
Intel SIMD architecture

Computer Organization and Assembly Languages p g z y g g
Yung-Yu Chuang
2008/1/52008/1/5

Overview

• SIMD
MMX architectures• MMX architectures

• MMX instructions
l• examples

• SSE/SSE2

• SIMD instructions are probably the best place p y p
to use assembly since compilers usually do not
do a good job on using these instructions

2

Performance boost

• Increasing clock rate is not fast enough for
boosting performanceboosting performance

In his 1965 paper,
Intel co-founder
Gordon Moore
observed that
“the number of “the number of
transistors per
square inch had square inch had
doubled every
18 months.

3

Performance boost

• Architecture improvements (such as
pipeline/cache/SIMD) are more significant pipeline/cache/SIMD) are more significant

• Intel analyzed multimedia applications and
f d th h th f ll i h t i tifound they share the following characteristics:
– Small native data types (8-bit pixel, 16-bit audio)
– Recurring operations
– Inherent parallelism

4

SIMD

• SIMD (single instruction multiple data)
architecture performs the same operation on architecture performs the same operation on
multiple data elements in parallel
PADDW MM0 MM1• PADDW MM0, MM1

5

SISD/SIMD/Streaming

6

IA-32 SIMD development

• MMX (Multimedia Extension) was introduced in
1996 (Pentium with MMX and Pentium II)1996 (Pentium with MMX and Pentium II).

• SSE (Streaming SIMD Extension) was introduced
ith P ti IIIwith Pentium III.

• SSE2 was introduced with Pentium 4.
• SSE3 was introduced with Pentium 4 supporting

hyper-threading technology. SSE3 adds 13 more yp g gy
instructions.

7

MMX

• After analyzing a lot of existing applications
such as graphics MPEG music speech such as graphics, MPEG, music, speech
recognition, game, image processing, they
found that many multimedia algorithms y g
execute the same instructions on many pieces
of data in a large data set.

• Typical elements are small, 8 bits for pixels, 16
bits for audio, 32 bits for graphics and general
computing.

• New data type: 64-bit packed data type. Why
64 bits?
– Good enough

8

– Practical

MMX data types

9

MMX integration into IA

79 NaN or infinity as real
11…11

y
because bits 79-64 are
ones.

Even if MMX registers
are 64-bit, they don’t
e tend Penti m to aextend Pentium to a
64-bit CPU since only
logic instructions arelogic instructions are
provided for 64-bit
data.

10
8 MM0~MM7

Compatibility

• To be fully compatible with existing IA, no new
mode or state was created Hence for context mode or state was created. Hence, for context
switching, no extra state needs to be saved.
T h th l MMX i hidd b hi d FPU • To reach the goal, MMX is hidden behind FPU.
When floating-point state is saved or restored,
MMX i d t dMMX is saved or restored.

• It allows existing OS to perform context
switching on the processes executing MMX
instruction without be aware of MMX.

• However, it means MMX and FPU can not be
used at the same time. Big overhead to switch.

11

g

Compatibility

• Although Intel defenses their decision on
aliasing MMX to FPU for compatibility It is aliasing MMX to FPU for compatibility. It is
actually a bad decision. OS can just provide a
service pack or get updatedservice pack or get updated.

• It is why Intel introduced SSE later without any
li i aliasing

12

MMX instructions

• 57 MMX instructions are defined to perform the
parallel operations on multiple data elements parallel operations on multiple data elements
packed into 64-bit data types.
Th i l d dd bt t lti l • These include add, subtract, multiply,
compare, and shift, data conversion,
64 bit d t 64 bit l i l64-bit data move, 64-bit logical
operation and multiply-add for multiply-

l t tiaccumulate operations.
• All instructions except for data move use MMX

registers as operands.
• Most complete support for 16-bit operations.

13

p pp p

Saturation arithmetic

• Useful in graphics applications.
Wh i fl d fl • When an operation overflows or underflows,
the result becomes the largest or smallest

ibl t bl bpossible representable number.
• Two types: signed and unsigned saturation

wrap-around saturating
14

wrap-around saturating

MMX instructions

15

MMX instructions

Call it before you switch to FPU from MMX;
Expensive operation

16

Arithmetic

• PADDB/PADDW/PADDD: add two packed
numbers no EFLAGS is set ensure overflow numbers, no EFLAGS is set, ensure overflow
never occurs by yourself
M lti li ti t t• Multiplication: two steps

• PMULLW: multiplies four words and stores the
four lo words of the four double word results

• PMULHW/PMULHUW: multiplies four words and p
stores the four hi words of the four double word
results. PMULHUW for unsigned.g

17

Arithmetic

• PMADDWD

18

Detect MMX/SSE
mov eax, 1 ; request version info
cpuid ; supported since Pentiumcpuid ; supported since Pentium
test edx, 00800000h ;bit 23

; 02000000h (bit 25) SSE; 02000000h (bit 25) SSE
; 04000000h (bit 26) SSE2

jnz HasMMXjnz HasMMX

19

cpuid

:

20

:
:

Example: add a constant to a vector
char d[]={5, 5, 5, 5, 5, 5, 5, 5};
char clr[]={65 66 68 87 88}; // 24 byteschar clr[]={65,66,68,...,87,88}; // 24 bytes
__asm{

movq mm1 dmovq mm1, d
mov cx, 3
mov esi 0mov esi, 0

L1: movq mm0, clr[esi]
ddb 0 1paddb mm0, mm1

movq clr[esi], mm0
dd i 8add esi, 8
loop L1

22

emms
}

Comparison

• No CFLAGS, how many flags will you need?
Results are stored in destinationResults are stored in destination.

• EQ/GT, no LT

23

Change data types

• Pack: converts a larger data type to the next
smaller data typesmaller data type.

• Unpack: takes two operands and interleave
th It b d f d d t t f them. It can be used for expand data type for
immediate calculation.

24

Pack with signed saturation

25

Pack with signed saturation

26

Unpack low portion

27

Unpack low portion

28

Unpack low portion

29

Unpack high portion

30

Keys to SIMD programming

• Efficient data layout
Eli i i f b h• Elimination of branches

31

Application: frame difference

A B

|A-B|| |

32

Application: frame difference

A-B B-A

(A-B) or (B-A)() ()

33

Application: frame difference
MOVQ mm1, A //move 8 pixels of image A
MOVQ mm2 B //move 8 pixels of image BMOVQ mm2, B //move 8 pixels of image B
MOVQ mm3, mm1 // mm3=A
PSUBSB mm1 mm2 // mm1=A BPSUBSB mm1, mm2 // mm1=A-B
PSUBSB mm2, mm3 // mm2=B-A
POR mm1 mm2 // mm1 |A B|POR mm1, mm2 // mm1=|A-B|

34

Example: image fade-in-fade-out

A B

A*α+B*(1-α) = B+α(A-B)

35

α=0.75

36

α=0.5

37

α=0.25

38

Example: image fade-in-fade-out

• Two formats: planar and chunky
I Ch k f 16 bi f 64 bi d• In Chunky format, 16 bits of 64 bits are wasted

• So, we use planar in the following example

R G B A R G B A

39

Example: image fade-in-fade-out

Image A Image B

40

Example: image fade-in-fade-out
MOVQ mm0, alpha//4 16-b zero-padding α
MOVD mm1 A //move 4 pixels of image AMOVD mm1, A //move 4 pixels of image A
MOVD mm2, B //move 4 pixels of image B
PXOR mm3 mm3 //clear mm3 to all zeroesPXOR mm3, mm3 //clear mm3 to all zeroes
//unpack 4 pixels to 4 words
PUNPCKLBW mm1 mm3 // Because B A could bePUNPCKLBW mm1, mm3 // Because B-A could be
PUNPCKLBW mm2, mm3 // negative, need 16 bits
PSUBW 1 2 //(B A)PSUBW mm1, mm2 //(B-A)
PMULHW mm1, mm0 //(B-A)*fade/256
PADDW 1 2 //(B A)*f d BPADDW mm1, mm2 //(B-A)*fade + B
//pack four words back to four bytes

1 3
41

PACKUSWB mm1, mm3

Data-independent computation

• Each operation can execute without needing to
know the results of a previous operationknow the results of a previous operation.

• Example, sprite overlay
for i=1 to sprite_Size
if sprite[i]=clr
then out_color[i]=bg[i]
else out_color[i]=sprite[i]

• How to execute data-dependent calculations on
42

• How to execute data-dependent calculations on
several pixels in parallel.

Application: sprite overlay

43

Application: sprite overlay
MOVQ mm0, sprite
MOVQ mm2 mm0MOVQ mm2, mm0
MOVQ mm4, bg
MOVQ mm1 clrMOVQ mm1, clr
PCMPEQW mm0, mm1
PAND mm4 mm0PAND mm4, mm0
PANDN mm0, mm2
POR 0 4POR mm0, mm4

44

Application: matrix transport

45

Application: matrix transport
char M1[4][8];// matrix to be transposed
char M2[8][4];// transposed matrixchar M2[8][4];// transposed matrix
int n=0;
for (int i=0;i<4;i++)for (int i=0;i<4;i++)
for (int j=0;j<8;j++)
{ M1[i][j] n; n++; }{ M1[i][j]=n; n++; }

__asm{
// th 4 f M1 i t MMX i t//move the 4 rows of M1 into MMX registers
movq mm1,M1

2 M1 8movq mm2,M1+8
movq mm3,M1+16

1 2
46

movq mm4,M1+24

Application: matrix transport
//generate rows 1 to 4 of M2
punpcklbw mm1, mm2 p p ,
punpcklbw mm3, mm4
movq mm0, mm1

//punpcklwd mm1, mm3 //mm1 has row 2 & row 1
punpckhwd mm0, mm3 //mm0 has row 4 & row 3
movq M2 mm1movq M2, mm1
movq M2+8, mm0

47

Application: matrix transport
//generate rows 5 to 8 of M2
movq mm1, M1 //get row 1 of M1movq mm1, M1 //get row 1 of M1
movq mm3, M1+16 //get row 3 of M1
punpckhbw mm1, mm2p p ,
punpckhbw mm3, mm4
movq mm0, mm1
punpcklwd mm1, mm3 //mm1 has row 6 & row 5
punpckhwd mm0, mm3 //mm0 has row 8 & row 7
//save results to M2
movq M2+16, mm1
movq M2+24, mm0
emms
} // d

48

} //end

Performance boost (data from 1996)

Benchmark kernels:
FFT FIR vector dotFFT, FIR, vector dot-
product, IDCT,
motion compensationmotion compensation.

65% performance gain

Lower the cost of
multimedia programs multimedia programs
by removing the need
of specialized DSP

49

of specialized DSP
chips

How to use assembly in projects

• Write the whole project in assembly
Li k i h hi h l l l• Link with high-level languages

• Inline assembly
• Intrinsics

50

Link ASM and HLL programs

• Assembly is rarely used to develop the entire
program.

• Use high-level language for overall project
development
– Relieves programmer from low-level details

• Use assembly language code
– Speed up critical sections of codep p
– Access nonstandard hardware devices
– Write platform-specific codeW te plat o spec c code
– Extend the HLL's capabilities

51

General conventions

• Considerations when calling assembly language
procedures from high level languages:procedures from high-level languages:
– Both must use the same naming convention (rules

regarding the naming of variables and procedures)regarding the naming of variables and procedures)
– Both must use the same memory model, with

compatible segment namescompatible segment names
– Both must use the same calling convention

52

Inline assembly code
• Assembly language source code that is inserted

directly into a HLL programdirectly into a HLL program.
• Compilers such as Microsoft Visual C++ and

Borland C++ have compiler specific directives Borland C++ have compiler-specific directives
that identify inline ASM code.
Effi i i li d i kl b • Efficient inline code executes quickly because
CALL and RET instructions are not required.

• Simple to code because there are no external
names, memory models, or naming conventions
involved.

• Decidedly not portable because it is written for

53

y p
a single platform.

__asm directive in Microsoft Visual C++

• Can be placed at the beginning of a single
statementstatement

• Or, It can mark the beginning of a block of
bl l t t tassembly language statements

• Syntax: __asm statement

__asm {__
statement-1
statement-2
...
statement-n

54
}

Intrinsics

• An intrinsic is a function known by the compiler
that directly maps to a sequence of one or that directly maps to a sequence of one or
more assembly language instructions.

• The compiler manages things that the user • The compiler manages things that the user
would normally have to be concerned with,
such as register names, register allocations, g , g ,
and memory locations of data.

• Intrinsic functions are inherently more efficient y
than called functions because no calling linkage
is required. But, not necessarily as efficient as
assembly.

• _mm_<opcode>_<suffix> ps: packed single-precision
ss: scalar single precision

55

ss: scalar single-precision

Intrinsics
#include <xmmintrin.h>

__m128 a , b , c;
c = mm add ps(a b);c = _mm_add_ps(a , b);

float a[4] b[4] c[4];float a[4] , b[4] , c[4];
for(int i = 0 ; i < 4 ; ++ i)

[i] [i] + b[i]c[i] = a[i] + b[i];

// b * d /// a = b * c + d / e;
__m128 a = _mm_add_ps(_mm_mul_ps(b , c) ,

())
56

_mm_div_ps(d , e));

SSE

• Adds eight 128-bit registers
All SIMD i k d i l• Allows SIMD operations on packed single-
precision floating-point numbers

• Most SSE instructions require 16-aligned
addresses

57

SSE features

• Add eight 128-bit data registers (XMM registers)
in non 64 bit modes; sixteen XMM registers are in non-64-bit modes; sixteen XMM registers are
available in 64-bit mode.
32 bit MXCSR i t (t l d t t)• 32-bit MXCSR register (control and status)

• Add a new data type: 128-bit packed single-
precision floating-point (4 FP numbers.)

• Instruction to perform SIMD operations on 128-p p
bit packed single-precision FP and additional
64-bit SIMD integer operations.g p

• Instructions that explicitly prefetch data,
control data cacheability and ordering of store

58

control data cacheability and ordering of store

SSE programming environment

XMM0
|
XMM7

MM0MM0
|
MM7MM7

EAX EBX ECX EDXEAX, EBX, ECX, EDX
EBP, ESI, EDI, ESP

59

MXCSR control and status register

Generally faster, but not compatible with IEEE 754

60

Exception
_MM_ALIGN16 float test1[4] = { 0, 0, 0, 1 };
MM ALIGN16 float test2[4] = { 1, 2, 3, 0 }; _ _ [] { , , , }

_MM_ALIGN16 float out[4];
_MM_SET_EXCEPTION_MASK(0);//enable exception
__try {

__m128 a = _mm_load_ps(test1);
m128 b = mm load ps(test2);

Without this, result is 1.#INF

__m128 b = _mm_load_ps(test2);
a = _mm_div_ps(a, b);
mm store ps(out, a); _ _ _p ,

}
__except(EXCEPTION_EXECUTE_HANDLER) {

if(())if(_mm_getcsr() & _MM_EXCEPT_DIV_ZERO)
cout << "Divide by zero" << endl;
return;

61

return;
}

SSE packed FP operation

• ADDPS/SUBPS: packed single-precision FP

62

SSE scalar FP operation

• ADDSS/SUBSS: scalar single-precision FP
used as FPU?

63

used as FPU?

SSE2

• Provides ability to perform SIMD operations on
double precision FP allowing advanced double-precision FP, allowing advanced
graphics such as ray tracing
P id t th h t b ti • Provides greater throughput by operating on
128-bit packed integers, useful for RSA and RC5

64

SSE2 features

• Add data types and instructions for them

• Programming environment unchanged
65

• Programming environment unchanged

Example
void add(float *a, float *b, float *c) {
for (int i = 0; i < 4; i++)for (int i = 0; i < 4; i++)
c[i] = a[i] + b[i];

}}
__asm {
mov eax a

movaps: move aligned packed single-
precision FP

addps: add packed single precision FPmov eax, a
mov edx, b

addps: add packed single-precision FP

mov ecx, c
movaps xmm0, XMMWORD PTR [eax]
dd 0 XMMWORD PTR [d]addps xmm0, XMMWORD PTR [edx]
movaps XMMWORD PTR [ecx], xmm0

66

}

SSE Shuffle (SHUFPS)

SHUFPS xmm1, xmm2, imm8
S l [1 0] d id hi h DW f DEST b Select[1..0] decides which DW of DEST to be

copied to the 1st DW of DEST
...

67

SSE Shuffle (SHUFPS)

68

Example (cross product)
Vector cross(const Vector& a , const Vector& b) {

return Vector((
(a[1] * b[2] - a[2] * b[1]) ,
(a[2] * b[0] - a[0] * b[2]) ,
(a[0] * b[1] - a[1] * b[0]));

}

69

Example (cross product)
/* cross */
__m128 _mm_cross_ps(__m128 a , __m128 b) {
__m128 ea , eb;
// set to a[1][2][0][3] , b[2][0][1][3]
ea = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3,0,2,1));
eb = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3,1,0,2));
// multiply

m128 xa = mm mul ps(ea , eb);__ _ _ _p (,);
// set to a[2][0][1][3] , b[1][2][0][3]
a = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3,1,0,2));
b = mm shuffle ps(b b MM SHUFFLE(3 0 2 1));b = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3,0,2,1));
// multiply
__m128 xb = _mm_mul_ps(a , b);
// subtract// subtract
return _mm_sub_ps(xa , xb);

}

70

Example: dot product

• Given a set of vectors {v1,v2,…vn}={(x1,y1,z1),
(x y z) (x y z)} and a vector v (x y z) (x2,y2,z2),…, (xn,yn,zn)} and a vector vc=(xc,yc,zc),
calculate {vc⋅vi}
T ti f l t• Two options for memory layout

• Array of structure (AoS)
typedef struct { float dc, x, y, z; } Vertex;
Vertex v[n];
• Structure of array (SoA)
typedef struct { float x[n], y[n], z[n]; }yp { [], y[], []; }

VerticesList;
VerticesList v;

71

VerticesList v;

Example: dot product (AoS)
movaps xmm0, v ; xmm0 = DC, x0, y0, z0
movaps xmm1 vc ; xmm1 = DC xc yc zcmovaps xmm1, vc ; xmm1 = DC, xc, yc, zc
mulps xmm0, xmm1 ;xmm0=DC,x0*xc,y0*yc,z0*zc
movhlps xmm1 xmm0 ; xmm1= DC DC DC x0*xcmovhlps xmm1, xmm0 ; xmm1= DC, DC, DC, x0*xc
addps xmm1, xmm0 ; xmm1 = DC, DC, DC,

; x0*xc+z0*zc; x0*xc+z0*zc
movaps xmm2, xmm0
h f 2 2 55h 2 DC DC DC 0*shufps xmm2, xmm2, 55h ; xmm2=DC,DC,DC,y0*yc
addps xmm1, xmm2 ; xmm1 = DC, DC, DC,

0* 0* 0*; x0*xc+y0*yc+z0*zc

movhlps:DEST[63 0] := SRC[127 64]

72

movhlps:DEST[63..0] := SRC[127..64]

Example: dot product (SoA)
; X = x1,x2,...,x3
; Y = y1,y2,...,y3y ,y , ,y
; Z = z1,z2,...,z3
; A = xc,xc,xc,xc
; B = yc,yc,yc,yc
; C = zc,zc,zc,zc
movaps xmm0 X ; xmm0 = x1 x2 x3 x4movaps xmm0, X ; xmm0 = x1,x2,x3,x4
movaps xmm1, Y ; xmm1 = y1,y2,y3,y4
movaps xmm2 Z ; xmm2 = z1 z2 z3 z4movaps xmm2, Z ; xmm2 = z1,z2,z3,z4
mulps xmm0, A ;xmm0=x1*xc,x2*xc,x3*xc,x4*xc
mulps xmm1, B ;xmm1=y1*yc,y2*yc,y3*xc,y4*ycu ps , ; y yc,y yc,y3 c,y yc
mulps xmm2, C ;xmm2=z1*zc,z2*zc,z3*zc,z4*zc
addps xmm0, xmm1

73

p
addps xmm0, xmm2 ;xmm0=(x0*xc+y0*yc+z0*zc)…

Other SIMD architectures

• Graphics Processing Unit (GPU): nVidia 7800, 24
pipelines (8 vector/16 fragment)pipelines (8 vector/16 fragment)

74

NVidia GeForce 8800, 2006

• Each GeForce 8800 GPU stream processor is a
fully generalized fully decoupled scalar fully generalized, fully decoupled, scalar,
processor that supports IEEE 754 floating point
precision precision.

• Up to 128 stream processors

75

Cell processor

• Cell Processor (IBM/Toshiba/Sony): 1 PPE
(Power Processing Unit) +8 SPEs (Synergistic (Power Processing Unit) +8 SPEs (Synergistic
Processing Unit)
A SPE i RISC ith 128 bit SIMD f • An SPE is a RISC processor with 128-bit SIMD for
single/double precision instructions, 128 128-
bit i t 256K l l hbit registers, 256K local cache

• used in PS3.

76

Cell processor

77

GPUs keep track to Moore’s law better

78

Different programming paradigms

79

References

• Intel MMX for Multimedia PCs, CACM, Jan. 1997
Ch 11 Th MMX I i S Th A f • Chapter 11 The MMX Instruction Set, The Art of
Assembly

• Chap. 9, 10, 11 of IA-32 Intel Architecture
Software Developer’s Manual: Volume 1: Basic
Architecture

• http://www.csie.ntu.edu.tw/~r89004/hive/sse/page_1.html

80

