
Chapter 6

Floating Point

6.1 Floating Point Representation

6.1.1 Non-integral binary numbers

When number systems were discussed in the first chapter, only integer
values were discussed. Obviously, it must be possible to represent non-
integral numbers in other bases as well as decimal. In decimal, digits to the
right of the decimal point have associated negative powers of ten:

0.123 = 1× 10−1 + 2× 10−2 + 3× 10−3

Not surprisingly, binary numbers work similarly:

0.1012 = 1× 2−1 + 0× 2−2 + 1× 2−3 = 0.625

This idea can be combined with the integer methods of Chapter 1 to convert
a general number:

110.0112 = 4 + 2 + 0.25 + 0.125 = 6.375

Converting from decimal to binary is not very difficult either. In general,
divide the decimal number into two parts: integer and fraction. Convert the
integer part to binary using the methods from Chapter 1. The fractional
part is converted using the method described below.

Consider a binary fraction with the bits labeled a, b, c, . . . The number
in binary then looks like:

0.abcdef . . .

Multiply the number by two. The binary representation of the new number
will be:

a.bcdef . . .

117

118 CHAPTER 6. FLOATING POINT

0.5625× 2 = 1.125
0.125× 2 = 0.25
0.25× 2 = 0.5
0.5× 2 = 1.0

first bit = 1
second bit = 0

third bit = 0
fourth bit = 1

Figure 6.1: Converting 0.5625 to binary

0.85× 2 = 1.7
0.7× 2 = 1.4
0.4× 2 = 0.8
0.8× 2 = 1.6
0.6× 2 = 1.2
0.2× 2 = 0.4
0.4× 2 = 0.8
0.8× 2 = 1.6

Figure 6.2: Converting 0.85 to binary

Note that the first bit is now in the one’s place. Replace the a with 0 to get:

0.bcdef . . .

and multiply by two again to get:

b.cdef . . .

Now the second bit (b) is in the one’s position. This procedure can be
repeated until as many bits needed are found. Figure 6.1 shows a real
example that converts 0.5625 to binary. The method stops when a fractional
part of zero is reached.

As another example, consider converting 23.85 to binary. It is easy to
convert the integral part (23 = 101112), but what about the fractional part
(0.85)? Figure 6.2 shows the beginning of this calculation. If one looks at

6.1. FLOATING POINT REPRESENTATION 119

the numbers carefully, an infinite loop is found! This means that 0.85 is a
repeating binary (as opposed to a repeating decimal in base 10)1. There is
a pattern to the numbers in the calculation. Looking at the pattern, one
can see that 0.85 = 0.1101102. Thus, 23.85 = 10111.1101102.

One important consequence of the above calculation is that 23.85 can
not be represented exactly in binary using a finite number of bits. (Just
as 1

3 can not be represented in decimal with a finite number of digits.) As
this chapter shows, float and double variables in C are stored in binary.
Thus, values like 23.85 can not be stored exactly into these variables. Only
an approximation of 23.85 can be stored.

To simplify the hardware, floating point numbers are stored in a con-
sistent format. This format uses scientific notation (but in binary, using
powers of two, not ten). For example, 23.85 or 10111.11011001100110 . . .2
would be stored as:

1.011111011001100110 . . .× 2100

(where the exponent (100) is in binary). A normalized floating point number
has the form:

1.ssssssssssssssss× 2eeeeeee

where 1.sssssssssssss is the significand and eeeeeeee is the exponent.

6.1.2 IEEE floating point representation

The IEEE (Institute of Electrical and Electronic Engineers) is an inter-
national organization that has designed specific binary formats for storing
floating point numbers. This format is used on most (but not all!) com-
puters made today. Often it is supported by the hardware of the computer
itself. For example, Intel’s numeric (or math) coprocessors (which are built
into all its CPU’s since the Pentium) use it. The IEEE defines two different
formats with different precisions: single and double precision. Single preci-
sion is used by float variables in C and double precision is used by double
variables.

Intel’s math coprocessor also uses a third, higher precision called ex-
tended precision. In fact, all data in the coprocessor itself is in this precision.
When it is stored in memory from the coprocessor it is converted to either
single or double precision automatically.2 Extended precision uses a slightly
different general format than the IEEE float and double formats and so will
not be discussed here.

1It should not be so surprising that a number might repeat in one base, but not another.
Think about 1

3
, it repeats in decimal, but in ternary (base 3) it would be 0.13.

2 Some compiler’s (such as Borland) long double type uses this extended precision.
However, other compilers use double precision for both double and long double. (This
is allowed by ANSI C.)

120 CHAPTER 6. FLOATING POINT

31 30 23 22 0
s e f

s sign bit - 0 = positive, 1 = negative
e biased exponent (8-bits) = true exponent + 7F (127 decimal). The

values 00 and FF have special meaning (see text).
f fraction - the first 23-bits after the 1. in the significand.

Figure 6.3: IEEE single precision

IEEE single precision

Single precision floating point uses 32 bits to encode the number. It
is usually accurate to 7 significant decimal digits. Floating point numbers
are stored in a much more complicated format than integers. Figure 6.3
shows the basic format of a IEEE single precision number. There are sev-
eral quirks to the format. Floating point numbers do not use the two’s
complement representation for negative numbers. They use a signed mag-
nitude representation. Bit 31 determines the sign of the number as shown.

The binary exponent is not stored directly. Instead, the sum of the
exponent and 7F is stored from bit 23 to 30. This biased exponent is always
non-negative.

The fraction part assumes a normalized significand (in the form 1.sssssssss).
Since the first bit is always an one, the leading one is not stored! This al-
lows the storage of an additional bit at the end and so increases the precision
slightly. This idea is know as the hidden one representation.

How would 23.85 be stored? First, it is positive so the sign bit is 0. NextOne should always keep in
mind that the bytes 41 BE
CC CD can be interpreted
different ways depending
on what a program does
with them! As as single
precision floating point
number, they represent
23.850000381, but as a
double word integer, they
represent 1,103,023,309!
The CPU does not know
which is the correct
interpretation!

the true exponent is 4, so the biased exponent is 7F+4 = 8316. Finally, the
fraction is 01111101100110011001100 (remember the leading one is hidden).
Putting this all together (to help clarify the different sections of the floating
point format, the sign bit and the faction have been underlined and the bits
have been grouped into 4-bit nibbles):

0 100 0001 1 011 1110 1100 1100 1100 11002 = 41BECCCC16

This is not exactly 23.85 (since it is a repeating binary). If one converts
the above back to decimal, one finds that it is approximately 23.849998474.
This number is very close to 23.85, but it is not exact. Actually, in C, 23.85
would not be represented exactly as above. Since the left-most bit that was
truncated from the exact representation is 1, the last bit is rounded up to 1.
So 23.85 would be represented as 41 BE CC CD in hex using single precision.
Converting this to decimal results in 23.850000381 which is a slightly better
approximation of 23.85.

6.1. FLOATING POINT REPRESENTATION 121

e = 0 and f = 0 denotes the number zero (which can not be nor-
malized) Note that there is a +0 and -0.

e = 0 and f 6= 0 denotes a denormalized number. These are dis-
cussed in the next section.

e = FF and f = 0 denotes infinity (∞). There are both positive
and negative infinities.

e = FF and f 6= 0 denotes an undefined result, known as NaN
(Not a Number).

Table 6.1: Special values of f and e

63 62 52 51 0
s e f

Figure 6.4: IEEE double precision

How would -23.85 be represented? Just change the sign bit: C1 BE CC
CD. Do not take the two’s complement!

Certain combinations of e and f have special meanings for IEEE floats.
Table 6.1 describes these special values. An infinity is produced by an
overflow or by division by zero. An undefined result is produced by an
invalid operation such as trying to find the square root of a negative number,
adding two infinities, etc.

Normalized single precision numbers can range in magnitude from 1.0×
2−126 (≈ 1.1755× 10−35) to 1.11111 . . .× 2127 (≈ 3.4028× 1035).

Denormalized numbers

Denormalized numbers can be used to represent numbers with magni-
tudes too small to normalize (i.e. below 1.0×2−126). For example, consider
the number 1.0012×2−129 (≈ 1.6530×10−39). In the given normalized form,
the exponent is too small. However, it can be represented in the unnormal-
ized form: 0.010012 × 2−127. To store this number, the biased exponent is
set to 0 (see Table 6.1) and the fraction is the complete significand of the
number written as a product with 2−127 (i.e. all bits are stored including
the one to the left of the decimal point). The representation of 1.001×2−129

is then:

0 000 0000 0 001 0010 0000 0000 0000 0000

122 CHAPTER 6. FLOATING POINT

IEEE double precision

IEEE double precision uses 64 bits to represent numbers and is usually
accurate to about 15 significant decimal digits. As Figure 6.4 shows, the
basic format is very similar to single precision. More bits are used for the
biased exponent (11) and the fraction (52) than for single precision.

The larger range for the biased exponent has two consequences. The first
is that it is calculated as the sum of the true exponent and 3FF (1023) (not
7F as for single precision). Secondly, a large range of true exponents (and
thus a larger range of magnitudes) is allowed. Double precision magnitudes
can range from approximately 10−308 to 10308.

It is the larger field of the fraction that is responsible for the increase in
the number of significant digits for double values.

As an example, consider 23.85 again. The biased exponent will be 4 +
3FF = 403 in hex. Thus, the double representation would be:

0 100 0000 0011 0111 1101 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010

or 40 37 D9 99 99 99 99 9A in hex. If one converts this back to decimal,
one finds 23.8500000000000014 (there are 12 zeros!) which is a much better
approximation of 23.85.

The double precision has the same special values as single precision3.
Denormalized numbers are also very similar. The only main difference is
that double denormalized numbers use 2−1023 instead of 2−127.

6.2 Floating Point Arithmetic

Floating point arithmetic on a computer is different than in continuous
mathematics. In mathematics, all numbers can be considered exact. As
shown in the previous section, on a computer many numbers can not be
represented exactly with a finite number of bits. All calculations are per-
formed with limited precision. In the examples of this section, numbers with
an 8-bit significand will be used for simplicity.

6.2.1 Addition

To add two floating point numbers, the exponents must be equal. If
they are not already equal, then they must be made equal by shifting the
significand of the number with the smaller exponent. For example, consider
10.375 + 6.34375 = 16.71875 or in binary:

1.0100110× 23

+ 1.1001011× 22

3The only difference is that for the infinity and undefined values, the biased exponent
is 7FF not FF.

6.2. FLOATING POINT ARITHMETIC 123

These two numbers do not have the same exponent so shift the significand
to make the exponents the same and then add:

1.0100110× 23

+ 0.1100110× 23

10.0001100× 23

Note that the shifting of 1.1001011× 22 drops off the trailing one and after
rounding results in 0.1100110×23. The result of the addition, 10.0001100×23

(or 1.00001100 × 24) is equal to 10000.1102 or 16.75. This is not equal to
the exact answer (16.71875)! It is only an approximation due to the round
off errors of the addition process.

It is important to realize that floating point arithmetic on a computer
(or calculator) is always an approximation. The laws of mathematics do
not always work with floating point numbers on a computer. Mathemat-
ics assumes infinite precision which no computer can match. For example,
mathematics teaches that (a + b)− b = a; however, this may not hold true
exactly on a computer!

6.2.2 Subtraction

Subtraction works very similarly and has the same problems as addition.
As an example, consider 16.75− 15.9375 = 0.8125:

1.0000110× 24

− 1.1111111× 23

Shifting 1.1111111× 23 gives (rounding up) 1.0000000× 24

1.0000110× 24

− 1.0000000× 24

0.0000110× 24

0.0000110× 24 = 0.112 = 0.75 which is not exactly correct.

6.2.3 Multiplication and division

For multiplication, the significands are multiplied and the exponents are
added. Consider 10.375× 2.5 = 25.9375:

1.0100110× 23

× 1.0100000× 21

10100110
+ 10100110

1.10011111000000× 24

124 CHAPTER 6. FLOATING POINT

Of course, the real result would be rounded to 8-bits to give:

1.1010000× 24 = 11010.0002 = 26

Division is more complicated, but has similar problems with round off
errors.

6.2.4 Ramifications for programming

The main point of this section is that floating point calculations are not
exact. The programmer needs to be aware of this. A common mistake
that programmers make with floating point numbers is to compare them
assuming that a calculation is exact. For example, consider a function named
f(x) that makes a complex calculation and a program is trying to find the
function’s roots4. One might be tempted to use the following statement to
check to see if x is a root:

if (f(x) == 0.0)

But, what if f(x) returns 1 × 10−30? This very likely means that x is a
very good approximation of a true root; however, the equality will be false.
There may not be any IEEE floating point value of x that returns exactly
zero, due to round off errors in f(x).

A much better method would be to use:

if (fabs(f(x)) < EPS)

where EPS is a macro defined to be a very small positive value (like 1×10−10).
This is true whenever f(x) is very close to zero. In general, to compare a
floating point value (say x) to another (y) use:

if (fabs(x − y)/fabs(y) < EPS)

6.3 The Numeric Coprocessor

6.3.1 Hardware

The earliest Intel processors had no hardware support for floating point
operations. This does not mean that they could not perform float operations.
It just means that they had to be performed by procedures composed of
many non-floating point instructions. For these early systems, Intel did
provide an additional chip called a math coprocessor. A math coprocessor
has machine instructions that perform many floating point operations much
faster than using a software procedure (on early processors, at least 10 times

4A root of a function is a value x such that f(x) = 0

6.3. THE NUMERIC COPROCESSOR 125

faster!). The coprocessor for the 8086/8088 was called the 8087. For the
80286, there was a 80287 and for the 80386, a 80387. The 80486DX processor
integrated the math coprocessor into the 80486 itself.5 Since the Pentium, all
generations of 80x86 processors have a builtin math coprocessor; however, it
is still programmed as if it was a separate unit. Even earlier systems without
a coprocessor can install software that emulates a math coprocessor. These
emulator packages are automatically activated when a program executes a
coprocessor instruction and run a software procedure that produces the same
result as the coprocessor would have (though much slower, of course).

The numeric coprocessor has eight floating point registers. Each register
holds 80 bits of data. Floating point numbers are always stored as 80-bit
extended precision numbers in these registers. The registers are named ST0,
ST1, ST2, . . . ST7. The floating point registers are used differently than the
integer registers of the main CPU. The floating point registers are organized
as a stack. Recall that a stack is a Last-In First-Out (LIFO) list. ST0 always
refers to the value at the top of the stack. All new numbers are added to the
top of the stack. Existing numbers are pushed down on the stack to make
room for the new number.

There is also a status register in the numeric coprocessor. It has several
flags. Only the 4 flags used for comparisons will be covered: C0, C1, C2 and
C3. The use of these is discussed later.

6.3.2 Instructions

To make it easy to distinguish the normal CPU instructions from copro-
cessor ones, all the coprocessor mnemonics start with an F.

Loading and storing

There are several instructions that load data onto the top of the copro-
cessor register stack:
FLD source loads a floating point number from memory onto the top of

the stack. The source may be a single, double or extended
precision number or a coprocessor register.

FILD source reads an integer from memory, converts it to floating point
and stores the result on top of the stack. The source may be
either a word, double word or quad word.

FLD1 stores a one on the top of the stack.
FLDZ stores a zero on the top of the stack.

There are also several instructions that store data from the stack into
memory. Some of these instructions also pop (i.e. remove) the number from

5However, the 80486SX did not have have an integrated coprocessor. There was a
separate 80487SX chip for these machines.

126 CHAPTER 6. FLOATING POINT

the stack as it stores it.
FST dest stores the top of the stack (ST0) into memory. The destina-

tion may either be a single or double precision number or a
coprocessor register.

FSTP dest stores the top of the stack into memory just as FST; however,
after the number is stored, its value is popped from the stack.
The destination may either a single, double or extended pre-
cision number or a coprocessor register.

FIST dest stores the value of the top of the stack converted to an integer
into memory. The destination may either a word or a double
word. The stack itself is unchanged. How the floating point
number is converted to an integer depends on some bits in
the coprocessor’s control word. This is a special (non-floating
point) word register that controls how the coprocessor works.
By default, the control word is initialized so that it rounds
to the nearest integer when it converts to integer. However,
the FSTCW (Store Control Word) and FLDCW (Load Control
Word) instructions can be used to change this behavior.

FISTP dest Same as FIST except for two things. The top of the stack is
popped and the destination may also be a quad word.

There are two other instructions that can move or remove data on the
stack itself.
FXCH STn exchanges the values in ST0 and STn on the stack (where n

is register number from 1 to 7).
FFREE STn frees up a register on the stack by marking the register as

unused or empty.

Addition and subtraction

Each of the addition instructions compute the sum of ST0 and another
operand. The result is always stored in a coprocessor register.
FADD src ST0 += src . The src may be any coprocessor register

or a single or double precision number in memory.
FADD dest, ST0 dest += ST0. The dest may be any coprocessor reg-

ister.
FADDP dest or
FADDP dest, STO

dest += ST0 then pop stack. The dest may be any
coprocessor register.

FIADD src ST0 += (float) src . Adds an integer to ST0. The
src must be a word or double word in memory.

There are twice as many subtraction instructions than addition because
the order of the operands is important for subtraction (i.e. a + b = b + a,
but a − b 6= b − a!). For each instruction, there is an alternate one that
subtracts in the reverse order. These reverse instructions all end in either

6.3. THE NUMERIC COPROCESSOR 127

1 segment .bss
2 array resq SIZE
3 sum resq 1
4

5 segment .text
6 mov ecx, SIZE
7 mov esi, array
8 fldz ; ST0 = 0
9 lp:

10 fadd qword [esi] ; ST0 += *(esi)
11 add esi, 8 ; move to next double
12 loop lp
13 fstp qword sum ; store result into sum

Figure 6.5: Array sum example

R or RP. Figure 6.5 shows a short code snippet that adds up the elements
of an array of doubles. On lines 10 and 13, one must specify the size of
the memory operand. Otherwise the assembler would not know whether the
memory operand was a float (dword) or a double (qword).

FSUB src ST0 -= src . The src may be any coprocessor register
or a single or double precision number in memory.

FSUBR src ST0 = src - ST0. The src may be any coproces-
sor register or a single or double precision number in
memory.

FSUB dest, ST0 dest -= ST0. The dest may be any coprocessor reg-
ister.

FSUBR dest, ST0 dest = ST0 - dest . The dest may be any copro-
cessor register.

FSUBP dest or
FSUBP dest, STO

dest -= ST0 then pop stack. The dest may be any
coprocessor register.

FSUBRP dest or
FSUBRP dest, STO

dest = ST0 - dest then pop stack. The dest may
be any coprocessor register.

FISUB src ST0 -= (float) src . Subtracts an integer from
ST0. The src must be a word or double word in mem-
ory.

FISUBR src ST0 = (float) src - ST0. Subtracts ST0 from an
integer. The src must be a word or double word in
memory.

128 CHAPTER 6. FLOATING POINT

Multiplication and division

The multiplication instructions are completely analogous to the addition
instructions.
FMUL src ST0 *= src . The src may be any coprocessor register

or a single or double precision number in memory.
FMUL dest, ST0 dest *= ST0. The dest may be any coprocessor reg-

ister.
FMULP dest or
FMULP dest, STO

dest *= ST0 then pop stack. The dest may be any
coprocessor register.

FIMUL src ST0 *= (float) src . Multiplies an integer to ST0.
The src must be a word or double word in memory.

Not surprisingly, the division instructions are analogous to the subtrac-
tion instructions. Division by zero results in an infinity.
FDIV src ST0 /= src . The src may be any coprocessor register

or a single or double precision number in memory.
FDIVR src ST0 = src / ST0. The src may be any coproces-

sor register or a single or double precision number in
memory.

FDIV dest, ST0 dest /= ST0. The dest may be any coprocessor reg-
ister.

FDIVR dest, ST0 dest = ST0 / dest . The dest may be any copro-
cessor register.

FDIVP dest or
FDIVP dest, STO

dest /= ST0 then pop stack. The dest may be any
coprocessor register.

FDIVRP dest or
FDIVRP dest, STO

dest = ST0 / dest then pop stack. The dest may
be any coprocessor register.

FIDIV src ST0 /= (float) src . Divides ST0 by an integer.
The src must be a word or double word in memory.

FIDIVR src ST0 = (float) src / ST0. Divides an integer by
ST0. The src must be a word or double word in mem-
ory.

Comparisons

The coprocessor also performs comparisons of floating point numbers.
The FCOM family of instructions does this operation.

6.3. THE NUMERIC COPROCESSOR 129

1 ; if (x > y)
2 ;
3 fld qword [x] ; ST0 = x
4 fcomp qword [y] ; compare STO and y
5 fstsw ax ; move C bits into FLAGS
6 sahf
7 jna else_part ; if x not above y, goto else_part
8 then_part:
9 ; code for then part

10 jmp end_if
11 else_part:
12 ; code for else part
13 end_if:

Figure 6.6: Comparison example

FCOM src compares ST0 and src . The src can be a coprocessor register
or a float or double in memory.

FCOMP src compares ST0 and src , then pops stack. The src can be a
coprocessor register or a float or double in memory.

FCOMPP compares ST0 and ST1, then pops stack twice.
FICOM src compares ST0 and (float) src . The src can be a word or

dword integer in memory.
FICOMP src compares ST0 and (float)src , then pops stack. The src

can be a word or dword integer in memory.
FTST compares ST0 and 0.

These instructions change the C0, C1, C2 and C3 bits of the coprocessor
status register. Unfortunately, it is not possible for the CPU to access these
bits directly. The conditional branch instructions use the FLAGS register,
not the coprocessor status register. However, it is relatively simple to trans-
fer the bits of the status word into the corresponding bits of the FLAGS
register using some new instructions:
FSTSW dest Stores the coprocessor status word into either a word in mem-

ory or the AX register.
SAHF Stores the AH register into the FLAGS register.
LAHF Loads the AH register with the bits of the FLAGS register.

Figure 6.6 shows a short example code snippet. Lines 5 and 6 transfer
the C0, C1, C2 and C3 bits of the coprocessor status word into the FLAGS
register. The bits are transfered so that they are analogous to the result
of a comparison of two unsigned integers. This is why line 7 uses a JNA
instruction.

130 CHAPTER 6. FLOATING POINT

The Pentium Pro (and later processors (Pentium II and III)) support two
new comparison operators that directly modify the CPU’s FLAGS register.

FCOMI src compares ST0 and src . The src must be a coprocessor reg-
ister.

FCOMIP src compares ST0 and src , then pops stack. The src must be a
coprocessor register.

Figure 6.7 shows an example subroutine that finds the maximum of two dou-
bles using the FCOMIP instruction. Do not confuse these instructions with
the integer comparison functions (FICOM and FICOMP).

Miscellaneous instructions

This section covers some other miscellaneous instructions that the co-
processor provides.

FCHS ST0 = - ST0 Changes the sign of ST0
FABS ST0 = |ST0| Takes the absolute value of ST0
FSQRT ST0 =

√
STO Takes the square root of ST0

FSCALE ST0 = ST0×2bST1c multiples ST0 by a power of 2 quickly. ST1
is not removed from the coprocessor stack. Figure 6.8 shows
an example of how to use this instruction.

6.3.3 Examples

6.3.4 Quadratic formula

The first example shows how the quadratic formula can be encoded in
assembly. Recall that the quadratic formula computes the solutions to the
quadratic equation:

ax2 + bx + c = 0

The formula itself gives two solutions for x: x1 and x2.

x1, x2 =
−b±

√
b2 − 4ac

2a

The expression inside the square root (b2 − 4ac) is called the discriminant.
Its value is useful in determining which of the following three possibilities
are true for the solutions.

1. There is only one real degenerate solution. b2 − 4ac = 0

2. There are two real solutions. b2 − 4ac > 0

3. There are two complex solutions. b2 − 4ac < 0

Here is a small C program that uses the assembly subroutine:

6.3. THE NUMERIC COPROCESSOR 131

quadt.c

1 #include <stdio.h>
2

3 int quadratic (double, double, double, double ∗, double ∗);
4

5 int main()
6 {
7 double a,b,c , root1 , root2;
8

9 printf (”Enter a , b , c : ”);
10 scanf(”%lf %lf %lf”, &a, &b, &c);
11 if (quadratic (a , b , c, &root1, &root2))
12 printf (”roots: %.10g %.10g\n”, root1, root2);
13 else
14 printf (”No real roots\n”);
15 return 0;
16 }

quadt.c

Here is the assembly routine:

quad.asm
1 ; function quadratic
2 ; finds solutions to the quadratic equation:
3 ; a*x^2 + b*x + c = 0
4 ; C prototype:
5 ; int quadratic(double a, double b, double c,
6 ; double * root1, double *root2)
7 ; Parameters:
8 ; a, b, c - coefficients of powers of quadratic equation (see above)
9 ; root1 - pointer to double to store first root in

10 ; root2 - pointer to double to store second root in
11 ; Return value:
12 ; returns 1 if real roots found, else 0
13

14 %define a qword [ebp+8]
15 %define b qword [ebp+16]
16 %define c qword [ebp+24]
17 %define root1 dword [ebp+32]
18 %define root2 dword [ebp+36]
19 %define disc qword [ebp-8]

132 CHAPTER 6. FLOATING POINT

20 %define one_over_2a qword [ebp-16]
21

22 segment .data
23 MinusFour dw -4
24

25 segment .text
26 global _quadratic
27 _quadratic:
28 push ebp
29 mov ebp, esp
30 sub esp, 16 ; allocate 2 doubles (disc & one_over_2a)
31 push ebx ; must save original ebx
32

33 fild word [MinusFour]; stack -4
34 fld a ; stack: a, -4
35 fld c ; stack: c, a, -4
36 fmulp st1 ; stack: a*c, -4
37 fmulp st1 ; stack: -4*a*c
38 fld b
39 fld b ; stack: b, b, -4*a*c
40 fmulp st1 ; stack: b*b, -4*a*c
41 faddp st1 ; stack: b*b - 4*a*c
42 ftst ; test with 0
43 fstsw ax
44 sahf
45 jb no_real_solutions ; if disc < 0, no real solutions
46 fsqrt ; stack: sqrt(b*b - 4*a*c)
47 fstp disc ; store and pop stack
48 fld1 ; stack: 1.0
49 fld a ; stack: a, 1.0
50 fscale ; stack: a * 2^(1.0) = 2*a, 1
51 fdivp st1 ; stack: 1/(2*a)
52 fst one_over_2a ; stack: 1/(2*a)
53 fld b ; stack: b, 1/(2*a)
54 fld disc ; stack: disc, b, 1/(2*a)
55 fsubrp st1 ; stack: disc - b, 1/(2*a)
56 fmulp st1 ; stack: (-b + disc)/(2*a)
57 mov ebx, root1
58 fstp qword [ebx] ; store in *root1
59 fld b ; stack: b
60 fld disc ; stack: disc, b
61 fchs ; stack: -disc, b

6.3. THE NUMERIC COPROCESSOR 133

62 fsubrp st1 ; stack: -disc - b
63 fmul one_over_2a ; stack: (-b - disc)/(2*a)
64 mov ebx, root2
65 fstp qword [ebx] ; store in *root2
66 mov eax, 1 ; return value is 1
67 jmp short quit
68

69 no_real_solutions:
70 mov eax, 0 ; return value is 0
71

72 quit:
73 pop ebx
74 mov esp, ebp
75 pop ebp
76 ret quad.asm

6.3.5 Reading array from file

In this example, an assembly routine reads doubles from a file. Here is
a short C test program:

readt.c

1 /∗
2 ∗ This program tests the 32−bit read doubles () assembly procedure.
3 ∗ It reads the doubles from stdin . (Use redirection to read from file .)
4 ∗/
5 #include <stdio.h>
6 extern int read doubles (FILE ∗, double ∗, int);
7 #define MAX 100
8

9 int main()
10 {
11 int i ,n;
12 double a[MAX];
13

14 n = read doubles(stdin , a , MAX);
15

16 for (i=0; i < n; i++)
17 printf (”%3d %g\n”, i, a[i]);
18 return 0;
19 }

134 CHAPTER 6. FLOATING POINT

readt.c

Here is the assembly routine

read.asm
1 segment .data
2 format db "%lf", 0 ; format for fscanf()
3

4 segment .text
5 global _read_doubles
6 extern _fscanf
7

8 %define SIZEOF_DOUBLE 8
9 %define FP dword [ebp + 8]

10 %define ARRAYP dword [ebp + 12]
11 %define ARRAY_SIZE dword [ebp + 16]
12 %define TEMP_DOUBLE [ebp - 8]
13

14 ;
15 ; function _read_doubles
16 ; C prototype:
17 ; int read_doubles(FILE * fp, double * arrayp, int array_size);
18 ; This function reads doubles from a text file into an array, until
19 ; EOF or array is full.
20 ; Parameters:
21 ; fp - FILE pointer to read from (must be open for input)
22 ; arrayp - pointer to double array to read into
23 ; array_size - number of elements in array
24 ; Return value:
25 ; number of doubles stored into array (in EAX)
26

27 _read_doubles:
28 push ebp
29 mov ebp,esp
30 sub esp, SIZEOF_DOUBLE ; define one double on stack
31

32 push esi ; save esi
33 mov esi, ARRAYP ; esi = ARRAYP
34 xor edx, edx ; edx = array index (initially 0)
35

36 while_loop:
37 cmp edx, ARRAY_SIZE ; is edx < ARRAY_SIZE?
38 jnl short quit ; if not, quit loop

6.3. THE NUMERIC COPROCESSOR 135

39 ;
40 ; call fscanf() to read a double into TEMP_DOUBLE
41 ; fscanf() might change edx so save it
42 ;
43 push edx ; save edx
44 lea eax, TEMP_DOUBLE
45 push eax ; push &TEMP_DOUBLE
46 push dword format ; push &format
47 push FP ; push file pointer
48 call _fscanf
49 add esp, 12
50 pop edx ; restore edx
51 cmp eax, 1 ; did fscanf return 1?
52 jne short quit ; if not, quit loop
53

54 ;
55 ; copy TEMP_DOUBLE into ARRAYP[edx]
56 ; (The 8-bytes of the double are copied by two 4-byte copies)
57 ;
58 mov eax, [ebp - 8]
59 mov [esi + 8*edx], eax ; first copy lowest 4 bytes
60 mov eax, [ebp - 4]
61 mov [esi + 8*edx + 4], eax ; next copy highest 4 bytes
62

63 inc edx
64 jmp while_loop
65

66 quit:
67 pop esi ; restore esi
68

69 mov eax, edx ; store return value into eax
70

71 mov esp, ebp
72 pop ebp
73 ret read.asm

6.3.6 Finding primes

This final example looks at finding prime numbers again. This imple-
mentation is more efficient than the previous one. It stores the primes it
has found in an array and only divides by the previous primes it has found
instead of every odd number to find new primes.

136 CHAPTER 6. FLOATING POINT

One other difference is that it computes the square root of the guess for
the next prime to determine at what point it can stop searching for factors.
It alters the coprocessor control word so that when it stores the square root
as an integer, it truncates instead of rounding. This is controlled by bits
10 and 11 of the control word. These bits are called the RC (Rounding
Control) bits. If they are both 0 (the default), the coprocessor rounds when
converting to integer. If they are both 1, the coprocessor truncates integer
conversions. Notice that the routine is careful to save the original control
word and restore it before it returns.

Here is the C driver program:

fprime.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 /∗
4 ∗ function find primes
5 ∗ finds the indicated number of primes
6 ∗ Parameters:
7 ∗ a − array to hold primes
8 ∗ n − how many primes to find
9 ∗/

10 extern void find primes (int ∗ a , unsigned n);
11

12 int main()
13 {
14 int status ;
15 unsigned i;
16 unsigned max;
17 int ∗ a;
18

19 printf (”How many primes do you wish to find? ”);
20 scanf(”%u”, &max);
21

22 a = calloc (sizeof(int), max);
23

24 if (a) {
25

26 find primes (a,max);
27

28 /∗ print out the last 20 primes found ∗/
29 for(i= (max > 20) ? max − 20 : 0; i < max; i++)
30 printf (”%3d %d\n”, i+1, a[i]);

6.3. THE NUMERIC COPROCESSOR 137

31

32 free (a);
33 status = 0;
34 }
35 else {
36 fprintf (stderr , ”Can not create array of %u ints\n”, max);
37 status = 1;
38 }
39

40 return status ;
41 }

fprime.c

Here is the assembly routine:

prime2.asm
1 segment .text
2 global _find_primes
3 ;
4 ; function find_primes
5 ; finds the indicated number of primes
6 ; Parameters:
7 ; array - array to hold primes
8 ; n_find - how many primes to find
9 ; C Prototype:

10 ;extern void find_primes(int * array, unsigned n_find)
11 ;
12 %define array ebp + 8
13 %define n_find ebp + 12
14 %define n ebp - 4 ; number of primes found so far
15 %define isqrt ebp - 8 ; floor of sqrt of guess
16 %define orig_cntl_wd ebp - 10 ; original control word
17 %define new_cntl_wd ebp - 12 ; new control word
18

19 _find_primes:
20 enter 12,0 ; make room for local variables
21

22 push ebx ; save possible register variables
23 push esi
24

25 fstcw word [orig_cntl_wd] ; get current control word
26 mov ax, [orig_cntl_wd]

138 CHAPTER 6. FLOATING POINT

27 or ax, 0C00h ; set rounding bits to 11 (truncate)
28 mov [new_cntl_wd], ax
29 fldcw word [new_cntl_wd]
30

31 mov esi, [array] ; esi points to array
32 mov dword [esi], 2 ; array[0] = 2
33 mov dword [esi + 4], 3 ; array[1] = 3
34 mov ebx, 5 ; ebx = guess = 5
35 mov dword [n], 2 ; n = 2
36 ;
37 ; This outer loop finds a new prime each iteration, which it adds to the
38 ; end of the array. Unlike the earlier prime finding program, this function
39 ; does not determine primeness by dividing by all odd numbers. It only
40 ; divides by the prime numbers that it has already found. (That’s why they
41 ; are stored in the array.)
42 ;
43 while_limit:
44 mov eax, [n]
45 cmp eax, [n_find] ; while (n < n_find)
46 jnb short quit_limit
47

48 mov ecx, 1 ; ecx is used as array index
49 push ebx ; store guess on stack
50 fild dword [esp] ; load guess onto coprocessor stack
51 pop ebx ; get guess off stack
52 fsqrt ; find sqrt(guess)
53 fistp dword [isqrt] ; isqrt = floor(sqrt(quess))
54 ;
55 ; This inner loop divides guess (ebx) by earlier computed prime numbers
56 ; until it finds a prime factor of guess (which means guess is not prime)
57 ; or until the prime number to divide is greater than floor(sqrt(guess))
58 ;
59 while_factor:
60 mov eax, dword [esi + 4*ecx] ; eax = array[ecx]
61 cmp eax, [isqrt] ; while (isqrt < array[ecx]
62 jnbe short quit_factor_prime
63 mov eax, ebx
64 xor edx, edx
65 div dword [esi + 4*ecx]
66 or edx, edx ; && guess % array[ecx] != 0)
67 jz short quit_factor_not_prime
68 inc ecx ; try next prime

6.3. THE NUMERIC COPROCESSOR 139

69 jmp short while_factor
70

71 ;
72 ; found a new prime !
73 ;
74 quit_factor_prime:
75 mov eax, [n]
76 mov dword [esi + 4*eax], ebx ; add guess to end of array
77 inc eax
78 mov [n], eax ; inc n
79

80 quit_factor_not_prime:
81 add ebx, 2 ; try next odd number
82 jmp short while_limit
83

84 quit_limit:
85

86 fldcw word [orig_cntl_wd] ; restore control word
87 pop esi ; restore register variables
88 pop ebx
89

90 leave
91 ret prime2.asm

140 CHAPTER 6. FLOATING POINT

1 global _dmax
2

3 segment .text
4 ; function _dmax
5 ; returns the larger of its two double arguments
6 ; C prototype
7 ; double dmax(double d1, double d2)
8 ; Parameters:
9 ; d1 - first double

10 ; d2 - second double
11 ; Return value:
12 ; larger of d1 and d2 (in ST0)
13 %define d1 ebp+8
14 %define d2 ebp+16
15 _dmax:
16 enter 0, 0
17

18 fld qword [d2]
19 fld qword [d1] ; ST0 = d1, ST1 = d2
20 fcomip st1 ; ST0 = d2
21 jna short d2_bigger
22 fcomp st0 ; pop d2 from stack
23 fld qword [d1] ; ST0 = d1
24 jmp short exit
25 d2_bigger: ; if d2 is max, nothing to do
26 exit:
27 leave
28 ret

Figure 6.7: FCOMIP example

6.3. THE NUMERIC COPROCESSOR 141

1 segment .data
2 x dq 2.75 ; converted to double format
3 five dw 5
4

5 segment .text
6 fild dword [five] ; ST0 = 5
7 fld qword [x] ; ST0 = 2.75, ST1 = 5
8 fscale ; ST0 = 2.75 * 32, ST1 = 5

Figure 6.8: FSCALE example

