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Overview

• SIMD
MMX architectures• MMX architectures

• MMX instructions
l• examples

• SSE/SSE2

• SIMD instructions are probably the best place p y p
to use assembly since compilers usually do not 
do a good job on using these instructions
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Performance boost

• Increasing clock rate is not fast enough for 
boosting performanceboosting performance

In his 1965 paper,
Intel co-founder 
Gordon Moore
observed that 
“the number of “the number of 
transistors per 
square inch had square inch had 
doubled every 
18 months.
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Performance boost

• Architecture improvements (such as 
pipeline/cache/SIMD) are more significant pipeline/cache/SIMD) are more significant 

• Intel analyzed multimedia applications and 
f d th  h  th  f ll i  h t i tifound they share the following characteristics:
– Small native data types (8-bit pixel, 16-bit audio)
– Recurring operations
– Inherent parallelism
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SIMD

• SIMD (single instruction multiple data) 
architecture performs the same operation on architecture performs the same operation on 
multiple data elements in parallel
PADDW MM0 MM1• PADDW MM0, MM1
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SISD/SIMD/Streaming
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IA-32 SIMD development

• MMX (Multimedia Extension) was introduced in 
1996 (Pentium with MMX and Pentium II)1996 (Pentium with MMX and Pentium II).

• SSE (Streaming SIMD Extension) was introduced 
ith P ti  IIIwith Pentium III.

• SSE2 was introduced with Pentium 4.
• SSE3 was introduced with Pentium 4 supporting 

hyper-threading technology. SSE3 adds 13 more yp g gy
instructions.
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MMX

• After analyzing a lot of existing applications 
such as graphics  MPEG  music  speech such as graphics, MPEG, music, speech 
recognition, game, image processing, they 
found that many multimedia algorithms y g
execute the same instructions on many pieces 
of data in a large data set.

• Typical elements are small, 8 bits for pixels, 16 
bits for audio, 32 bits for graphics and general 
computing.

• New data type: 64-bit packed data type. Why 
64 bits?
– Good enough
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– Practical



MMX data types
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MMX integration into IA

79 NaN or infinity as real
11…11

y
because bits 79-64 are
ones.

Even if MMX registers
are 64-bit, they don’t
e tend Penti m to aextend Pentium to a
64-bit CPU since only
logic instructions arelogic instructions are
provided for 64-bit 
data.   
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8 MM0~MM7

Compatibility

• To be fully compatible with existing IA, no new 
mode or state was created  Hence  for context mode or state was created. Hence, for context 
switching, no extra state needs to be saved.
T  h th  l  MMX i  hidd  b hi d FPU  • To reach the goal, MMX is hidden behind FPU. 
When floating-point state is saved or restored, 
MMX i  d  t dMMX is saved or restored.

• It allows existing OS to perform context 
switching on the processes executing MMX 
instruction without be aware of MMX.

• However, it means MMX and FPU can not be 
used at the same time. Big overhead to switch.
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Compatibility

• Although Intel defenses their decision on 
aliasing MMX to FPU for compatibility  It is aliasing MMX to FPU for compatibility. It is 
actually a bad decision. OS can just provide a 
service pack or get updatedservice pack or get updated.

• It is why Intel introduced SSE later without any 
li i   aliasing  
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MMX instructions

• 57 MMX instructions are defined to perform the 
parallel operations on multiple data elements parallel operations on multiple data elements 
packed into 64-bit data types.
Th  i l d  dd  bt t  lti l  • These include add, subtract, multiply, 
compare, and shift, data conversion, 
64 bit d t  64 bit l i l64-bit data move, 64-bit logical 
operation and multiply-add for multiply-

l t  tiaccumulate operations.
• All instructions except for data move use MMX 

registers as operands.
• Most complete support for 16-bit operations.
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Saturation arithmetic

• Useful in graphics applications.
Wh   i  fl   d fl  • When an operation overflows or underflows, 
the result becomes the largest or smallest 

ibl  t bl  bpossible representable number.
• Two types: signed and unsigned saturation

wrap-around saturating
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wrap-around saturating

MMX instructions
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MMX instructions

Call it before you switch to FPU from MMX;
Expensive operation
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Arithmetic

• PADDB/PADDW/PADDD: add two packed 
numbers  no EFLAGS is set  ensure overflow numbers, no EFLAGS is set, ensure overflow 
never occurs by yourself
M lti li ti  t  t• Multiplication: two steps

• PMULLW: multiplies four words and stores the 
four lo words of the four double word results

• PMULHW/PMULHUW: multiplies four words and p
stores the four hi words of the four double word 
results. PMULHUW for unsigned.g
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Arithmetic

• PMADDWD
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Detect MMX/SSE
mov   eax, 1 ; request version info 
cpuid ; supported since Pentiumcpuid    ; supported since Pentium
test  edx, 00800000h ;bit 23

; 02000000h (bit 25) SSE; 02000000h (bit 25) SSE
; 04000000h (bit 26) SSE2

jnz HasMMXjnz   HasMMX
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cpuid

:
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:
:



Example: add a constant to a vector
char d[]={5, 5, 5, 5, 5, 5, 5, 5}; 
char clr[]={65 66 68 87 88}; // 24 byteschar clr[]={65,66,68,...,87,88}; // 24 bytes
__asm{

movq mm1 dmovq mm1, d 
mov cx, 3
mov esi 0mov esi, 0

L1: movq mm0, clr[esi] 
ddb 0 1paddb mm0, mm1 

movq clr[esi], mm0 
dd i 8add esi, 8
loop L1
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emms
} 

Comparison

• No CFLAGS, how many flags will you need? 
Results are stored in destinationResults are stored in destination.

• EQ/GT, no LT
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Change data types

• Pack: converts a larger data type to the next 
smaller data typesmaller data type.

• Unpack: takes two operands and interleave 
th  It  b  d f  d d t  t  f  them. It can be used for expand data type for 
immediate calculation.
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Pack with signed saturation
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Pack with signed saturation
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Unpack low portion
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Unpack low portion
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Unpack low portion
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Unpack high portion
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Keys to SIMD programming

• Efficient data layout
Eli i i  f b h• Elimination of branches
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Application: frame difference

A B

|A-B|| |
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Application: frame difference

A-B B-A

(A-B) or (B-A)( ) ( )
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Application: frame difference
MOVQ      mm1, A //move 8 pixels of image A
MOVQ mm2 B //move 8 pixels of image BMOVQ      mm2, B //move 8 pixels of image B
MOVQ      mm3, mm1 // mm3=A
PSUBSB mm1 mm2 // mm1=A BPSUBSB    mm1, mm2 // mm1=A-B
PSUBSB    mm2, mm3 // mm2=B-A
POR mm1 mm2 // mm1 |A B|POR       mm1, mm2 // mm1=|A-B|
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Example: image fade-in-fade-out

A B

A*α+B*(1-α) = B+α(A-B)
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α=0.75
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α=0.5
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α=0.25
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Example: image fade-in-fade-out

• Two formats: planar and chunky
I  Ch k  f  16 bi  f 64 bi   d• In Chunky format, 16 bits of 64 bits are wasted

• So, we use planar in the following example

R G B A R G B A
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Example: image fade-in-fade-out

Image A Image B
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Example: image fade-in-fade-out
MOVQ      mm0, alpha//4 16-b zero-padding α
MOVD mm1 A //move 4 pixels of image AMOVD      mm1, A //move 4 pixels of image A
MOVD      mm2, B //move 4 pixels of image B
PXOR mm3 mm3 //clear mm3 to all zeroesPXOR      mm3, mm3 //clear mm3 to all zeroes
//unpack 4 pixels to 4 words
PUNPCKLBW mm1 mm3 // Because B A could bePUNPCKLBW mm1, mm3 // Because B-A could be 
PUNPCKLBW mm2, mm3 // negative, need 16 bits
PSUBW 1 2 //(B A)PSUBW     mm1, mm2 //(B-A)
PMULHW    mm1, mm0 //(B-A)*fade/256
PADDW 1 2 //(B A)*f d BPADDW     mm1, mm2 //(B-A)*fade + B
//pack four words back to four bytes

1 3
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PACKUSWB  mm1, mm3

Data-independent computation

• Each operation can execute without needing to 
know the results of a previous operationknow the results of a previous operation.

• Example, sprite overlay
for i=1 to sprite_Size
if  sprite[i]=clr 
then out_color[i]=bg[i]
else out_color[i]=sprite[i]

• How to execute data-dependent calculations on 
42

• How to execute data-dependent calculations on 
several pixels in parallel.

Application: sprite overlay

43

Application: sprite overlay
MOVQ mm0, sprite
MOVQ mm2 mm0MOVQ mm2, mm0
MOVQ mm4, bg
MOVQ mm1 clrMOVQ mm1, clr
PCMPEQW mm0, mm1
PAND mm4 mm0PAND    mm4, mm0
PANDN   mm0, mm2
POR 0 4POR     mm0, mm4
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Application: matrix transport
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Application: matrix transport
char M1[4][8];// matrix to be transposed
char M2[8][4];// transposed matrixchar M2[8][4];// transposed matrix
int n=0;
for (int i=0;i<4;i++)for (int i=0;i<4;i++)
for (int j=0;j<8;j++)
{ M1[i][j] n; n++; }{ M1[i][j]=n; n++; }

__asm{
// th 4 f M1 i t MMX i t//move the 4 rows of M1 into MMX registers
movq mm1,M1

2 M1 8movq mm2,M1+8
movq mm3,M1+16

1 2
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movq mm4,M1+24

Application: matrix transport
//generate rows 1 to 4 of M2
punpcklbw mm1, mm2 p p ,
punpcklbw mm3, mm4
movq mm0, mm1

//punpcklwd mm1, mm3 //mm1 has row 2 & row 1
punpckhwd mm0, mm3 //mm0 has row 4 & row 3
movq M2 mm1movq M2, mm1
movq M2+8, mm0
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Application: matrix transport
//generate rows 5 to 8 of M2
movq mm1, M1 //get row 1 of M1movq mm1, M1 //get row 1 of M1
movq mm3, M1+16 //get row 3 of M1
punpckhbw mm1, mm2p p ,
punpckhbw mm3, mm4
movq mm0, mm1
punpcklwd mm1, mm3 //mm1 has row 6 & row 5
punpckhwd mm0, mm3 //mm0 has row 8 & row 7
//save results to M2
movq M2+16, mm1
movq M2+24, mm0
emms
} // d
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} //end



Performance boost (data from 1996)

Benchmark kernels: 
FFT  FIR  vector dotFFT, FIR, vector dot-
product, IDCT, 
motion compensationmotion compensation.

65% performance gain

Lower the cost of 
multimedia programs multimedia programs 
by removing the need 
of specialized DSP 
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of specialized DSP 
chips

How to use assembly in projects

• Write the whole project in assembly
Li k i h hi h l l l• Link with high-level languages

• Inline assembly
• Intrinsics
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Link ASM and HLL programs

• Assembly is rarely used to develop the entire 
program.

• Use high-level language for overall project 
development
– Relieves programmer from low-level details

• Use assembly language code
– Speed up critical sections of codep p
– Access nonstandard hardware devices
– Write platform-specific codeW te plat o spec c code
– Extend the HLL's capabilities
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General conventions

• Considerations when calling assembly language 
procedures from high level languages:procedures from high-level languages:
– Both must use the same naming convention (rules 

regarding the naming of variables and procedures)regarding the naming of variables and procedures)
– Both must use the same memory model, with 

compatible segment namescompatible segment names
– Both must use the same calling convention
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Inline assembly code
• Assembly language source code that is inserted 

directly into a HLL programdirectly into a HLL program.
• Compilers such as Microsoft Visual C++ and 

Borland C++ have compiler specific directives Borland C++ have compiler-specific directives 
that identify inline ASM code.
Effi i  i li  d   i kl  b  • Efficient inline code executes quickly because 
CALL and RET instructions are not required.

• Simple to code because there are no external 
names, memory models, or naming conventions 
involved.

• Decidedly not portable because it is written for 
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y p
a single platform.

__asm directive in Microsoft Visual C++

• Can be placed at the beginning of a single 
statementstatement

• Or, It can mark the beginning of a block of 
bl  l  t t tassembly language statements

• Syntax: __asm  statement

__asm {__
statement-1
statement-2
...
statement-n
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}

Intrinsics

• An intrinsic is a function known by the compiler 
that directly maps to a sequence of one or that directly maps to a sequence of one or 
more assembly language instructions. 

• The compiler manages things that the user • The compiler manages things that the user 
would normally have to be concerned with, 
such as register names, register allocations, g , g ,
and memory locations of data. 

• Intrinsic functions are inherently more efficient y
than called functions because no calling linkage 
is required. But, not necessarily as efficient as 
assembly.

• _mm_<opcode>_<suffix> ps: packed single-precision
ss: scalar single precision
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ss: scalar single-precision

Intrinsics
#include <xmmintrin.h>

__m128 a , b , c;
c = mm add ps( a b );c = _mm_add_ps( a , b );

float a[4] b[4] c[4];float a[4] , b[4] , c[4];
for( int i = 0 ; i < 4 ; ++ i )

[i] [i] + b[i]c[i] = a[i] + b[i];

// b * d /// a = b * c + d / e; 
__m128 a = _mm_add_ps( _mm_mul_ps( b , c ) , 

( ) )
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_mm_div_ps( d , e ) ); 



SSE

• Adds eight 128-bit registers
All  SIMD i   k d i l• Allows SIMD operations on packed single-
precision floating-point numbers

• Most SSE instructions require 16-aligned 
addresses
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SSE features

• Add eight 128-bit data registers (XMM registers) 
in non 64 bit modes; sixteen XMM registers are in non-64-bit modes; sixteen XMM registers are 
available in 64-bit mode.
32 bit MXCSR i t  ( t l d t t )• 32-bit MXCSR register (control and status)

• Add a new data type: 128-bit packed single-
precision floating-point (4 FP numbers.)

• Instruction to perform SIMD operations on 128-p p
bit packed single-precision FP and additional 
64-bit SIMD integer operations.g p

• Instructions that explicitly prefetch data, 
control data cacheability and ordering of store
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control data cacheability and ordering of store

SSE programming environment

XMM0
|
XMM7

MM0MM0
|
MM7MM7

EAX EBX ECX EDXEAX, EBX, ECX, EDX
EBP, ESI, EDI, ESP
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MXCSR control and status register

Generally faster, but not compatible with IEEE 754
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Exception
_MM_ALIGN16 float test1[4] = { 0, 0, 0, 1 }; 
MM ALIGN16 float test2[4] = { 1, 2, 3, 0 }; _ _ [ ] { , , , }

_MM_ALIGN16 float out[4]; 
_MM_SET_EXCEPTION_MASK(0);//enable exception 
__try { 

__m128 a = _mm_load_ps(test1); 
m128 b = mm load ps(test2);

Without this, result is 1.#INF

__m128 b = _mm_load_ps(test2); 
a = _mm_div_ps(a, b); 
mm store ps(out, a); _ _ _p ,

} 
__except(EXCEPTION_EXECUTE_HANDLER) {  

if( () )if(_mm_getcsr() & _MM_EXCEPT_DIV_ZERO)
cout << "Divide by zero" << endl;
return;
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return; 
} 

SSE packed FP operation

• ADDPS/SUBPS: packed single-precision FP
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SSE scalar FP operation

• ADDSS/SUBSS: scalar single-precision FP
used as FPU?
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used as FPU?

SSE2

• Provides ability to perform SIMD operations on 
double precision FP  allowing advanced double-precision FP, allowing advanced 
graphics such as ray tracing
P id  t  th h t b  ti   • Provides greater throughput by operating on 
128-bit packed integers, useful for RSA and RC5
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SSE2 features

• Add data types and instructions for them

• Programming environment unchanged
65

• Programming environment unchanged

Example
void add(float *a, float *b, float *c) {
for (int i = 0; i < 4; i++)for (int i = 0; i < 4; i++)
c[i] = a[i] + b[i];

}}
__asm {
mov eax a

movaps: move aligned packed single-
precision FP

addps: add packed single precision FPmov    eax, a
mov    edx, b

addps: add packed single-precision FP

mov    ecx, c
movaps xmm0, XMMWORD PTR [eax]
dd 0 XMMWORD PTR [ d ]addps  xmm0, XMMWORD PTR [edx]
movaps XMMWORD PTR [ecx], xmm0
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}

SSE Shuffle (SHUFPS)

SHUFPS xmm1, xmm2, imm8
S l [1 0] d id  hi h DW f DEST  b  Select[1..0] decides which DW of DEST to be 

copied to the 1st DW of DEST
...
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SSE Shuffle (SHUFPS)

68



Example (cross product)
Vector cross(const Vector& a , const Vector& b ) {

return Vector((
( a[1] * b[2] - a[2] * b[1] ) ,
( a[2] * b[0] - a[0] * b[2] ) ,
( a[0] * b[1] - a[1] * b[0] ) );

}
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Example (cross product)
/* cross */
__m128 _mm_cross_ps( __m128 a , __m128 b ) {
__m128 ea , eb;
// set to a[1][2][0][3] , b[2][0][1][3]
ea = _mm_shuffle_ps( a, a, _MM_SHUFFLE(3,0,2,1) );
eb = _mm_shuffle_ps( b, b, _MM_SHUFFLE(3,1,0,2) );
// multiply

m128 xa = mm mul ps( ea , eb );__ _ _ _p ( , );
// set to a[2][0][1][3] , b[1][2][0][3]
a = _mm_shuffle_ps( a, a, _MM_SHUFFLE(3,1,0,2) );
b = mm shuffle ps( b b MM SHUFFLE(3 0 2 1) );b = _mm_shuffle_ps( b, b, _MM_SHUFFLE(3,0,2,1) );
// multiply
__m128 xb = _mm_mul_ps( a , b );
// subtract// subtract
return _mm_sub_ps( xa , xb );

}

70

Example: dot product

• Given a set of vectors {v1,v2,…vn}={(x1,y1,z1), 
(x y z )  (x y z )} and a vector v (x y z )  (x2,y2,z2),…, (xn,yn,zn)} and a vector vc=(xc,yc,zc), 
calculate {vc⋅vi}
T  ti  f   l t• Two options for memory layout

• Array of structure (AoS)
typedef struct { float dc, x, y, z; } Vertex;
Vertex v[n];
• Structure of array (SoA)
typedef struct { float x[n], y[n], z[n]; }yp { [ ], y[ ], [ ]; }

VerticesList;
VerticesList v;
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VerticesList v;

Example: dot product (AoS)
movaps xmm0, v  ; xmm0 = DC, x0, y0, z0
movaps xmm1 vc ; xmm1 = DC xc yc zcmovaps xmm1, vc ; xmm1 = DC, xc, yc, zc
mulps  xmm0, xmm1 ;xmm0=DC,x0*xc,y0*yc,z0*zc
movhlps xmm1 xmm0 ; xmm1= DC DC DC x0*xcmovhlps xmm1, xmm0 ; xmm1= DC, DC, DC, x0*xc
addps  xmm1, xmm0 ; xmm1 = DC, DC, DC,

; x0*xc+z0*zc;              x0*xc+z0*zc
movaps xmm2, xmm0
h f 2 2 55h 2 DC DC DC 0*shufps xmm2, xmm2, 55h ; xmm2=DC,DC,DC,y0*yc
addps  xmm1, xmm2 ; xmm1 = DC, DC, DC,

0* 0* 0*;        x0*xc+y0*yc+z0*zc

movhlps:DEST[63 0] := SRC[127 64]
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movhlps:DEST[63..0] := SRC[127..64]



Example: dot product (SoA)
; X = x1,x2,...,x3
; Y = y1,y2,...,y3y ,y , ,y
; Z = z1,z2,...,z3
; A = xc,xc,xc,xc
; B = yc,yc,yc,yc
; C = zc,zc,zc,zc
movaps xmm0 X ; xmm0 = x1 x2 x3 x4movaps xmm0, X ; xmm0 = x1,x2,x3,x4
movaps xmm1, Y ; xmm1 = y1,y2,y3,y4
movaps xmm2 Z ; xmm2 = z1 z2 z3 z4movaps xmm2, Z ; xmm2 = z1,z2,z3,z4
mulps  xmm0, A ;xmm0=x1*xc,x2*xc,x3*xc,x4*xc
mulps  xmm1, B ;xmm1=y1*yc,y2*yc,y3*xc,y4*ycu ps , ; y yc,y yc,y3 c,y yc
mulps  xmm2, C ;xmm2=z1*zc,z2*zc,z3*zc,z4*zc
addps  xmm0, xmm1
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p
addps  xmm0, xmm2 ;xmm0=(x0*xc+y0*yc+z0*zc)…

Other SIMD architectures

• Graphics Processing Unit (GPU): nVidia 7800, 24 
pipelines (8 vector/16 fragment)pipelines (8 vector/16 fragment)
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NVidia GeForce 8800, 2006

• Each GeForce 8800 GPU stream processor is a 
fully generalized  fully decoupled  scalar  fully generalized, fully decoupled, scalar, 
processor that supports IEEE 754 floating point 
precision  precision. 

• Up to 128 stream processors
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Cell processor

• Cell Processor (IBM/Toshiba/Sony): 1 PPE 
(Power Processing Unit) +8 SPEs (Synergistic (Power Processing Unit) +8 SPEs (Synergistic 
Processing Unit)
A  SPE i   RISC  ith 128 bit SIMD f  • An SPE is a RISC processor with 128-bit SIMD for 
single/double precision instructions, 128 128-
bit i t  256K l l hbit registers, 256K local cache

• used in PS3.
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Cell processor
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GPUs keep track to Moore’s law better
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Different programming paradigms
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