
Optimizing ARM Assembly

Computer Organization and Assembly Languages p g z y g g
Yung-Yu Chuang

with slides by Peng-Sheng Chen

Optimization

• Compilers do perform optimization, but they have
blind sites There are some optimization tools that blind sites. There are some optimization tools that
you can’t explicitly use by writing C, for example.
– Instruction scheduling – Instruction scheduling
– Register allocation

Conditional execution– Conditional execution

You have to use hand-written assembly to optimize
critical routinescritical routines.

• Use ARM9TDMI as the example, but the rules apply
to all ARM cores to all ARM cores.

• Note that the codes are sometimes in armasm
f t t gformat, not gas.

ARM optimization

• Utilize ARM ISA’s features
C diti l ti– Conditional execution

– Multiple register load/store
– Scaled register operand
– Addressing modes

Instruction scheduling

• ARM9 pipeline

load/store
load/store 8/16-bit data

H d/I t l k If th i d d t i th • Hazard/Interlock: If the required data is the
unavailable result from the previous
i t ti th th t ll instruction, then the process stalls.

Instruction scheduling

• No hazard, 2 cycles

• One-cycle interlock

stall

b bblbubble

Instruction scheduling

• One-cycle interlock, 4 cycles

; no effect on performance

Instruction scheduling

• Brach takes 3 cycles due to stalls

Scheduling of load instructions

• Load occurs frequently in the compiled code,
taking approximately 1/3 of all instructions taking approximately 1/3 of all instructions.
Careful scheduling of loads can avoid stalls.

Scheduling of load instructions

2 l ll T l 11 l f h 2-cycle stall. Total 11 cycles for a character.
It can be avoided by preloading and unrolling.
Th k i d k h i i dThe key is to do some work when awaiting data.

Load scheduling by preloading

• Preloading: loads the data required for the loop
at the end of the previous loop rather than at at the end of the previous loop, rather than at
the beginning of the current loop.
Si l i i l di d t f l i 1 th i • Since loop i is loading data for loop i+1, there is
always a problem with the first and last loops.
F th fi t l i t t l d t id For the first loop, insert an extra load outside
the loop. For the last loop, be careful not to

d d t Thi b ff ti l d b read any data. This can be effectively done by
conditional execution.

Load scheduling by preloading

9 cycles.
11/9 1 2211/9~1.22

Load scheduling by unrolling

• Unroll and interleave the body of the loop. For
example we can perform three loops together example, we can perform three loops together.
When the result of an operation from loop i is
not ready we can perform an operation from not ready, we can perform an operation from
loop i+1 that avoids waiting for the loop i
resultresult.

Load scheduling by unrolling Load scheduling by unrolling

Load scheduling by unrolling

21 cycles. 7 cycle/character
11/7~1.57
More than doubling the code size
Only efficient for a large data size.y g

Register allocation

• APCS requires callee to save R4~R11 and to
keep the stack 8 byte alignedkeep the stack 8-byte aligned.

Do not use sp(R13) and pc(R15)
Total 14 general-purpose registers.

• We stack R12 only for making the stack 8-byte
aligned.

g p p g

Register allocation

Assume that K<=32 and N is
l d l i l f 256large and a multiple of 256

k 32 kk 32-k

Register allocation
Unroll the loop to handle 8 words at a time and to use
multiple load/store

Register allocation Register allocation

• What variables do we have?
arguments read-in overlapg p

• We still need to assign carry and kr, but we have
used 13 registers and only one remains.used 13 registers and only one remains.
– Work on 4 words instead
– Use stack to save least-used variable, here NUse stack to save least used variable, here N
– Alter the code

Register allocation

• We notice that carry does not need to stay in
the same register Thus we can use yi for itthe same register. Thus, we can use yi for it.

Register allocation

This is often an iterative process until all variables are
assigned to registers.

More than 14 local variables

• If you need more than 14 local variables, then
you store some on the stackyou store some on the stack.

• Work outwards from the inner loops since they
h f i thave more performance impact.

More than 14 local variables

More than 14 local variables Packing

• Pack multiple (sub-32bit) variables into a single
registerregister.

Packing

• When shifting by a register amount, ARM uses
bits 0 7 and ignores othersbits 0~7 and ignores others.

• Shift an array of 40 entries by shift bits.

Packing

Packing

• Simulate SIMD (single instruction multiple
data)data).

• Assume that we want to merge two images X
d Y t d Z band Y to produce Z by

Example

X Y

X*α+Y*(1-α)

30

α=0.75

31

α=0.5

32

α=0.25

33

Packing

• Load 4 bytes at a time

• Unpack it and promote to 16-bit data• Unpack it and promote to 16 bit data

• Work on 176x144 images

Packing Packing

Packing Conditional execution

• By combining conditional execution and
conditional setting of the flags you can conditional setting of the flags, you can
implement simple if statements without any
need of branches need of branches.

• This improves efficiency since branches can
t k l d l d d itake many cycles and also reduces code size.

Conditional execution Conditional execution

Conditional execution Block copy example
void bcopy(char *to, char *from, int n)
{{
while (n--)
*to++ = *from++;*to++ = *from++;

}

Block copy example
@ arguments: R0: to, R1: from, R2: n
bcopy: TEQ R2 #0bcopy: TEQ R2, #0

BEQ end
loop: SUB R2 R2 #1loop: SUB R2, R2, #1

LDRB R3, [R1], #1
STRB R3 [R0] #1STRB R3, [R0], #1
B bcopy

d MOV PC LRend: MOV PC, LR

Block copy example
@ arguments: R0: to, R1: from, R2: n
@ rewrite “n–-” as “-–n>=0”@ rewrite n–- as -–n>=0
bcopy: SUBS R2, R2, #1

LDRPLB R3 [R1] #1LDRPLB R3, [R1], #1
STRPLB R3, [R0], #1
BPL bcopyBPL bcopy
MOV PC, LR

Block copy example
@ arguments: R0: to, R1: from, R2: n
@ assume n is a multiple of 4; loop unrolling@ assume n is a multiple of 4; loop unrolling
bcopy: SUBS R2, R2, #4

LDRPLB R3, [R1], #1, [], #
STRPLB R3, [R0], #1
LDRPLB R3, [R1], #1
STRPLB R3, [R0], #1
LDRPLB R3, [R1], #1
STRPLB R3, [R0], #1
LDRPLB R3, [R1], #1
STRPLB R3, [R0], #1
BPL bcopy
MOV PC LRMOV PC, LR

Block copy example
@ arguments: R0: to, R1: from, R2: n
@ n is a multiple of 16;@ n is a multiple of 16;
bcopy: SUBS R2, R2, #16

LDRPL R3, [R1], #4, [], #
STRPL R3, [R0], #4
LDRPL R3, [R1], #4
STRPL R3, [R0], #4
LDRPL R3, [R1], #4
STRPL R3, [R0], #4
LDRPL R3, [R1], #4
STRPL R3, [R0], #4
BPL bcopy
MOV PC LRMOV PC, LR

Block copy example
@ arguments: R0: to, R1: from, R2: n
@ n is a multiple of 16;@ n is a multiple of 16;
bcopy: SUBS R2, R2, #16

LDMPL R1! {R3 R6}LDMPL R1!, {R3-R6}
STMPL R0!, {R3-R6}
BPL bcopyBPL bcopy
MOV PC, LR

@ could be extend to copy 40 byte at a time
@ if t lti l f 40 dd t l@ if not multiple of 40, add a copy_rest loop

Search example
int main(void)
{{
int a[10]={7,6,4,5,5,1,3,2,9,8};
int i;int i;
int s=4;

for (i=0; i<10; i++)
if ([i]) b kif (s==a[i]) break;

if (i>=10) return -1;
l t ielse return i;

}

Search
.section .rodata

LC0:.LC0:
.word 7
word 6.word 6
.word 4
word 5.word 5

.word 5
d 1.word 1

.word 3
d 2.word 2

.word 9
8.word 8

Search

.text low

.global main

.type main, %function s
imain: sub sp, sp, #48

adr r4, L9 @ =.LC0
i

a[0]
add r5, sp, #8
ldmia r4!, {r0, r1, r2, r3}

:

stmia r5!, {r0, r1, r2, r3}
ldmia r4!, {r0, r1, r2, r3}

a[9]

stmia r5!, {r0, r1, r2, r3}
ldmia r4!, {r0, r1}

highstmia r5!, {r0, r1} high
stack

Search
mov r3, #4
str r3, [sp, #0] @ s=4

low
str r3, [sp, #0] @ s 4
mov r3, #0
str r3, [sp, #4] @ i=0 s

i, [p, #] @

loop: ldr r0, [sp, #4] @ r0=i
i

a[0]
cmp r0, #10 @ i<10?
bge end

:
ldr r1, [sp, #0] @ r1=s
mov r2, #4

a[9]

mul r3, r0, r2
add r3, r3, #8
ld 4 [3] @ 4 [i] highldr r4, [sp, r3] @ r4=a[i] high

stack

Search
teq r1, r4 @ test if s==a[i]
beq end

low

beq end

add r0 r0 #1 @ i++
s
iadd r0, r0, #1 @ i++

str r0, [sp, #4] @ update i
b loop

i
a[0]

b loop

d t 0 [#4]
:

end: str r0, [sp, #4]
cmp r0, #10

0 # 1

a[9]

movge r0, #-1
add sp, sp, #48

highmov pc, lr high
stack

Optimization

• Remove unnecessary load/store
R l i i• Remove loop invariant

• Use addressing mode
• Use conditional execution

Search (remove load/store)
mov r3, #4
str r3, [sp, #0] @ s=4

lowr1,
str r3, [sp, #0] @ s 4
mov r3, #0
str r3, [sp, #4] @ i=0 s

i
r0,
, [p, #] @

loop: ldr r0, [sp, #4] @ r0=i
i

a[0]
cmp r0, #10 @ i<10?
bge end

:
ldr r1, [sp, #0] @ r1=s
mov r2, #4

a[9]

mul r3, r0, r2
add r3, r3, #8
ld 4 [3] @ 4 [i] highldr r4, [sp, r3] @ r4=a[i] high

stack

Search (remove load/store)
teq r1, r4 @ test if s==a[i]
beq end

low

beq end

add r0 r0 #1 @ i++
s
iadd r0, r0, #1 @ i++

str r0, [sp, #4] @ update i
b loop

i
a[0]

b loop

d t 0 [#4]
:

end: str r0, [sp, #4]
cmp r0, #10

0 # 1

a[9]

movge r0, #-1
add sp, sp, #48

highmov pc, lr high
stack

Search (loop invariant/addressing mode)
mov r3, #4
str r3, [sp, #0] @ s=4

lowr1,
str r3, [sp, #0] @ s 4
mov r3, #0
str r3, [sp, #4] @ i=0 s

i
r0,
, [p, #] @

loop: ldr r0, [sp, #4] @ r0=i
i

a[0]add r2, sp, #8
cmp r0, #10 @ i<10?
bge end

:
ldr r1, [sp, #0] @ r1=s
mov r2, #4

a[9]

mul r3, r0, r2
add r3, r3, #8
ld 4 [3] @ 4 [i] highldr r4, [sp, r3] @ r4=a[i] high

stackldr r4, [r2, r0, LSL #2]

Search (conditional execution)
teq r1, r4 @ test if s==a[i]
beq end

low

beq end

add r0 r0 #1 @ i++
s
iaddeqadd r0, r0, #1 @ i++

str r0, [sp, #4] @ update i
b loop

i
a[0]

addeq

beqb loop

d t 0 [#4]
:

beq

end: str r0, [sp, #4]
cmp r0, #10

0 # 1

a[9]

movge r0, #-1
add sp, sp, #48

highmov pc, lr high
stack

Optimization

• Remove unnecessary load/store
R l i i• Remove loop invariant

• Use addressing mode
• Use conditional execution

• From 22 words to 13 words and execution time
is greatly reducedis greatly reduced.

