Course overview

Computer Organization and Assembly 1anguages

Logistics I e

e Meeting time: 2:20pm-5:20pm, Wednesday
e Classroom: CSIE Room 111
e Instructor: % <4 Yung-Yu Chuang
e Teaching assistant: % + ja
 Webpage:
http://www.csie.ntu.edu.tw/~cyy/asm
id / password
» Mailing list: assembly@cmlab.csie.ntu.edu.tw

Yung-Yn Chuang
Please subscribe via
https://cmlmail.csie.ntu.edu.tw/mailman/listinfo/assembly/
with slides by Kip Irvine
Caveats e Prerequisites flo s

e |t is a course from the old curriculum.

e It is not for you if you have taken or are taking
computer architecture.

= [t is not tested in your graduate school entrance
exam, and not listed as a required course
anymore.

» |t is a fundamental course, not a geek-level
one.

e |t is more like advanced introduction to CS,
better suited to freshman or sophomore.

e Better to have programming experience with
some high-level languages such C, C ++,Java ...




Textbook

e Readings and slides

References (TOY) f”-n,[;._

8 Princeton’s Introduction to CS,
http://www.cs.princeton.edu/intro
cs/50machine/

http://www.cs.princeton.edu/intro
cs/60circuits/

References (ARM) I

= s | 2085
B STHES
(s WHGHT

ARM Assembly Language
Programming, Peter Knaggs and
Stephen Welsh

ARM System Developer’s Guide,
Andrew Sloss, Dominic Symes and
Chris Wright

References (ARM) f”-ﬂ;._

~ Whirlwind Tour of ARM Assembly,
- TONC, Jasper Vijn.

ARM System-on-chip Architecture,
Steve Furber.




References (IA32) i

praented - Assembly Language for Intel-Based
Computers, 5th Edition, Kip Irvine

R o The Art of Assembly Language, Randy
ASSEMBLY
Lancuace Hyde

References (IA32) B

=

e by e o o L

ey Michael Abrash' s Graphics Programming

GHAPI'HGS Black Book

PROGRAMMING

Black Book

ComMPUTER SYSTEMS

Computer Systems: A Programmer's

#usa Perspective, Randal E. Bryant and David
. R. O'Hallaron

Grading (subject to change) I

1T

» Assignments (4 projects, 56%), most graded by
performance

e Class participation (4%)
» Midterm exam (16%)
» Final project (24%)
- Examples from previous years

Computer Organization and Assembly Ianguaf@@,fla

e |t is not only about assembly but also about
“computer organization™.




Early computers

Early programming tools

First popular PCs

Early PCs Tt
» Intel 8086
processor
e /68KB memory
e 20MB disk
e Dot-Matrix

O -

printer (9-pin)




GUI/IDE T More advanced architectures gl

TNTREE

i » Pipeline
e SIMD

e Multi-core
e Cache

File Edit Search Run Com_ﬂptions

type pstiva="tstiva; Fvaluate/modify... Cirl-F4
tstiva = record atches T e
next : pstiva; 8
val : longint;
end; Delete watch
Edit watch...
var Remove all watches
a carrayll..100,1..100] of longi
d,pi : arrayl[l..100] of longint;
n : longint;
prim,ultim : pstiva;

Window Help

procedure AddToStiva(i:longint);
begin
if (prim = nil) then
begin
new{prim);
ultim := prim;
prim”.next := nil;
end
else

Fi Help | Insert a watch expression into the Watch window

More advanced software rhaas More “computers” around us SRRy




My computers geth

(Intel Pentium D
8 3GHz, Nvidia 7900)

Desktop

VAIO Z46TD
(Intel Core 2 Duo P9700 2.8GHz)

Computer Organization and Assembly Ianguargj@:'_-‘_“E

e It is not only about assembly but also about
“computer organization™.

e |t will cover
- Basic concept of computer systems and architecture
- ARM architecture and assembly language
- x86 architecture and assembly language

iPhone 3GS
JGBA SP (AR'\g:gC;I’\;tHeZ’;'AS
(ARM7 16.78MHz)
TOY machine Tt TOY machine Tepll

Load
ADDR

DATA

Look

.

Step
OUTPUT
L L

e Starting from a simple construct

control off .

~— magnet off

connection

- SPring




TOY machine Tt

» Build several components and connect them

TOY machine ;ﬂljff.;_xia

together
9 { .
PC Addr :1: —74'% AErs #IL_'
d W Addr /5
R Data | — o Lt>— A Addr
] — W Data tL B Addr .
. ) 01 11
5_1_ e:;:itter | I 25;{5:3: Control -
. WG 5
TOY machine o ARM T
int A[32]; A DUP 32 10: €020 e ARM architecture
Ida R1,1 20: 7101
Ida RA, A 21: 7A00
i=0; Ida RC,0 22: 7¢€00
Do {
RD=stdin; read Id RD, OxFF 23: 8DFF
if (RD==0) break; bz RD, exit 24: CD29
add R2,RA,RC 25: 12AC
A[i]=RD; sti RD, R2 26: BDO2
izi+l; add RC,RC,R1 27: 1ccl
} while (1); bz RO, read 28: €023
printr(); exit  jl RF, printr 29: FF2B

hit 2A: 0000




1A32 il

e |A-32 Processor Architecture

» Data Transfers, Addressing, and Arithmetic
e Procedures

« Conditional Processing

e Integer Arithmetic

= Advanced Procedures

e Strings and Arrays

« High-Level Language Interface
» Real Arithmetic (FPU)

- SIMD

e Code Optimization

What you will learn I e

e Basic principle of computer architecture
e How your computer works

e How your C programs work

e Assembly basics

ARM assembly programming

|A-32 assembly programming

Specific components, FPU/MMX

Code optimization

Interface between assembly to high-level
language

Why taking this course? flo s

« Does anyone really program in assembly
nowadays?

» Yes, at times, you do need to write assembly
code.

|t is foundation for computer architecture and
compilers. It is related to electronics, logic
design and operating system.

CSIE courses Tt

e Hardware: electronics, digital system,
architecture

« Software: operating system, compiler




wikipedia %

Reasons for not using assembly Tt

e Today, assembly language is used primarily for
direct hardware manipulation, access to
specialized processor instructions, or to address
critical performance issues. Typical uses

are device drivers, low-level embedded systems,

and real-time systems.

e Development time: it takes much longer to
develop in assembly. Harder to debug, no type
checking, side effects...

e Maintainability: unstructured, dirty tricks
e Portability: platform-dependent

Reasons for using assembly Tt

To sum up Tt

» Educational reasons: to understand how CPUs
and compilers work. Better understanding to
efficiency issues of various constructs.

e Developing compilers, debuggers and other
development tools.

e Hardware drivers and system code
e Embedded systems
e Developing libraries.

e Accessing instructions that are not available
through high-level languages.

Optimizing for speed or space

It is all about lack of smart compilers

Faster code, compiler is not good enough

Smaller code , compiler is not good enough, e.qg.
mobile devices, embedded devices, also
Smaller code — better cache performance —
faster code

Unusual architecture , there isn’t even a
compiler or compiler quality is bad, eg GPU,
DSP chips, even MMX.




Overview

« Virtual Machine Concept
» Data Representation
» Boolean Operations

Translating languages

English: Display the sum of A times B plus C.

C++:
cout << (A * B + C);

!

Assembly Language:

Al 00000000

ng gaX’A ——|F7 25 00000004
add eax.C 03 05 00000008
call Writelnt E8 00500000

Intel Machine Language:

Virtual machines

Abstractions for computers

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic

Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

High-level language

e Level 5
e Application-oriented languages

e Programs compile into assembly language
(Level 4)

cout << (A * B + O);




Assembly language ol

e Level 4

e |nstruction mnemonics that have a one-to-one
correspondence to machine language

= Calls functions written at the operating
system level (Level 3)

e Programs are translated into machine
language (Level 2)
mov eax, A
mul B

add eax, C
call Writelnt

Operating system iy

e Level 3
e Provides services

e Programs translated and run at the instruction
set architecture level (Level 2)

Instruction set architecture Tt

e Level 2
« Also known as conventional machine language

e Executed by Level 1 program
(microarchitecture, Level 1)

Al 00000000
F7 25 00000004
03 05 00000008
E8 00500000

Microarchitecture Tt

e Level 1

» Interprets conventional machine instructions
(Level 2)

» Executed by digital hardware (Level 0)

i
P f {
i
1

Control




Digital logic gt

Level O
CPU, constructed from digital logic gates
System bus

Data representation gt

e Computer is a construction of digital circuits
with two states: on and off

« You need to have the ability to translate

M between different representations to examine
e Memory i
the content of the machine
e Common number systems: binary, octal,
decimal and hexadecimal
Binary representations Tt Binary numbers et
» Electronic Implementation e Digitsare 1 and 0
- Easy to store with bistable elements (a binary digit is called a bit)
- Reliably transmitted on noisy and inaccurate wires 1 = true
0 = false
* MSB -most significant bit
3.3V « LSB -least significant bit
2.8V
o5y ] ] MSB LSB
o = Bitnumbering:  71611001010011100
15 0

A bit string could have different interpretations




Unsigned binary integers "«a

e Each digit (bit) is either 1 or 0

e Each bit represents a power of 2: [1[1[1[1[1]1][1]1]
27 26 25 24 28 22 2t 20

Table 1-3 Binary Bit Position Values.

Translating binary to decimal f%".;;-;la

2n Decimal Value 2n Decimal Value

2 ! 28 256
Every binary N 2 29 512
number is a 5 m

22 4 2 1024
sum of powers _ —

2° 8 2 2048
of 2 - - 04

24 16 212 4096

28 32 213 8192

28 64 24 16384

27 128 213 32768

Weighted positional notation shows how to
calculate the decimal value of each binary bit:

dec = (D,, x 2™) + (D,., x 2"2) + ... + (D, x 21) + (D,
x 20)

D = binary digit

binary 00001001 = decimal 9:
(1x23)+(1x29=9

Translating unsigned decimal to binary’=="

» Repeatedly divide the decimal integer by 2. Each
remainder is a binary digit in the translated value:

Division Quotient Remainder
3712 18 1 37 =100101
1872 9 0
972 4 1
4/2 2 0
272 1 0
1/2 0 1

Binary addition m.,q

e Starting with the LSB, add each pair of digits,
include the carry if present.

carry: 1
0/j]0/0|O0O/0]2]0]O0 (4)

+ ololojo|O0|1 1|1 @

0jo 0010 1|1 (11

bit positon:. 7 6 5 4 3 2 1 0




Integer storage sizes e

Large measurements i

byte « Kilobyte (KB), 219 bytes
doubleword -
o - Gigabyte (GB), 2% bytes
quadword ‘ 64
e Terabyte (TB), 2% bytes
Table 1-4 Ranges of Unsigned Integers.
e Petabyte
Storage Type Range (low-high) Powers of 2
Unsigned byte 010 255 Dw -1 ® Exabyte
Unsigned word 0 to 65.535 Diw (20— 1) b Zettabyte
Unsigned doubleword 0 to 4,294,967.295 Oto (22— 1) - Yottabyte
Unsigned quadword 0o 18.446,744,073,709,551,615 010 (-1
Practice: What is the largest unsigned integer that may be stored in 20 bits?
Hexadecimal integers R Translating binary to hexadecimal R

All values in memory are stored in binary. Because long
binary numbers are hard to read, we use hexadecimal
representation.

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary Decimal Hexadecimal Binary Decimal | Hexadecimal
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 10 A
0011 3 3 1011 I B
0100 4 4 1100 12 C
0101 5 5 1101 13 D
0110 6 6 1110 14 E
0111 7 7 1111 15 F

» Each hexadecimal digit corresponds to 4 binary
bits.

« Example: Translate the binary integer
000101101010011110010100 to hexadecimal:

1 6 A 7 9 4

0001 0110 1010 0111 1001 0100




Converting hexadecimal to decimal ‘5=

Powers of 16 it

e Multiply each digit by its corresponding
power of 16:
dec = (D5 x 163) + (D, x 162) + (D, x 16%) + (D, x 16°)

Used when calculating hexadecimal values up to
8 digits long:

16" Decimal Value 16" Decimal Value
16 1 16 65,536
e Hex 1234 equals (1 x 16%) + (2 x 162) + (3 x 161) + (4 o 1o o IS0
x 169), or decimal 4,660. . . -
16- 256 16 16,777.216
16° | 4096 167 268,435,456
* Hex 3BA4 equals (3 x 16%) + (11 * 162) + (10 x 16%)
+ (4 x 169), or decimal 15,268.
Converting decimal to hexadecimal :iﬁﬁf‘i Hexadecimal addition “-i“f;-:=~'h"i

Division Quotient Remainder
422/ 16 26 6
26/ 16 1 A
1/16 0 1

decimal 422 = 1A6 hexadecimal

Divide the sum of two digits by the number base
(16). The quotient becomes the carry value, and
the remainder is the sum digit.

1 1
36 28 28 O6A
42 45 58 4B
/8 6D 80 B5

Important skill: Programmers frequently add and subtract the
addresses of variables and instructions.




Hexadecimal subtraction Tt

Signed integers L

When a borrow is required from the digit to the
left, add 10h to the current digit's value:

-1
C6 75
A2 47
24 2E

Practice: The address of varl is 00400020. The address of the next
variable after varl is 0040006A. How many bytes are used by varl?

The highest bit indicates the sign. 1 = negative,
0 = positive

sign bit
11 1,101 1|0 Negative
00,0701 )07 110 Positive

If the highest digit of a hexadecmal integer is > 7, the value is
negative. Examples: 8A, C5, A2, 9D

Binary subtraction Al

Twao's complement notation et
Steps:
- Complement (reverse) each bit
- Add 1
Starting value 00000001
Step 1: reverse the bits 11111110
Step 2: add | to the value from Step | 11111110
+00000001
Sum: two’s complement representation 11111111

Note that 00000001 + 11111111 = 00000000

e When subtracting A — B, convert B to its two's
complement

e Add A to (-B)
01010 —— 01010

-01011 10100
11111
Advantages for 2’s complement:
* No two O’s
= Sign bit

= Remove the need for separate circuits for add
and sub




Ranges of signed integers

Character

The highest bit is reserved for the sign. This limits e Character sets
the range: - Standard ASCII(0 — 127)
— o — - = - Extended ASCII (0 — 255)
orage Type ange (low-hig owers"o ~ ANS| (0_ 255)
Signed byte —128 10 +127 2T (@2 -1) _ Unicode (0 — 65,535)
Signed word ~32,768 to 432,767 2B (20 -1) . .
i ot — « Null-terminated String
Signed doubleword ~2.147.483,648 10 2.147.483.647 210 (2% -1
= i ( H' [ — } - Array of characters followed by a null byte
Signed quadword -9.223,372.036.854.775.808 10 3B 52 = 1) .
T +9,223.372.036,854,775.807 t = Using the ASCII table
- back inside cover of book
Representing Instructions D Boolean algebra e
Int sum(int x, int y) « Boolean expressions created from:
{ Alpha sum Sun sum PC sum
3} 00 C3 89 : —
) 30 £0 S Expression Description
- For this example, Alpha & 1 08 B :
X NOT X
Sun use two 4-byte 01 90 45
instructions 80 02 0C XAY X AND Y
- Use differing numbers of FA 00 03 XV Y X OR Y
instructions in other cases 68 09 g:
- PC uses 7 instructions 55 XV (NOTX)OR Y
with lengths 1, 2, and 3 EC X AY) NOT ( X AND Y )
bytes °D X A TY X AND (NOT Y )
« Same for NT and for Linux c3

« NT / Linux not fully binary
compatible

Different machines use totally different
instructions and encodings




NOT At AND At
e Inverts (reverses) a boolean value e Truth if both are true
e Truth table for Boolean NOT operator: e Truth table for Boolean AND operator:
X —X XY XAY
Digital gate diagram for NOT: Digital gate diagram for AND:

F T F F F 7}

T F > F T F AND
T F F

NOT
T T T
OR o Implementation of gates s

e True |f either iS true °o F|U|d SWitCh (http://vvvvvv.csiet?n.Iedru'/infr_o_cs/llectures/fluid—computer.svvf)

e Truth table for Boolean OR operator:

X|Y [ XvY

Digital gate diagram for OR:

F F F D

F T T OR
T F T
T T T

Click the lnput Buttom:
animate the OR BLOCK.




Implementation of gates At Implementation of gates
NOT = x'
xrr \ e o
1lo j\-‘m’ ' .-i_o
seheniatic control off “ contral o e
e OR = x+y
— magnet off - PHAGHEL OIF i i *°
connection i 8 I T e
é 101 s;nn’.‘ [ o8 gate "i_TTl
é - spring < 1111 +lT1 i 1
a 1] 1 1 AND = xy
0—+—0 1—'—1 o—l—o 1—'—0 xy o _H»LO
Anatomy of a relay (controlled switch) paje .2 [X 140 ._:ch_o
v ’ AND gate ' #u
11 1 #1
Truth Tables @1 of 2) i Truth Tables (2 of 2)
» A Boolean function has one or more Boolean e Example: X A =Y
inputs, and returns a single Boolean output.
e A truth table shows all the inputs and outputs X Y Y XA Y
of a Boolean function
F F T F
X | ™X | Y X v Y
Example: =X v Y F T F T F T F F
T T T T 3 T T
T F F F
T T F F
T F T T




