

B94902075 呂敏中

2007.01

National Taiwan University
Department of Computer Science and Information Engineering

Computer Organization and Assembly Languages 2006 Final Project

MineSwee++ 2 – C[o]re

 1

In this project, a standalone version of Minesweeper Flags game with the computer as the

player’s opponent is made.

Background

 Minesweeper [1]
Minesweeper has been a famous game since it appeared in

Windows 3.1 over ten years ago. The object of the original

Minesweeper is to clear a minefield (a board henceforth) without

denoting a mine. The board contains grids which can be opened by

clicking on it. If a grid containing a mine is opened, the game is

over. If a grid opened does not contain a mine, then a number

appears on the grid indicating the number of adjacent grids

containing mines. When playing Minesweeper, the best strategy is

to open the grid with the least probability to contain a mine.

 Minesweeper Flags [2]

Minesweeper Flags was introduced in 2003 by Microsoft along with its famous instant

messaging software, MSN Messenger (now Windows Live Messenger). Minesweeper Flags

consists of two players; in a twist on the original game, players must now locate mines (and flag

them), and whoever has flagged the most by the end wins. The board is 16 rows by 16 columns

and has 51 mines randomly spread; that is, a player wins if he flags 26

mines. In one turn, a player can open a grid. If the grid contains a mine,

then it is flagged; the player can open another grid. If the grid does not

contain a mine, then the number as described above shows, and it is the

opponent’s turn to open a grid. When playing Minesweeper Flags, the best

strategy is to open the grid with the best probability to contain a mine.

 MineSwee++
MineSwee++ was developed by me in 2004 [L2], which is essentially the standalone version

of Minesweeper Flags. However, in MineSwee++, it is the computer that simulates the player’s

opponent. The original MineSwee++ has been considered to have very poor strategies, and

therefore in this project, I try to implement a different algorithm to make it smarter. This new

version is called MineSwee++ 2, and I name the new algorithm/implementation “C[o]re”.

Solving Mine Boards
It is obvious that if we know the mine pattern given an incomplete board, we can easily beat

Minesweeper and its variants. Finding out the pattern is called “solving mine boards”. It is

interesting to ask whether an efficient algorithm exists to solve any given mine board.

Unfortunately, the answer is - a resounding “No”. Determining the pattern of mines for a given

board is known to be NP-Complete [3][L1]. There are many Minesweeper solvers on the internet,

Screenshot of Minesweeper

Screenshot of
Minesweeper Flags

 2

but none guarantees to be accurate under every circumstance for a given board (in reality, solving

boards is what many graduate students of AI field choose for their research). Obviously,

brute-forcefully enumerating every possible mine board for checking is infeasible, since there are

54100.2
51

256
×≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ possible mine boards; it is practically impossible to calculate or store such a

large number of boards with modern CPUs or storage media.

Also, there is even more to take into consideration when playing Minesweeper Flags than the

original Minesweeper. For example, when playing Minesweeper Flags, if the mine-containing

probability of the candidate grids to open is too little, it is wise to open a grid which should give

your opponent the least information about the mines, instead of the grid with the best probability

of containing a mine, due to the rule that if the player is unsuccessful in flagging a mine, the

opponent will take the next turn. Minesweeper Flags also provides a Bomb for the player falling

behind, which can be used only one time in the entire game: the bomb opens 5×5 grids at the same

time. C[o]re will not take into consideration these two scenarios, as it will only open the grid with

the best probability to contain a mine.

Why and Where to Use Assembly?
Since determining the mine pattern is not practical, the solvers available on the net use

different techniques. Some have small-area brute-force enumeration (what MineSwee++ uses),

some use combinatorial mathematics, and others implement sophisticated AI. Most of them have

the same goal – to calculate the probability of a grid containing a mine as accurately as possible.

In the implementation of C[o]re, a different approach is used: the computer randomly

generates mine boards, examines them with the known conditions, filters out those boards not

matching the conditions, and calculates the probability of each grid using all the generated boards

that match the conditions. The pseudo-code of the implementation looks like this:
GetGridWithBestProbability(board) returns (r, c, p)
board: the board being played
r: the row index of the grid with the best probability to contain a mine
c: the column index of the grid with the best probability to contain a mine
p: the probability the grid has to contain a mine
begin
 initialize board_sum with all 0
 num_mines ← Number of mines flagged in board
 num_mines_left ← 51 - num_mines
 num_matched_board ← 0
 for i ← 1 to ITERATIONS_PER_MOVE do
 begin

board2 ← generate a board with num_mines_left mines spread randomly in suitable
places

 if (mines of board2) + (mines of board) matches conditions of board then
 begin
 add board2 to board_sum
 num_matched_board ← num_matched_board + 1

 3

 end
 end
 if num_matched_board = 0 then
 begin
 return (0, 0, -1)
 end
 max_grid_r ← 0
 max_grid_c ← 0
 max_grid_p ← 0
 for r ← 1 to 16 do
 begin
 for c ← 1 to 16 do
 begin
 if board_sum[r][c] ≥ max_grid_p then
 begin
 max_grid_r ← r
 max_grid_c ← c
 max_grid_p ← board_sum[r][c]
 end
 end
 end
 max_grid_p ← max_grid_p / num_matched_board
 return (max_grid_r, max_grid_c, max_grid_p)
end

The key to producing accurate probability is to have as many random board generations as

possible. The number of generated boards in a short, human-acceptable period of time is directly

related to how fast generating random boards, examining condition-matching, and storing possible

boards for probability calculation are. This is where Assembly comes in to play a part. Since

Assembly programming makes it possible to improve the speed of a program, using it to generate

random boards, examine them for condition-matching and store possible boards may speed up the

process and thus result in more accuracy in probability calculation.

Implementation
In this project, due to time constraint, the original GUI of MineSwee++ written in VB is used.

The rest of the game, namely C[o]re, is coded in C++ (so as to provide a DLL for GUI to call) and

Assembly, which takes the responsibility only for time-critical routines, i.e. random board

generation, condition examination and board storage, for the board passed from C++ codes.

There is something related to probability calculation that Assembly does not do: If a grid has

obviously 100% probability to contain a mine (determinable with a small constant-factor number

of grid scans), then the C++ codes will find it, and not call the Assembly routine.

C[o]re supports multi-threading; the user can choose to run it in Single-Thread or Dual-Thread

mode. If the user has a CPU that supports Intel Hyper-Threading or is multi-core (which is gaining

prevalence), he may benefit from Dual-Thread mode. The codes of C[o]re are not specially

optimized for Dual-Thread mode, but performance gain under that mode is still observed.

In this report, I do not focus on the VB/C++ implementation and the detailed, line-by-line code

 4

† See kernels\rand_new.cpp
‡ See kernels\add_new.cpp and kernels\reset_new.cpp

implementation of the described algorithm in Assembly. In the following section, some notable

pieces of Assembly implementation worth mentioning are introduced.

Implementation Directly Related to Assembly
 Random Number Generation

The first challenge encountered when implementing the pseudo-code is how to generate

boards as fast as possible. The speed of board generation relates to that of random number

generation, which in turn needs to be taken care of. Although there is rand() for use in Standard C

Library, calling an external procedure from Assembly is relatively expensive and creates

unresolvable bottleneck for speeding-up. Thus, an Assembly version of rand() must be remade.

The rand() function source code from Microsoft for Visual C++’s use is not suitable because

it requires CRT (C Runtime) threading information. Consequently, other (pseudo-)random number

generation algorithm is sought. What is needed is an algorithm that is easy to implement and fast

to run; since it is only used in a game, it does not need to be extremely secure nor of high quality.

Therefore, the Linear Congruential Generator is chosen [4]. The Assembly implementation of this

algorithm can generate 231 distinct pseudo-random numbers in about 10 seconds on Intel Core 2

Duo E6600†.

Additionally, the seed of the generation is not taken from the return value of the

traditionally-used time() function. Instead, the low-order 32-bits (EAX) of the return value of

rdtsc instruction are used, which provide equal or even better randomness and avoid another

external procedure call.

 SSE

A mine board is 16 rows by 16 columns. That is, when storing the boards that match the

known conditions, 256 additions are done for one board. Instead of doing 256 separate scalar

additions, SSE is used to perform parallel additions at the same time, effectively reducing the time

required to store boards. Empirically, single-precision floating-points are sufficient to serve as

board_sum in the pseudo-code, so XXXps instructions are used and thus four additions can be done

at the same time.

When manipulating data, the faster movaps (compared to movups) is favored and addps requires

the memory operand to be aligned on a 16-byte boundary, so ALIGN 16 and __declspec(align(16))

are added where needed, and the stack pointer (ESP) is taken extra care of to be aligned.

SSE is also used to reset board-storing variables and other auxiliary arrays to all zeros. This is

done by doing xorps xmm7, xmm7 and filling the destination array iteratively with xmm7.

Overall, for adding two 256KB arrays, SSE takes only 40% clock cycles that the standard mov

and add take; for resetting a 512KB array to zero, SSE takes 50% clock cycles that the standard

mov takes (both numbers are obtained on Intel Core 2 Duo E6600)‡.

 5

† The board used as known conditions to examine with has all grids unopened except (9,9) marked “1”.
‡ The process of the benchmarker (src\benchmark\MSPPTester.exe) is granted “High” priority when running.

These two Assembly implementations suggest that MineSwee++ 2 requires at least an Intel

Pentium III CPU or an AMD Athlon XP CPU to run. Also, the Assembly is loop-unrolled

wherever it is beneficial. Since the board size is fixed at 16 rows by 16 columns, a lot of codes can

be optimized by loop-unrolling while not overflowing the instruction cache.

Results and Follow-ups
Now let’s see how really fast the board generation is when implemented in Assembly,

compared to when in C++. Here is the result on some machines: the figures read how many

board-generation iterations the machine can do in 5 seconds †‡.

Assembly implementation CPU

(ordered by release date)

C++ implementation

(/O2 Optimization) Iterations Improvement

Intel Pentium 4 1.6 GHz (Willamette) 0.95×106 1.0×106 5%

Intel Pentium 4 2.8 GHz (Northwood) 1.65×106 1.75×106 6%

AMD Athlon XP 2500+ o/c 2.32 GHz 2.25×106 2.5×106 11%

AMD Athlon 64 3000+ o/c 2.4 GHz (Venice) 2.35×106 2.7×106 15%

Single-Thread 1.6×106 1.8×106 13% AMD Turion 64 X2 TL-52

1.6 GHz (dual-core) Dual-Thread 2.0×106 2.2×106 10%

Single-Thread 2.9×106 3.25×106 12% Intel Core 2 Duo E6600

2.4 GHz (dual-core) Dual-Thread 3.1×106 3.25×106 5%

Average Improvement 9.625%

C++ Compiler: Microsoft ® 32-bit C/C++ Optimizing Compiler Version 14.00.50727.42 for 80x86

Assembler: Microsoft ® Macro Assembler Version 8.00.50727.42

Linker: Microsoft ® Incremental Linker Version 8.00.50727.42

The Assembly implementation has improved the efficiency of board generation, in terms of the

number of iterations within a fixed period of time, by about 10%. Does this mean that C[o]re is

smart and “playable”? Yes! Empirically, for any given board, a couple million generation

iterations are needed to produce good results. Therefore, C[o]re does play well with accurate

probability calculation with most recent CPUs, thanks to the performance boost brought by

Assembly.

There is only one scenario where C[o]re may lose ground: C[o]re opens a grid where the total

number of mines contained by the neighboring grids is zero. When a grid as such is opened, the

grids around it are automatically opened, according to the rule of MineSweeper Flags. This

auto-opening process recurs if any of the newly-opened grids “has zero mines around”; then

C[o]re’s opponent (the player) takes the turn. As a result, the player can open several grids that

definitely have mines (see Figure 1 for illustration). This gives the player a great chance to win

over C[o]re. In the future, C[o]re may be improved by taking this scenario into consideration, and

 6

then outplay most people due to its accuracy of probability calculation.

Figure 1

Acknowledgements
 Special thanks to my classmate 張顯之 (B94902061, hcsoso) for discussing related topics with

me

 Special thanks to 蘇品瑄 (charlie_su1986 [at] msn.com) for generously providing the AMD

Athlon 64 machine for benchmarking

 Special thanks to my classmate 程耀鋒 (B94902098, changefor) for generously providing the

AMD Turion 64 X2 machine for benchmarking

References

[1] Wikipedia – Minesweeper (computer game)

http://en.wikipedia.org/wiki/Minesweeper_%28computer_game%29

[2] Wikipedia – Games and applications for Windows Live Messenger; 1.6 Minesweeper Flags

http://en.wikipedia.org/wiki/Games_and_applications_for_Windows_Live_Messenger#Minesweep

er_Flags

[3] Kaye, R. Minesweeper is NP-Complete. Mathematical Intelligencer (Springer Verlag, New York)

Volume 22 number 2 (Spring 2000), pp. 9-15

[4] Wikipedia – Linear congruential generator

http://en.wikipedia.org/wiki/Linear_congruential_generator

Links

[L1] Richard Kaye’s Minesweeper Pages

http://for.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.htm

[L2] # Middle Sea – MineSwee++

http://mnjul.net/mspp-intro.php

The final version of MineSwee++ 2 is scheduled to be released by this spring. Stay tuned if you

are interested :)

