
COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No.1 25

T
HE VOLUME AND COMPLEXITY OF DATA

processed by today’s PC is increasing
exponentially, placing incredible
demands on microprocessor performance.
The potential of the Internet, games,
“edutainment” applications, interactive

video, 3D graphics, animation, audio, and virtual real-
ity—all of which demand ever-increasing performance—

motivated Intel to develop MMX technology. MMX
technology improves the performance of current and future
graphics and communications applications while maintaining
compatibility with the existing Intel Architecture (IA) soft-
ware base of applications and operating systems.

MMX technology is an extension of IA and is IA’s most
significant enhancement since the Intel 386 processor, which
in 1985 extended the architecture to 32 bits. MMX technol-
ogy includes new instructions and data types to achieve
increased levels of performance on the host CPU by exploiting
the parallelism inherent in many of the algorithms in these
applications. MMX can deliver 50%–100% performance
gains for multimedia and communications applications over
the same applications run on the same processor without

MMX technology. (Intel’s media benchmark shows a 65%
gain from MMX technology.) MMX technology also enables
new applications (e.g., MPEG2 full-motion-video software-
only decoding) while speeding the CPU to execute existing
applications with more time freed for other tasks.

The new technology was designed so the performance
gains scale well with processor operating frequencies and
future architecture generations. It will be integrated first into
the Pentium and P6 family processors, giving these processors
an extra boost in capability, and will also appear on all future
IA processors.

MMX Technology Concepts
We observed that MMX technology’s potential target
applications share several characteristics:

• Small native data types (e.g., 8-bit pixels, 16-bit audio
samples)

• Compute-intensive recurring operations performed on
these data types

• A lot of inherent parallelism.
These characteristics pointed the MMX technology defini-

Intel MMX for
Multimedia PCs

Accelerating multimedia and communications applications,
especially on the Internet, MMX technology, or multimedia

extensions, for Intel microprocessors—starting with the
Pentium—features 57 new instructions and other

architectural enhancements to boost system performance.

Alex Peleg, Sam Wilkie, and Uri Weiser

tion team in the direction of a single-instruction-multiple-
data (SIMD) architecture in which one instruction performs
the same operation on multiple data elements in parallel.
This parallel operation on relatively small data elements (8
and 16 bits) is the fundamental factor behind the MMX
technology performance boost. The benefits of a SIMD
extension have also been identified by other processor archi-
tectures and appear in, for example, the Sun Microsystems
SPARC-Visual Instruction Set (VIS) [10] and in the
Hewlett-Packard PA-RISC 2.0 MAX-2 instruction set [5].

U
P TO NOW, WHEN PROCESSING 8- OR 16-BIT

data, the existing 32- or 64-bit CPU band-
width and processing resources in Intel
processors were underutilized. Only the low-
order 8 or 16 bits were manipulated, leaving
the remaining bits “unemployed.” MMX

technology processing of independent
small data elements together enables full
utilization of the wide processing capabili-
ties of the CPU. We chose a data width of
64 bits because our studies indicated that
using 64 bits of packed elements would
enable a substantial performance boost
above the regular operation of processing
one datum at a time. The 64 bits of packed
elements were also a practical idea, since
the Pentium and P6 generations of proces-
sors use 64-bit-wide data buses, as opposed
to the 32-bit-wide buses on previous gen-
erations of processors.

MMX technology was defined with
clear guidelines and specific goals in mind.
Foremost, it had to improve substantially
the performance of multimedia, communi-
cations, and other numeric-intensive appli-
cations. Another important principle
guiding definition of the extension was to
keep it independent of current microarchi-
tectures, so MMX technology would scale
easily with future advanced microarchitecture techniques
and higher processor frequencies in future Intel processors.

It was also imperative that processors with MMX tech-
nology retain backward compatibility with existing soft-
ware, including operating systems and applications. All
existing IA software and IA operating systems had to run
without modification on new processors that support MMX
technology and in the presence of new applications that use
MMX technology. For example, any existing version of the
Windows operating system (e.g., Windows 95) can run
without modification on a processor with MMX technology.

We also had to ensure coexistence of existing applica-
tions and new applications using MMX technology.

Advanced operating systems enable multiple programs
(called tasks in the jargon of operating-system developers) to
seemingly run in parallel by time sharing the CPU among
them. This time sharing is called multitasking. New appli-
cations using MMX instructions should be able to multi-
task with any other applications. This requirement placed
constraints on the MMX technology definition. Therefore,
we could not create a new MMX mode or state (e.g., new
registers) because we would have needed to have operating
systems modified to take care of the new additions. The
main technique for maintaining full compatibility of MMX
technology was “hiding” it inside the existing floating-
point state and registers (current operating systems and
applications are designed to work with the floating-point
state). An operating system does not need to know whether
MMX technology is present, since it is hidden inside the
floating-point state [1]. Applications check for the presence

of MMX technology; if it is built into the processor, they
use the new instructions.

MMX technology’s definition process proved an unusual
adventure. It was engineering input, not managerial drive,
that led the way. A group of architects and software engi-
neers analyzed the potential performance of existing and
futuristic applications, including graphics, MPEG video,
music synthesis, speech compression, speech recognition,
image processing, 3D graphics in games, video conferencing,
modems, and audio. The engineers and architects met with
external software developers to learn what they needed from
a new IA processor to enhance their multimedia and com-
munications applications. The applications were analyzed to

26 January 1997/Vol. 40, No. 1 COMMUNICATIONS OF THE ACM

Packed Byte: 8 bytes packed into 64 bits
63

63
Packed Word: 4 words packed into 64 bits

63
Packed Doubleword: 2 doublewords packed into 64 bits

63
Packed Quadword: One 64-bit quantity

0

0

0

078

16 15

32 31

Figure 1. MMX technology data types

identify the most compute-intensive routines, which were
then analyzed in detail using advanced computer-aided
engineering tools. These studies and the performance poten-
tial they showed convinced Intel of the need to integrate the
new technology as soon as possible and to fully convert all
IA processors to include MMX technology.

Main Features
Here we introduce the main features of MMX technology
and its interesting new instructions [7] using simple exam-
ples as a guide. The examples also show how the technology
and its instructions are used to boost the performance in dif-
ferent kinds of multimedia algorithms and applications.

MMX Technology Data Structures
and Enhanced Instruction Set
Many multimedia algorithms execute
the same instructions on many pieces of
data in a large data set. Standard proces-
sors process only one piece of data with
each instruction. MMX technology
processes several pieces of data with each
instruction—a simple type of paral-
lelism that provides a big performance
boost for many multimedia algorithms.
Typical elements of data are usually
small: 8 bits per element for pixels or 8
bits for each pixel color component—
red, green, and blue—used in graphics
and video; 16 bits per element for audio
samples or as a higher-precision backup
for 8-bit operations; and 32 bits per ele-
ment for general computing and for
some 3D graphics algorithms. (Table 1
summarizes the types of instructions
included in MMX and the operations
they perform.)

As a result, MMX technology defines
new data types, which are 64 bits in total
size and are composed of independent
smaller-size data elements. Thus, we
called them “packed data types.” Each
element within a packed data type is a
fixed-point integer. The programmer
controls the place of the fixed point
within each element and is responsible
for its placement throughout the calcula-
tion. While this control means an extra
burden for programmers, it also gives
them a large amount of flexibility to
choose and change fixed-point formats
during the application course to fully
control the dynamic range of their values.

Four data types are defined in MMX
technology (see Figure 1):

• Packed byte: Eight bytes packed into one 64-bit quan-
tity

• Packed word: Four words packed into one 64-bit quan-
tity

• Packed doubleword: Two doublewords packed into
one 64-bit quantity

• Quadword: One 64-bit quantity

A rich set of MMX instructions are defined to perform
the parallel operations on multiple data elements packed
into the new 64-bit data types (838-bit, 4316-bit, or

COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No. 1 27

Wrap around
and saturate

Equal or
greater than

Result is high
or low order
bits

Word to double
word conversion

Shift count in
register or
immediate

Always saturate

Parallel Add and Subtract of packed
eight bytes, four 16-bit words, or
two 32-bit doublewords.

Parallel Compare of eight bytes, four
16-bit words, or two 32-bit double-
words. Result is mask of 1s if true or
0s if false.

Parallel Multiply of four signed 16-bit
words. Low-order or high-order
16-bits of the 32-bit result are chosen.

Parallel Multiply-Add of four signed
16-bit words. Adjacent pairs of 32-bit
results are added together. Result is
a doubleword.

Parallel Shift of 4 words, 2 double-
words, or the full 64 bits are shifted
arithmetic right, logical right and left.

Parallel Unpacking (interleaved
merge) of eight bytes, four 16-bit
words, or two 32-bit doublewords.

Parallel Packing of doublewords to
words or words to bytes.

64-bit bitwise logical operations

Moves 32 or 64 bits to and from
memory to MMX registers or
between MMX registers. 32-bits
can be moved between MMX and
integer registers.

Empty FP registers tag bits.

Padd[b/w/d]
Psub[b/w/d]

Pcmpeq[b/w/d]
Pcmpgt[b/w/d]

Pmullw
Pmulhw

Pmaddwd

Psra[w/d]
Psll[w/d/q]
Psrl[w/d/q]

Punpckl[bw/wd/dq]
Punpckh[bw/wd/dq]

Packss[wb/dw]

Pand
Pandn
Por
Pxor

Mov[d/q]

Emms

Opcode Options Description

Table 1. Summary of the MMX instruction set. (If an instruction supports
multiple data types—byte [b], word [w], doubleword [d], or quadword [q]—the

data types are in brackets.)

2332-bit fixed-point data elements). MMX technology
extends the basic integer instructions into SIMD versions.
These instructions include add, subtract, multi-
ply, compare, and shift. MMX technology also
added data-type conversion instructions to address the need
to convert between the new data types. As MMX technol-
ogy is a 64-bit capability, new instructions to support 64-
bit operations were added, including 64-bit memory
moves and 64-bit logical operations. And because many
algorithms used in multimedia and communications appli-
cations perform multiply-accumulate computa-
tions, MMX includes a special multiply-add
instruction.

For packed data types, MMX technology provides its
most complete instruction support for packed-word (16-
bit) data types, because we found 16-bit data to be the
most general and useful for the wide category of multime-
dia algorithms. Such support also serves as the higher-pre-
cision backup for operations on byte data. The packed-byte
data type is supported with the same instructions as the
packed 16-bit word, with the exception of multiply,
which is generally better done in the larger data types.
Basic support is provided for packed-doubleword data
types to support operations that need higher precision than
16 bits (e.g., multiply-accumulate) and a variety
of 3D graphics algorithms. Overall, 57 MMX instructions
were added to the IA.

The MMX instructions vary from one another by a few
characteristics. For example, different instructions are sup-
plied to do the same operation on different data types; one
instruction operates on a packed-byte and another operates
on a packed-word data type. Some instructions also vary as
to whether they treat values on which they operate as signed
or unsigned.

A major feature of MMX instructions is saturation arith-
metic [2], which is important to many graphics routines.
For example, if two medium-blue pixels are added together,
saturating arithmetic ensures the result is a dark blue or
black. Saturation arithmetic is certainty different from stan-
dard integer math, which can add two medium-blue pixels
and in some cases produce a light-colored result.

In regular arithmetic, when an operation overflows or
underflows, the most significant bit is usually truncated.
Truncating the most significant bit is sometimes called
“wrap-around” arithmetic because the effect of truncating
the overflow or underflow bit can cause, for example, the
result of adding two large numbers to be smaller than any
of the input operands. Adding the 16-bit unsigned integer
numbers F000h (hexadecimal representation) and 3000h
generates a 17-bit result, or 12000h. But because the result
size is limited to 16 bits, the high-order bit gets truncated
and the actual result is 2000h (see Figure 2a), smaller than
either input operands. Saturating arithmetic avoids this
effect, so the instruction result, instead of wrapping around,

28 January 1997/Vol. 40, No. 1 COMMUNICATIONS OF THE ACM

F000h a1a2 a0

3000h b1b2 b0

2000h a1+ b1a2+b2 a0+b0

+ + + +
F000h a1a2 a0

3000h b1b2 b0

FFFFh a1+ b1a2+b2 a0+b0

+ + + +

Figure 2a. Wrap-around packed adds on word data type Figure 2b. Saturating packed adds on word data type

Figure 2. Saturating arithmetic

MMX technology processes several pieces
of data with each instruction—a simple type of
parallelism that provides a big performance boost
for many multimedia algorithms.

becomes the largest or
smallest possible repre-
sentable number in the
data type of the opera-
tion. In the case of
unsigned 16-bit integer
numbers, the largest
number would be FFFFh.
Thus, the result F000h +
3000h is FFFFh (see Fig-
ure 2b).

MMX technology sup-
ports two types of saturat-
ing arithmetic: signed
saturation and unsigned
saturation. In signed satu-
ration, the operands and
results of the operation are
considered signed num-
bers. For example, in the
packed word data
type, the largest possible
value is (2exp(n-1) -
1); the smallest possible
value is (-2exp(n-1)),
where n is the number of
bits available. In unsigned
arithmetic, the largest pos-
sible value is 2exp(n)
-1; the smallest possible
value is 0.

The parallelism and
saturating arithmetic in
MMX technology are
useful in some video con-
ferencing compression
schemes [4]. Instead of
directly encoding each
frame in a video sequence,
it is better to first calculate the differences between the cur-
rent frame and a recent previous frame. If the two frames are
very similar (usually the case in video), it is easy to see that
the resulting difference frame can be represented with less
information than the original frame. So, for all the pixels in
the frames, a pixel-to-pixel difference is computed. The neat
thing about this operation is that all the pixel differences can
be computed in parallel, because they are all independent
operations. The problem is that subtracting two 8-bit
unsigned pixels may result in a 9-bit negative number. Sat-
urating arithmetic can be used in a simple way to eliminate
any negative numbers during the absolute-difference calcu-
lation. The technique uses unsigned saturating subtraction
to subtract pixel A from pixel B; then the reverse, subtract-

ing pixel B from pixel A. One of these differences is a posi-
tive number, the other a negative number that will be
clamped to 0 because the instruction is the saturating type.
We don’t know which difference is positive and which is the
0 (the negative number clamped). So, after these two satu-
rating subtractions, the results are combined using a logic
OR operation. This operation can be done in parallel on 8
bytes at a time, providing great performance for this much-
used operation.

Saturating arithmetic is also useful in traditional graph-
ics. For example, Gouraud shading is a standard way to ren-
der 3D images so they look more realistic [11]. In this
technique, polygons are shaded by interpolating color values
across scan lines during rendering. Somewhere along a scan

COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No. 1 29

Ar3 Ar2 Ar1 Ar0

1. Unpack byte R pixel components
 from image A & B

2. Subtract image B from image A

3. Multiply subtract result by fade
 value

4. Add image B pixels

5. Pack new composite pixels back
 to bytes

Ar3 Ar2 Ar1 Ar0

Br3 Br2 Br1 Br0

r3 r2 r1 r0

Br0Br1Br2Br3

Image BImage A

Alpha
B

G
R

Alpha
B

G
R

– – – –

+ + + +

* * * *
fade

fade*r3 fade*r2 fade*r1 fade*r0

fade fade fade

Br3 Br2 Br1 Br0

r3 r2 r1 r0

new r3 new r2 new r1 new r0

MMX code sequence performing this operation:

pxor
movq
movd
movd
punpcklbw
punpcklbw
psubw
pmulhw
paddw
packuswb

mm7, mm7
mm3, fade_val
mm0, image A
mm1, image B
mm0, mm7
mm1, mm7
mm0, mm1
mm0, mm3
mm0, mm1
mm0, mm7

; zero out mm7
; load 4 times replicated fade value
; load 4 red pixel components from image A
; load 4 red pixel components from image B
; unpack 4 pixels to 16-bits
; unpack 4 pixels to 16-bits
; subtract image B from A
; multiply subtract result by fade values
; add result to image B
; pack 16-bit result back to bytes

Figure 3. Image composting on color plane representation

line, calculations may start to overflow. Unless precautions
are taken, overflow may occur and generate (as a result of the
wrap-around effect) a completely different value from the
one expected. A dark polygon being shaded toward black
may suddenly start having white pixels. Saturation makes
sure these problems do not occur because results clamp to
the maximum black value and do not overflow to white.

Exploiting Different Kinds of Parallelism
There are often several ways of exploiting the data paral-
lelism in a particular algorithm. The choice for the most
efficient use of MMX instructions should be driven by how
the data is laid out in memory or whether the programmer
can change the way the data flows through an algorithm.

Image composting is a set of techniques to combine two
(or more) images to create special effects. A popular exam-
ple is the fade-in-fade-out effect in video production. The
computation performed between images A and B is a
weighted average, represented as:

A*fade + B*(1-fade) = fade * (A-B) + B

Gradually changing the fade value from 1 to 0 across a
few video frames generates the fade-in-fade-out effect.
Before looking at how MMX technology exploits the paral-
lelism in this operation, it is necessary to understand how
image data is stored in memory. There are two different for-
mats. Both are popular, although one is better for parallel
processing and for MMX technology. In the first format,
often called “planer,” the information for each image is

stored in memory per color plane. In other words, all the red
(R) components are at successive addresses in memory; all
the green (G) components are at successive addresses; and all
the blue (B) components are at successive addresses. All
components of each color plane of Image A have to be mul-
tiplied by the corresponding fade value. With all of the R
color components at successive addresses, it is easy for

MMX to grab multiple elements of the R plane in a single
memory access and multiply them in parallel against the
fade value (replicated the same number of times as the color
elements). This sequence is the best format for parallelism.
The same operation is used on all the data in the color plan.
MMX technology simply loads that data, executes the
multiply and writes out the data. In this example, the 8-
bit pixel components are converted to 16-bit elements
before the operation to accommodate MMX’s 16-bit mul-
tiply capability (see Figure 3).

T
HE SECOND FORMAT, OFTEN CALLED “CHUNKY,”
stores the image as a series of complete color
pixels 32 bits wide and composed of four 8-bit
components: R, G, B color components and an
alpha component (usually used as a trans-
parency value of the pixel). MMX technology

can process two of these complete pixels simultaneously but
wastes the operations on alpha components. This pixel rep-
resentation means 16 bits out of the 64 bits in the register
are wasted and the total number of operations needs to be
increased to process the data as complete pixels (also called
“chunks”).

Data-Dependent Computations
Multimedia algorithms usually exhibit data-independent
control flow, meaning each operation can execute without
needing to know the results of a previous operation. These
algorithms are the most straightforward for the new tech-
nology to optimize. But some important algorithms need to

know the results of a previous operation
before proceeding. Such algorithms need to
make use of logical operations to fit into
MMX technology. An example is overlaying
a sprite over a graphic (e.g., the mouse
pointer on your computer screen overlaid on
top of the word processing screen). A sprite
is a separate image encompassed within a
2D array. The rest of the array is filled up by
a value interpreted to be the “clear” color
that does not appear when the sprite is over-
laid. Overlaying the sprite on graphics or
video involves checking each pixel taken
from the sprite array to make sure it is not
the clear color surrounding it. If a specific
pixel in the sprite array does not match the

clear color, the software knows it is really a pixel from the
sprite image itself and writes it to the output frame. On the
other hand, if the pixel matches the clear color, the software
knows it is not a sprite pixel, and instead of writing it to the
output frame, writes out the respective pixel from the scene
being overlaid. The operation we want to perform when
overlaying a sprite in array(A) over scene(C) is:

30 January 1997/Vol. 40, No. 1 COMMUNICATIONS OF THE ACM

clear_color clear_color clear_color clear_color

a3 a2 a1 a0

1111…1111 0000…0000 1111…1111 0000…0000

= = = =

Figure 4. Packed equal on word data type

for i = 1 to Sprite_Line_size
if A[i] = clear_color then
Out_frame[i] = C[i] else
Out_frame[i] = A[i]

where clear_color is the color surrounding the sprite
in its 2D array in memory.

The output pixel is dependent on its color. The challenge
is how to execute such data-dependent calculations on sev-
eral pixels in parallel. For graphics simplicity in this exam-
ple, we assume pixels are 16 bits, but the operation extends
with double the parallelism for byte pixels.

MMX technology has a parallel compare instruction
that generates a bit mask as its result. This instruction
enables the data-dependent calculations to be executed on
several data elements in parallel, and eliminates the need for
any branch instructions. Figure 4 shows a bit mask result of

the MMX parallel compare instruction. The result of the
instruction has all 1s in elements where the relation tested
for is true and all 0s where the relation tested for is false.

The mask is used as the source in logical operations to
select desired data from the packed elements. In Phase 1 of
Figure 5, the mask is a result of comparing four pixels from
the sprite array with the clear color. Wherever the pixel from
the sprite array belongs to the sprite, that is, is not equal to
the clear color, the result of the comparison is 0. Wherever
the pixel from the sprite array equals the clear color, the
result is all 1s. This mask consists of 0s corresponding to the
pixels from the actual sprite and 1s corresponding to pixels
of the clear color. In Phase 2, this mask is used as an operand
of the logical operation (A and complement of mask), which
selects from the sprite array the real sprite pixels and zeros-
out the surrounding pixels. The logical operation (C and
Mask) selects from the scene the pixels that will not be cov-

COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No. 1 31

clear _color clear _color

a3 a2 a1 a0

= = = =
Phase 1

Phase 2

1111…1111 1111…11110000…0000 0000…0000

a3 a2 a1 a0 c3 c2 c1 c0

c3 c10 0

0000…0000 0000…00001111…11111111…11110000…0000 0000…00001111…1111 1111…1111

a2 a000

c3 a2 c1 a0

A and (Complement of Mask) C and Mask

OR the two results
to finish the overlay

movq
movq
movq
movq
pcmpeqw
pand
pandn
por

mm0, sprite_array
mm2, mm0
mm4, scene
mm1, clear_color
mm0, mm1
mm4, mm0
mm0, mm2
mm0, mm4

; load pixels from sprite array
; make copy of sprite array pixels
; load pixels from scene
; load prereplicated clear-color values
; compare sprite array pixels to clear color
; select scene pixels
; select sprite pixels
; generate overlay

MMX code sequence performing this operation:

clear _color clear _color

Figure 5. Overlay operation using packed compare

ered by the sprite and zeros-out the pixels that will be cov-
ered by the sprite. The combination of these two results
with a logical OR operation performs the overlay.

Changing Data Types

M
MX TECHNOLOGY USES TWO SETS OF

instructions—Pack and Unpack—to
convert between the MMX data types.
Unpack instructions take small data
types and produce large ones (e.g., con-
verting 16-bit to 32-bit words).

Unpack instructions take two operands and interleave
them. A user who simply wants to Unpack 16-bit into 32-
bit words can take one operand of 16-bit information and
interleave it with another operand filled with 0s. The result
is 32-bit words with 0 in the most significant bits. In Fig-
ure 6, elements a0 and a1 from the packed word vector (A)
are interleaved with a 0 vector. The result is a0 and a1, each

occupying a 32-bit element, that is, a0 and a1 were
unpacked from a word data type to a doubleword data type.
Unpacking is often used when 8-bit data pixels loaded from
memory need to be expanded to 16-bit precision for the
intermediate computations.

The Pack instructions are useful for converting data
from a larger data type to the next smaller data type. Fol-
lowing the last example, if 8-bit bytes were expanded to 16-
bit for intermediate calculations, the final results could be
packed back into 8-bit bytes before the results are stored
back to memory.

The Unpack instructions are also very powerful when
data organized in one format in memory needs to be
rearranged during an algorithm’s course to expose paral-
lelism amenable to MMX technology. An example is the
Inverse Discrete Cosine Transform (IDCT) [6] used in, for
example, the JPEG color-image decompression algorithm.
The JPEG algorithm takes a 2D array of data and operates
first on rows of data, then on columns of data. An array is
usually laid out in memory one row after another. MMX
technology is ideal for manipulating rows in this type of
organization, as row elements reside in subsequent

addresses. On the other hand, this organization doesn’t work
for operating on columns. To be able to execute the same
operation on all elements of a single column in parallel, the
array needs to be transposed so columns become rows.

The Unpack instruction can be used to transpose an
array (B = AT) so the columns are converted into rows (see
Figure 7). Transposition with MMX technology is a two-
step process, and we assume in this example the elements in

the array are word (16-bit) values. In Phase 1, the Unpack
instruction is used to interleave the word elements of adja-
cent rows; in Phase 2, the results of the first phase are
unpacked again, this time using doubleword (32-bit)
Unpack instructions to create the desired outputs.

MMX Integration into the Intel Architecture
MMX technology is fully compatible with the existing IA,
meaning no new mode or state was created and all existing
PC designs and operating systems can work with a new
processor with MMX technology. From the instruction per-
spective, compatibility was easy because MMX instructions
are defined to be integer instructions. From the data per-
spective, compatibility was a challenge because MMX data
types are 64-bit packed integers, and there are no such inte-
ger registers on existing IA processors. The solution was
achieved by mapping the MMX data types to the existing
floating-point registers, which are 80 bits wide (see Figure
8). When MMX data is needed, the processor uses the float-
ing-point registers as 64-bit-only packed integer registers.
This mapping is all done internally in the processor, while
the external world (operating system and PC) sees only the

32 January 1997/Vol. 40, No. 1 COMMUNICATIONS OF THE ACM

Arithmetic logic unit
Multiplier
Shift/pack/unpack
Memory access

1
3
1
1

1
1
1
1

Operation Latency Throughput

Table 2. Cycle count of the MMX instructions in
the Pentium processor

Figure 6. MMX technology Unpack high and low instructions on word data type

0 0 0 0

0 0

a3 a2 a1 a0

a0a1

Unpack low-order words into doublewords

physical floating-point registers. If the operating system
needs to switch tasks suddenly, it saves the floating-point
state (which may hold MMX data) and starts the new task.
When the interruption is finished, the operating system
switches back, restores the floating-point state (which may
hold MMX data), then resumes where it left off. No physi-
cal new registers, condition codes, or events are added to
support MMX technology. Having no additional new states
allows all existing operating systems, including Windows,
OS/2, and Unix, to work with MMX technology without
being aware the technology is in the processor.

M
MX TECHNOLOGY DEFINES EIGHT 64-BIT

general-purpose registers laid over the
floating-point registers. Each register
can be directly addressed within the
assembly by designating the register
names MM0–MM7 in MMX instruc-

tions. These registers are used only for holding MMX data.
Remember that MMX instructions are integer instructions
operating on packed fixed-point integer data loaded into
the floating-point registers. This scheme means all the reg-
isters on an IA processor (8-integer registers, 8-floating-
point registers) can be put to use with MMX technology,
getting the greatest benefit from the available registers on
the processor.

MMX data values are put in the low-order 64 bits (the

COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No. 1 33

00

00

00

00

00

00

00

00

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

FP tag Floating-Point Registers

MMX Registers

60 0

0

63

63

Figure 8. Mapping MMX registers to the
floating point registers

Figure 7. Matrix transposition using Unpack instructions

d3 d2 d1 d0 c3 c2 c1 c0 b3 b2 b1 b0 a3 a2 a1 a0

b1 a1 b0 a0

b1

d0 c0d1 c1

d0 c0d1 c1 b1 a1 b0 a0 b1 a1 b0 a0d0 c0d1 c1

d0 c0 b0 a0 a1d1 c1

Note: Repeat for the other rows to generate ([d3, c3, b3, a3] and [d2, c2, b2, a2]).

movq
movq
movq
movq
punpcklwd
punpcklwd
movq
punpckldq
punpckhdq

mm1, row1
mm2, row2
mm3, row3
mm4, row4
mm1, mm2
mm3, mm4
mm5, mm1
mm1, mm3
mm5, mm3

MMX code sequence operation:
; load pixels from first row of matrix
; load pixels from second row of matrix
; load pixels from third row of matrix
; load pixels from fourth row of matrix
; unpack low order words of rows 1 & 2, mm 1 = [b1, a1, b0, a0]
; unpack low order words of rows 3 & 4, mm3 = [d1, c1, d0, c0]
; copy mm1 to mm5
; unpack low order doublewords -> mm2 = [d0, c0, b0, a0]
; unpack high order doublewords -> mm5 = [d1, c1, b1, a1]

Phase 1

Phase 2

mantissa) of the 80-bit floating-point registers. The expo-
nent field of the corresponding floating-point register (bits
64–78) and the sign bit (bit 79) are set to 1s, making the
value in the register a Not a Number (NaN) or infinity
when viewed as a floating-point value. This helps reduce
confusion by ensuring an MMX data value will not look
like a valid floating-point value. MMX instructions access
only the low-order 64 bits of the floating-point registers
and are not affected by the fact they operate on invalid float-
ing-point values.

Dual use of the floating-point registers does not preclude
applications from using both MMX and floating-point code.
Inside the application, the MMX code and floating-point
code should be encapsulated in separate routines by the pro-
grammer. After one routine completes, the floating-point
state is reset and the next routine starts. However, it is gen-
erally not a good idea to use the registers for floating-point
and MMX data at the same time because values in floating-
point registers are interpreted differently when accessed by
floating-point instructions or by MMX instructions.

Pentium Processors with MMX Technology
Intel calls the first implementation of MMX technology on
a Pentium processor the “Pentium Processor with MMX
Technology.” Here, we look at the Pentium processor
because MMX technology is built into the basic processor
design. The Pentium processor is an advanced superscalar
processor (meaning it can handle two or more instructions
simultaneously). Built around two general-purpose integer
pipelines and a pipelined floating-point unit [3], it can
simultaneously execute two integer instructions or one
floating-point instruction. A software-transparent dynamic
branch-prediction mechanism minimizes pipeline stalls due
to branch instructions.

MMX instructions were architected to run in the integer
pipelines despite the use of the floating-point registers to
hold data. Keep in mind that MMX instructions operate on

packed integers, so it
makes sense to use the
computing hardware in
the integer pipelines. The
floating-point registers are
used simply to hold the
64-bit packed-data types.
MMX instructions—with
the exception of the mul-
tiply instructions—exe-
cute in one cycle. (The
multiply instructions
have an execution latency
of three cycles, but the
multiply unit’s pipelined
design enables a new

multiply instruction to start every cycle.) With software
loop unrolling, a throughput of one MMX multiply per
cycle is achievable. Table 2 summarizes the latency and
throughput of MMX instructions in the Pentium processor
with MMX technology.

T
HE PENTIUM PROCESSOR CAN ISSUE TWO INTE-
GER instructions every clock cycle, one in each
of the integer pipelines. During execution of
any given instruction, the next two instruc-
tions are checked and, if possible, are issued so
the first one executes in the first pipe and the

second in the second pipe. If it is not possible to issue two
instructions (e.g., the second instruction needs the result of
the first instruction), the first instruction is issued to the
first pipe and no instruction is issued to the second pipe.
The second instruction waits for the next cycle and
becomes the first instruction in the next possible pair. In a
Pentium processor with MMX technology, a pair of
instructions that can be executed in parallel can be two-
integer instructions (as on the regular Pentium processor),
one-integer instruction, and one MMX instruction, or two
MMX instructions.

The basic integer pipeline structure of such a Pentium
processor comprises the following stages:

• Instruction prefetch (PF)
• Instruction fetch (IF)
• Instruction decode (D1)
• Instructions paring and dispatch (D2)
• Execution and memory access (E)
• Writeback (WB)

Instructions with execution latencies of more than one cycle
stay in the execute stage till they finish. For MMX instruc-
tions, the pipeline structure is slightly different, following
this order:

34 January 1997/Vol. 40, No. 1 COMMUNICATIONS OF THE ACM

E E E

E E

E WBFP F D1 D2

Mrw Mex WM/M2 M3 WMul

Integer Pipe only

MM integrated in Integer Pipe

Decoupled stages of Multimedia

Figure 9. MMX pipeline structure in the Pentium processor

• Instruction prefetch (PF)
• Instruction fetch (IF)
• Instruction decode (D1)
• Instructions paring and dispatch (D2)

At this point in the pipeline, MMX instructions continue
down a different path:

• MMX operands read and write (MRW)
• MMX execution (Mex)
• MMX writeback (WB)

Additional stages are provided for the pipelined multi-
ply instructions, which have a longer latency. This differ-
ent pipeline path for MMX instructions is illustrated
outside the box in Figure 9.

With the new MMX instructions, the instruction
decode logic had to be modified to decode, schedule, and
issue the new instructions at a rate of up to two instructions
per clock cycle. The MMX opcodes map to the IA 0Fh
(hexadecimal representation) prefix extension table, which is
rarely used in existing software. Therefore, decoding these
instructions in the original Pentium processor design was
slow, with throughput of two clock cycles per instruction.
The instruction decoder was redesigned to quadruple the
throughput of instructions with a 0F prefix, allowing two
instructions per cycle throughput.

Multimedia and communications applications have fairly
high data access rates. MMX technology allows more com-
puting to be done per clock cycle, so the processor needs to
be able to move data more efficiently. Another way to
express this efficiency is to say that because MMX technol-
ogy increases computational bandwidth, we need to adapt
memory bandwidth to maintain a balanced system. This
memory bandwidth issue is addressed by the Pentium
processor with MMX technology in two ways:

• The architecture uses 64-bit-wide packed integers that
naturally take advantage of the 64-bit wide data bus on
the Pentium processor.

• The code and data caches on the Pentium processor with
MMX technology were doubled to 16KB each and oper-
ate at core frequency.

The memory bandwidth issue is also being dealt with by
Intel at the system level with better chipsets (the support
chips surrounding the CPU in a PC) and new peripheral
buses for disks, CDs, and graphics cards, such as the Periph-
eral Components Interconnect (PCI) [8] and the Accelerated
Graphics Port (AGP) [12].

MMX Read/Write Stage

O
NE OF THE IMPORTANT MODIFICATIONS TO THE

pipeline of the Pentium processor with
MMX technology was incorporation of a
special MMX operands read/write stage, in
which source operands residing in MMX
registers or memory are read. Also done in

this stage is writing results from MMX registers to memory.
As a result of this new stage, an instruction that performs a
calculation and has one of its operands in memory (while the
other comes from a register) takes only a single clock cycle
to execute. With a regular non-MMX Pentium processor
pipeline structure, such instructions as ADD EAX, MEM
needed two cycles to execute. In the first cycle in the execute
stage, the memory operand would be read from the cache
(one-cycle latency assuming a cache hit). The actual calcula-
tion would happen in the second cycle. Thus, this instruc-
tion resides in the execute stage for two cycles, effectively
stalling the pipe for one cycle. Breaking away the read oper-
ation for MMX instructions into a separate stage from the
actual calculation operation avoids this stall. For example,
the MMX instruction PADDB MM2, MEM would reside
for one cycle in the MRW stage to read its memory operand
(assuming a cache hit), then move on to the Mex stage to
perform the calculation, freeing the MRW stage for the next
MMX instruction.

MMX Technology Performance Boost
Our goals for the Pentium processor with MMX technology
were to exceed performance of IA code by 100% to 300%
on kernels (basic loops of multimedia applications) and to
provide an overall performance boost of 50% to 100% on
multimedia applications. For example the Intel Media
Benchmark [9] shows a performance boost of over 65%.

The main challenge in evaluating the performance of a
new architecture and instruction extension like MMX tech-

COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No. 1 35

Our goals were to exceed performance of
Intel Architecture code by 100% to 300% on
kernels (the basic loops of multimedia applications)
and to provide an overall performance boost of
50% to 100% on multimedia applications.

nology on any implementation is generating reasonable
workloads for performance analysis and establishing a per-
formance baseline. (Only recently has the computer indus-
try sought to generate a multimedia benchmark suite, and
even if there had been one during MMX technology defin-
ition, it would not have had MMX code in it.)

A
S A RESULT, PERFORMANCE PROJECTIONS FOR

the Pentium processor with MMX technol-
ogy were at first based on the kernel level.
A set of kernels corresponding to several
multimedia domains were coded using the
new MMX instructions. Kernels included

general-purpose algorithms, like the Fast Fourier Trans-
form (FFT), the Finite Impulse Response (FIR) filter, and
a vector-dot product, which are all basic signal-processing
primitives, and domain-specific algorithms, like IDCT
and Motion Compensation used in image and video
decompression. The kernels were chosen to represent sev-
eral key processing modules of multimedia applications:
video, audio and speech compression, communications,
3D graphics, and image processing. The performance of
these kernels was compared using a performance simulator
to optimized versions of the same kernels—but without
using MMX instructions.

However, MMX technology’s most meaningful perfor-
mance goals were on the application level. Various multi-
media and communications applications were analyzed to

understand where they spend most of their execution
time. We found that most applications spend most of their
execution time in a few basic kernels—in most cases in
kernels that can be speeded up with MMX technology. We
replaced these kernels with our MMX code versions and
ran the application on our performance simulator and then
on fully functioning silicon when it became available.

Using the internal performance counters feature in the
Pentium processor and logic analyzers to probe the PCI and
memory bus, the performance of the MMX implemen-
tation in several applications was analyzed in depth. As a
result of this analysis, we learned that if parts of the appli-
cations were recoded to better utilize other aspects of the
PC system, such as the cache memory hierarchy and the
PCI bus, the performance advantages of MMX technology
were further enhanced. The performance of applications
with MMX technology as well as regular IA applications in
some cases exceeded our expectations.

This approach to analyzing the performance of multime-
dia applications with MMX technology allowed us to
achieve two goals:

• Refinement of the microarchitecture of CPUs imple-
menting MMX technology

• Performance tuning of MMX software

Figure 10 shows the performance advantage of the Pen-
tium processor with MMX on the Intel Media Benchmark
[9], which includes a few multimedia applications that can
be compared with and without MMX technology. The bars
show the speed-up of the applications running on the Pen-
tium processor with MMX technology over the same appli-
cations without MMX technology on the same processor.
Some applications, like MPEG1 video decompression,
speedup 80% with MMX technology, a relatively low
speedup because this application spends substantial execu-
tion time in operations not speeded up by MMX technol-
ogy, like accessing the CD-ROM drive or hard disk and
writing data to the graphics memory. Improvements in
these platform technologies and better graphics subsystems
will eventually help PCs take full advantage of MMX tech-
nology. Other applications, like image filtering, speedup
370%. Image filtering spends most (more than 80%) of its
time in the compute-intensive image-filtering kernel.

Early Work with Software Developers
Early on, we recognized that MMX technology success
depends on the availability of exciting and compelling soft-
ware using it. We therefore engaged industry software
developers early in the MMX technology development pro-
gram. Technical leaders in the software community worked
with MMX technology in simulation environments to
determine how they could best use the technology. Later,

36 January 1997/Vol. 40, No. 1 COMMUNICATIONS OF THE ACM

Video
Decompression

MPEG1

Audio
Decompression

MPEG1

Image
Filtering

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Pentium Processor – 200 Mhz

Pentium Processor with MMX
Technology – 200 Mhz

Figure 10. Intel media benchmark speedup with
MMX technology

when sample processors became available, we engaged a
broader range of software developers. At first, we focused on
developers supplying the tools and building blocks for mul-
timedia and communications applications, such as 3D
engines and audio coders. Then we engaged the larger soft-
ware developer community.

New processors with MMX technology will be shipping
into a user base that is mostly traditional IA (often called
Intel 386 architecture). Since this base will have processors
with and without MMX technology, we wanted to make
sure developers could create applications running on both.
To enable applications with MMX technology code to also
run on processors without MMX technology, we added a
feature bit to detect the existence of MMX technology. This
detection operation is done by executing the CPUID
instruction and checking a set bit in the result, giving soft-
ware developers the flexibility to determine which software
should be run. During run time, the software can query the
microprocessor to determine if MMX technology is sup-
ported and execute MMX code on processors with the tech-
nology. Thus, only one version of the software needs to be
sold, but including two versions of the main compute-inten-
sive kernels: a regular IA version and an MMX technology
version. Binary code size needs to grow to support this dual-
ity. Since MMX code is mainly applied to small, tight com-
pute-intensive kernels, most applications we have studied
need small total code growth to support both MMX and
non-MMX technology versions for the kernels. Growth of
less than 10% for the whole binary is common.

MMX Technology, Connected PCs, and
the Internet
The Internet has brought the PC user visual impact and
interactivity previously available only on a so-called multi-
media PC. With a standard Web browser, users can down-
load pictures and sound, seeing them locally on their PCs.
In addition, users can manipulate video and 3D worlds,
interacting with them both locally and on other PCs across
the Internet. MMX technology provides new enhanced per-
formance for some of these connected applications.

Establishing a voice phone call over the Internet (some-
times called Web telephony) requires the user’s voice to be
digitized and then compressed into as few bits as possible.

The compressed voice data can then be transmitted over the
Internet without needing a lot of bandwidth. On the receive
end of the call, the voice data must be decompressed to
reproduce the voice signal. Voice-stream compression and
decompression uses filtering and transform techniques, both
of which are multiply-intensive. MMX technology can
perform four multiplies in parallel, providing a signif-
icant performance boost for audio compression. Using a
Pentium processor with MMX technology, a software appli-
cation can implement the phone function (including com-
press/decompress activities) using only 20% of the cycles of
the main processor.

V
IDEO CONFERENCING HAS BEEN ADAPTED TO

standard phone lines and Internet standards
and is a step up in complexity over the voice
call because video images are sent with voice
information. The key to video is good com-
pression, because available bandwidth is

limited. The compression method—estimating the change
from frame to frame, rather than transmitting every picture
frame—can be speeded up by using MMX technology for
computing absolute differences, as described earlier.

3D animation is becoming a useful way to help users
“see” complex objects and information. Virtual reality mod-
eling language (VRML) engines are designed to work with
a minimal set of information so data can be transmitted over
the Internet using as few bits as possible. The engine must
take the small data set and render the 3D object. The satu-
rating arithmetic in MMX technology can, for example,
speedup Gouraud shading, a standard technique for making
images look realistic.

Some picture formats used in the Internet also benefit
from MMX technology. JPEG is a format that compresses
and decompresses pictures with a technique similar to the
IDCT, a technique that is multiply-intensive and requires
arrays to be transposed for 2D processing. MMX technology
can perform four multiplies at once and can use its
Unpack instruction to quickly transpose data arrays.
MMX technology helps speedup JPEG decompression
engines used for JPEG files downloaded from the Internet.

The Java language is quickly becoming a standard pro-
gramming language for applications executing over the

COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No. 1 37

We found that most applications spend most of
their execution time in a few basic kernels—in
most cases in kernels that can be speeded up with
MMX technology.

Internet. Portability is one of the language’s main concepts,
so downloaded code runs on any platform regardless of the
CPU. This portability is achieved by executing an inter-
preter program on the receiving platform to execute the
Java code. The problem with this solution is that interpre-
tation is a slow process and as a result Java programs have
low performance. A few techniques have been suggested to
overcome this problem. One is use of just-in-time compil-
ers that compile the program into the assembly code lan-
guage understood by the CPU on the receiving platform
instead of interpreting the program. Although the resulting
code runs much faster, the compilation generates a delay
until the program can start executing, wors-
ening the latency problem already char-
acterizing the Internet. Another solution
is defining a set of media classes for the
Java language. Such classes have been
announced and are currently under devel-
opment. They would be resident on the PC,
be written in the assembly code language
understood by the CPU on the receiving plat-
form, and be used by the Java application at
run time for performing graphics and anima-
tion. These classes can benefit from MMX tech-
nology and, as a result, execution of Java
applications would be speeded up.

Conclusions
MMX technology implements a new high-performance
architectural technique that enhances the performance of IA
microprocessors for multimedia and communications appli-
cations. These applications’ algorithms are compute-inten-
sive, process a lot of data, use small data types, and provide
lots of opportunities for parallelism. MMX technology
brings more power to these algorithms by adding data types
and instructions that can process data in parallel. This par-
allel processing is done while maintaining full compatibil-
ity with the existing installed base of operating systems and
IA applications.

MMX technology is general by design and applicable
to a variety of software media problems. Future media-
related software technologies for use on the Internet
should benefit from MMX technology, which will be inte-
grated first into the Pentium and P6 processors, giving
them an extra boost in capability. In the future, MMX will
appear on all Intel processors.1 (For more information,
code examples, and applications, please see
http://www.intel.com/drg/mmx.)

Acknowledgments
We would like to recognize our codevelopers of MMX tech-
nology: Benny Maytal, Millind Mittal, David Bistry, Robert
Dreyer, Carole Dulong (who provided some of the examples
in this article), Steve Fischer, Andy Glew, Koby Gottlieb,
Eiichi Kowashi, and Larry Mennemeier. We would also like
to thank a large team of Intel architects and software devel-
opers for their help and support of the definition process and
application analysis, especially Benny Eitan, Mike Keith,
Oded Lempel, and Dave Sprague and his team.

REFERENCES
1. Crawford, J., and Gelsinger, P. Programming

the 80386. Sybex, San Francisco, 1987.
2. Diefendorff, K., and Allen, M. Organization

of the Motorola 88110 superscalar RISC
microprocessor, IEEE Micro 12, 2 (Apr.
1992), 40–63.

3. Intel Corp. Pentium Family User’s Man-
ual. Vol. 3, Architecture and Program-
ming Manual. Intel Corporate Literature
Sales, Mt. Prospect Ill., 1994

4. ITU-T. Recommendation H.263:
Video Coding for Low Bitrate Com-
munication. ITU, Geneva, United

Nations, 1995.
5. Lee, R. Subword Parallelism with MAX-2.

IEEE Micro 16, 4 (Aug. 1996), 51–59.
6. Loeffler, C., Lightenberg, and A., Moshytz, G. Practical Fast

1-D DCT algorithms with 11 multiplications. In Proceedings
of the 1989 International Conference on Acoustics, Speech,
and Signal Processing (Glasgow, Scotland). IEEE Computer
Society Press, New York, 1989, pp. 988–991.

7. Peleg, A., and Weiser, U. MMX technology extension to the
Intel Architecture. IEEE Micro 16, 4 (Aug. 1996), 42–50.

8. Shanley, T. PCI System Architecture. PC System Architecture
Series, vol. 4. Mind Share, Richardson, Tex., 1993.

9. Slater, M. The land beyond benchmarks. Comput. Commun.
OEM Mag. 4, 31 (Sept. 1996), 64–77. Intel Media Bench-
mark URL: http://pentium.intel.com/procs/perf/icomp/
imb.htm.

10. Tremblay, M., O’Connor, J.M., Narayanan, V., and Liang, H.
VIS speeds new media processing. IEEE Micro 16, 4 (Aug.
1996), 10–20.

11. Watt, A. 3D Computer Graphics. 2d. ed., Ch. 5.3, Addison-
Wesley, Reading, Mass., 1993, pp. 131–136.

12. Yao, Y. AGP speeds 3D graphics. Microprocessors Rep. 10, 8
(June 17, 1996), 11–15.

Alex Peleg (apeleg@iil.intel.com) is a senior computer architect in
Intel’s Israel Design Center Architecture Group.
Sam Wilkie (sam_wilkie@ccm.sc.intel.com) is program manager in
Intel’s Desktop Products Group.
Uri Weiser (weiser@iil.intel.com) is director of Intel’s Israel Computer
Architecture Group.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers, or to redistribute to lists requires
prior specific permission and/or a fee.

© ACM 0002-0782/97/0100 $3.50

C

38 January 1997/Vol. 40, No. 1 COMMUNICATIONS OF THE ACM

1No license, express or implied, by estoppel or otherwise, to any intellectual property
rights is granted by this publication. Third-party brands and names are the property
of their respective owners.

