metal Large Small, Large,
color of metal | color of metal
Plastic Medium Medium, Medum,
color of plastic | white
Planet 0 Varying 0




Computing lighting at each pixel

3

e Most accurate approach: Compute component
illumination at each pixel with individual
positions, light directions, and viewing

directions
 But this could be expensive...

Yy
Yil-

Y. Scan line

Yo

Y3

Shading models for polygons

 Flat Shading
- Faceted Shading
- Constant Shading
» Gouraud Shading
- Intensity Interpolation Shading
- Color Interpolation Shading
» Phong Shading
- Normal-Vector Interpolation Shading

Flat Shading

« Compute constant shading
function, over each polygon

« Same normal and light vector
across whole polygon

» Constant shading for polygon

I, =1 - -

Intensity Interpolation (Gouraud)

Ia:|1 ys_y2+| yl_ys

Y1_y2 2y1_3/2
ys_y3 yl_ys
| =1 +1
S A A VA
=1, ey, Te T

P a

b




Normal Interpolation (Phong)

Na=N1 ys_y2+N2 yl_ys
Yi—Y, Yi— Yo Na

Nb=N1 ys_y3_|_N3 yl_ys
Yi—Y; Yi—Y; Nz

Normal Interpolation (Phong)

3

) = Na Xb_xp + Nb Xp_Xa
Na| | X%o=Xa | [No| | X%o—Xa
INS| H

N
N =" Normalizing makes

Np this a unit vector

Gouraud v.s. Phong Shading

Gouraud Phong Gouraud

Phong

Flat shading




Gouraud shading

Phong shading i

a

N
N%
N,

Interpolate

'
;"; N
|

Shade

|

Q

Graphics Pipeline

Triangle meshes ﬁ
i ive, Ve, Vo connectivity
{fZ}:{V3,V2,V4}
{V }:(x,y,2)
{V;} : (x,Y,2) geometry

{fl} : “skin material”

f ttribut
{f,} : “brown hair” ace attributes

{VZ’fl} : (nx'nyinz) (U,V)

corner attributes
{va,fo} o (nny,n,) (u,v)

Copyright©1998, Microsoft




Review of graphics pipeline

Transformation

o O = O
o = O O

COoP | A

—~— .

X

~
]

cos@

—sin &

sin @

cos @

Review of graphics pipeline

Projection & clipping

1 0 0 0
1 0 0
00 1 o0
0 1/d 0

Review of graphics pipeline

e Rasterization
« Visibility

it

Review of graphics pipeline

» Shading




Animation

Hierarchical modeling: a robot arm E

Consider this robot arm with 3 degrees of freedom:

+ Base rotates about its vertical axis by 6
+ Lower arm rotates in its xy-plane by ¢
+ Upper arm rotates in its xy-plane by

Hierarchical modeling E

Hierarchical models can be composed of instances using trees
or DAGs:

[] + edges contain geometric transformations

I_I] + nodes contain geometry (and possibly drawing attributes)

T

head left upper right upper left upper right upper
arm arm leg leg

lett lower right lower left lower right lower
arm arm leg leg

Animator demos E

File  Miew  Anenation

Farticle Syitam

Clpar e, |

Payback Controts

IR




Videos &

» TigerWang

» Racing
Advanced topics
Global illumination % Complex materials %
~N— =
l'-..-___‘ ot

\w'?_ e

= [

Lo(x:w: A: t) = Le(x: W, A: t) + / f‘r(x:w!:w: A: t)L‘é(x:w!: A! t)(_wl ’ ﬂ)d{d!
. 2

—_—

= T () M PARTHONDE - HAERSLAUTCRN




Realistic motion

Graphics hardware

300
== NVIDIA
b ATI

w 200 | —e— Tutcl

)

2

S b

0

Animation production

Animation production pipeline E
Doy PIXAR \GQ:JR
EAONSTERS, INC. . b
8! . -..:: TREATMENT - l Ur} o ,. -
story text treatment storyboard

N

=N




Animation production pipeline

shading/ﬁghﬂﬁg

rendering

ﬁnaltouch

What’s next?
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