Advanced Architecture

Computer Organization and Assembly 1anguages
Yung-Yn Chuang
2008/11/10

with slides by S. Dandamudi, Peng-Sheng Chen, Kip Irvine, Robert Sedgwick and Kevin Wayne

Basic architecture

Basic microcomputer design Tt

e clock synchronizes CPU operations

e control unit (CU) coordinates sequence of
execution steps

e ALU performs arithmetic and logic operations

data bus

Central Processor Unit Memory Storage I/Q VC.)
(CPU) Unit Device Device
#1 #2
[AU | cu [clock |
I_ controlbus | _ J _______ | ______ J. -

address bus

Basic microcomputer design Tt

e The memory storage unit holds instructions and
data for a running program

e A bus is a group of wires that transfer data from
one part to another (data, address, control)

data bus

registers
Central Processor Unit Memory Storage VQ IIQ
- Device Device
(CPU) Unit #1 4

[ALu | cu] clock |

I_ controlbus _ _[_ _ _ J _______ | ______ J. —_

address bus

Clock iy

« synchronizes all CPU and BUS operations

machine (clock) cycle measures time of a single
operation

clock is used to trigger events

one cycle

0

Basic unit of time, 1GHz—clock cycle=1ns

An instruction could take multiple cycles to
complete, e.g. multiply in 8088 takes 50 cycles

Instruction execution cycle it

program counter
l instruction queue

program l = Fetch
[F1[12]13]1-4]
" retch = Decode
ry
op] s 7 e Fetch
registers registers operands
instruction
i —> register) Execute
ﬁ i 2 = Store output
2 = flags «— ALU
1
(output) i%execu)

Pipeline

Multi-stage pipeline Attt

» Pipelining makes it possible for processor to
execute instructions in parallel

= Instruction execution divided into discrete stages
Stages

S1 | S2 | S3 | S4 | S5 | S6
I-1

Example of a non-

pipelined processor.
For example, 80386.
Many wasted cycles.

Cycles

PR
DR BloloNolaslw N R
N

Pipelined execution it

Pipelined execution i

= More efficient use of cycles, greater throughput
of instructions: (80486 started to use pipelining)

Stages
For k stages and

n instructions, the

S1 | S2 | S3 | S4 | S5 | S6

e Pipelining requires buffers
- Each buffer holds a single value
- ldeal scenario: equal work for each stage
« Sometimes it is not possible

« Slowest stage determines the flow rate in the
entire pipeline

R
2 |12] 11 number of
S s -2 | 11 required cycles is:
S 4 R | / Bl B B B4
S s 12 | 1 K+(n-1)
6 2 | 11 | compared to k*n Instruction [nstruction Operand Instruction Result
7 2 P fetch decode fetch gxecution write back
Pipelined execution in Pipelined execution R

« Some reasons for unequal work stages
- A complex step cannot be subdivided conveniently
- An operation takes variable amount of time to
execute, e.g. operand fetch time depends on where
the operands are located
= Registers
« Cache
= Memory
- Complexity of operation depends on the type of
operation
= Add: may take one cycle
< Multiply: may take several cycles

» Operand fetch of |2 takes three cycles
- Pipeline stalls for two cycles
e Caused by hazards
- Pipeline stalls reduce overall throughput

Clockcycle 1 2 3 4 5 6 7 8 9 10

T T | T
I1 IF ' ID 1OF ' IE '"WB
|] 1
1 T T T

2 IF 1 ID 1 OF I IE '"WB
|

| Il
| 1 I
I3 IF 1 ID 10OF1 IE '"WB
l 1 |
I I !
14 IF 1 ID 1 OF 1 IE 'WB
1 1 | |

Wasted cycles (pipelined) ",-=~

Superscalar Tt

= When one of the stages requires two or more
clock cycles, clock cycles are again wasted.

A superscalar processor has multiple execution
pipelines. In the following, note that Stage S4
has left and right pipelines (u and v).

Stages
exe Stages
S1 | S2]S3]|salss] se For k states and n
1| 1 For k stages and n S instructions, the
2 |12 | 11 instructions, the S1|S2|S8 | u v |S5]%6 :
3 |13 |12 | 11 ber of e i numbe!r of required
o[a 3| 2 | 1 nuT er otrequire 2 :; :i - cycles is:
© CycCles IS: - - -
(% Z -3 :; - y Qa1 k+n
S k+(@2n-1 S s 4 | 3 | 1| 2
7 I-2 I-1 () O | 6 4 [13 | 1.2 | 111
8 1-3 I-2 7 1-3 -4 -2 -1
9 -3 -2 8 4 | 13 | 2 . ..
10 3 S 15| Pentium: 2 pipelines
11 -3 10 4 | Pentium Pro: 3
Pipeline stages Tt Hazards i

e Pentium 3: 10

e Pentium 4: 20~31

e Next-generation micro-architecture: 14
e ARM7: 3

e Three types of hazards
- Resource hazards

* Occurs when two or more instructions use the same
resource, also called structural hazards

- Data hazards

= Caused by data dependencies between instructions,
e.g. result produced by I1 is read by 12

- Control hazards
= Default: sequential execution suits pipelining

« Altering control flow (e.g., branching) causes
problems, introducing control dependencies

Data hazards S Data hazards et
add ri1, r2, #10 ; write rl « Forwarding: provides output result as soon as
sub r3, rl, #20 ; read rl possible
add r1, r2, #10 ; write rl
sub r3, rl1, #20 ; read rl
fetch |decode| reg ALU wb Eendecodeleg AN wh
"""" stall T e
fetch |decode| stall reg | ALU | wb fetch |decode stall reg | ALU | wb
Data hazards et Control hazards et
e Forwarding: provides output result as soon as bz ri1, target
possible add r2, r4, 0
add r1, r2, #10 ; write rl ¢ £ dd 5 3. 0
sub r3, rl, #20 ; read rl arget- add re, rs,
fetch |decode| reg ALU wb
fetch |decode| reg ALU wbh |
. fetch |decode| reg ALU wb
T T T T T E R T e e A
I E : I E I I fetch |decode| reg | ALU | wb
(B S I : Ty [a4 U UOIRMUURY GIOUIRR RN SIPRIRURIUY U
------------ | fetch |decode| reg ALU wb
fetch |decode/stall| reg | ALU | Wo [| heeeed b
____________ fetch |decode| reg | ALU

Control hazards IS

bt

Control hazards =

= Braches alter control flow
- Require special attention in pipelining
- Need to throw away some instructions in the
pipeline
» Depends on when we know the branch is taken
« Pipeline wastes three clock cycles
- Called branch penalty

e Delayed branch execution
- Effectively reduces the branch penalty
- We always fetch the instruction following the branch
« Why throw it away?
« Place a useful instruction to execute

» This is called delay slot -

- Reducing branch penalty add R2,R3,R4 branch target/
» Determine branch decision early branch target add R2.R3.R4
sub R5,R6,R7 sub R5,R6,R7
- G - G
Branch prediction e Branch prediction e

» Three prediction strategies
- Fixed
< Prediction is fixed
- Example: branch-never-taken
» Not proper for loop structures
- Static
» Strategy depends on the branch type
- Conditional branch: always not taken
- Loop: always taken
- Dynamic
= Takes run-time history to make more accurate predictions

e Static prediction
- Improves prediction accuracy over Fixed

Instruction type Instruction Prediction: Correct

Distribution Branch prediction
(%) taken? (%)

Unconditional ~ 70*0.4 = 28 Yes 28

branch

Conditional 70*0.6 — 42 No 42*0.6 — 25.2

branch

Loop 10 Yes 10*0.9=9

Call/return 20 Yes 20

Overall prediction accuracy = 82.2%

Branch prediction I e

e Dynamic branch prediction

- Uses runtime history

« Takes the past n branch executions of the branch type and
makes the prediction

Branch prediction I e

e Impact of past n branches on prediction
accuracy

Type of mix

- Simple strategy n Compiler Business Scientific
- Prediction of the next branch is the majority of the 0 64.1 64.4 70.4
previous n branch executions 1 91.9 95.2 86.6
e Example: n =3

- If two or more of the last three branches were taken, the 2 93.3 96.5 90.8
prediction is “branch taken” 3 03.7 96.6 91.0

= Depending on the type of mix, we get more than 90%
prediction accuracy 4 94.5 96.8 91.8
5 94.7 97.0 92.0

Branch prediction Tt Multitasking Tt

00

Predict
no branj
no

branch

no branch

branch

Predict
no branc

branch

,> branch
s

no

1
branch /-

Predict
branch

10

Predict
branch

OS can run multiple programs at the same time.

Multiple threads of execution within the same
program.

Scheduler utility assigns a given amount of CPU
time to each running program.

Rapid switching of tasks

- gives illusion that all programs are running at once
- the processor must support task switching

- scheduling policy, round-robin, priority

SRAM vs DRAM

data bus

Central Processor Unit Memory Storage Dé/\fi)ce D!\/oice
(CPU) Unit 4 s
Cache
I__Coﬂ"_O'E”i _____ J _______ | ______ J.____
Tran. Access Needs
per bit time refresh? Cost Applications
SRAM 4o0r6 1X No 100X cache memories
DRAM 1 10X Yes 1X Main memories,
frame buffers
The CPU-Memory gap Al Memory hierarchies Al

The gap widens between DRAM, disk, and CPU speeds.

100,000,000 *
10,000,000 - H\'\o\.
1,000,000
100,000 - —o— Disk seek time
@ 10,000 DRAM access time
1,000 - —A— SRAM access time
100 1 —e— CPU cycle time
10
1 o
1980 1985 1990 1995 2000
year
register cache memory disk
Access time 1 1-10 50-100 20,000,000
(cycles)

e Some fundamental and enduring properties of

hardware and software:

- Fast storage technologies cost more per byte, have

less capacity, and require more

power (heat!).

- The gap between CPU and main memory speed is

widening.

- Well-written programs tend to exhibit good locality.

e They suggest an approach for

organizing

memory and storage systems known as a

memory hierarchy.

Memory system in practice 1125

h
LO:
egister

Smaller, faster, and :
more expensive (per L1, C:C’L‘ST'SPR';\A)
byte) storage devices

L2: off-chip L2
cache (SRAM)

L3: main memory
(DRAM)

Larger, slower, and

cheaper (per byte)

storage devices L4:/ local secondary storage (virtual memory)
(local disks)

L5: remote secondary storage
(tapes, distributed file systems, Web servers)

Reading from memory LIS

= Multiple machine cycles are required when reading
from memory, because it responds much more slowly
than the CPU (e.g.33 MHz). The wasted clock cycles are
called wait states.

L1 Data
<« 1cyclelatency
Regs. 16 kB «+| L2 Unified
<> 4—.way assoc 128KB--2 MB Main
Write-through 4-way assoc | <y M
328 lines Werite-back emory
Werite allocate Up to 468
L1 Instruction 32B lines
16 KB, 4-way [
32B lines

e Gl Pentium Il cache hierarchy

Cache memory Tl

» High-speed expensive static RAM both inside
and outside the CPU.
- Level-1 cache: inside the CPU
- Level-2 cache: outside the CPU

e Cache hit: when data to be read is already in
cache memory

e Cache miss: when data to be read is not in
cache memory. When? compulsory, capacity
and conflict.

e Cache design: cache size, n-way, block size,
replacement policy

Caching in a memory hierarchy e
Smaller, faster, more
level k [L4 J[o J[10 |[3 | Expensive device at

level k caches a
subset of the blocks
from level k+1

[4 || Datais copied between levels
in block-sized transfer units

[o J[2 J 2 J| 3] Larger, slower, cheaper
level | a1 s][6 |[7 || storage device at level
Kt f s][o][|[]| k+1is partitioned into

| 12 || 13 || 14 || 15 | blocks.

.

General caching concepts R

Request
12
12

0 1 2 3

e Program needs object d, which is
stored in some block b.

e Cache hit

Locality i

« Principle of Locality: programs tend to reuse
data and instructions near those they have used
recently, or that were recently referenced
themselves.

- Temporal locality: recently referenced items are
likely to be referenced in the near future.

- Spatial locality: items with nearby addresses tend to
be referenced close together in time.

« In general, programs with good locality run
faster then programs with poor locality

e Locality is the reason why cache and virtual
memory are designed in architecture and
operating system. Another example is web
browser caches recently visited webpages.

Ie\ll(el 227 9 J[14][3] - Program finds b in the cache at
level k. E.g., block 14.
Request e Cache miss
12 - bis not at level k, so level k cache
must fetch it from level k+1.
E.g., block 12.
[0][112][5] J _
- - If level k cache is full, then some
level | L4t][5 I 6 I 7 | current block must be replaced
k+1 ([8 J[o J[10][1] (evicted). Which one is the “victim™?
[227][13 |[14 |[15 | - Placement policy: where can the new
block go? E.g., b mod 4
= Replacement policy: which block
should be evicted? E.g., LRU
Locality example R
sum = 0;

for (i = 0; 1 < nj; 1++)
sum += a[i];
return sum;

» Data

- Reference array elements in succession (stride-1
reference pattern): Spatial locality

- Reference sum each iteration: Temporal locality

e Instructions
- Reference instructions in sequence: Spatial locality
- Cycle through loop repeatedly: Temporal locality

Locality example LSS

e Being able to look at code and get a qualitative
sense of its locality is important. Does this
function have good locality?

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0O;

for (i = 0; 1 < M; i++)
for (J = 0; J < N; j++)
sum += a[i][J];
return sum;
} stride-1 reference pattern

Locality example —r"‘=~

Blocked matrix multiply performance I e

e Does this function have good locality?

int sum_array_cols(int a[M]IN]D)
{

int i, jJ, sum = O;

for (J = 0; J < N; j++)
for (i = 0; 1 < M; i++)
sum += a[i]Lil;
return sum;
¥ stride-N reference pattern

» Blocking (bijk and bikj) improves performance
by a factor of two over unblocked versions (ijk
and jik)

- relatively insensitive to array size.

——kji
- ki
—A kij
< ikj
= jik
—o-ijk
—obijk (bsize = 25)
—o—bikj (bsize = 25)

Cyclesl/iteration

Array size (n)

R

Cache-conscious programming 5

» make sure that memory is cache-aligned
s |
— ! ! —

« Split data into hot and cold (list example)

e e e e |
— ———

e Use union and bitfields to reduce size and
increase locality

K-d tree g
struct KdAccelNode { interior
u_int flags;
e N
float split; // Interior
u_int aboveChild; // Interior leaf
N |
u_int nPrims; // Leaf L.
MailboxPrim *Primitives; // Leaf

}

K-d tree I e

8-byte (reduced from 20-byte, 20% gain)

interior
struct KdAccelNode { |
union { e N
u_int flags; // Both leaf
float split; // Interior
u_int nPrims; // Leaf n
}: —
union {
u_int aboveChild; // Interior
MailboxPrim **primitives; // Leaf
}:
by

Tree representation gt
1 8 23
S E M
n flags
2

Flag: 0,1,2 (interior X, y, z) 3 (leaf)

T M

RISC v.s. CISC

Trade-offs of instruction sets Tt
compiler
high-level language machine code
C, C++ semantic gap

Lisp, Prolog, Haskell...

» Before 1980, the trend is to increase instruction
complexity (one-to-one mapping if possible) to
bridge the gap. Reduce fetch from memory.
Selling point: number of instructions,
addressing modes. (CISC)

« 1980, RISC. Simplify and regularize instructions
to introduce advanced architecture for better
performance, pipeline, cache, superscalar.

RISC il

RISC Design Principles -,~=,

1980, Patternson and Ditzel (Berkeley),RISC

Features

- Fixed-length instructions

- Load-store architecture

- Register file

Organization

- Hard-wired logic

- Single-cycle instruction

- Pipeline

Pros: small die size, short development time,
high performance

Cons: low code density, not x86 compatible

Simple operations

- Simple instructions that can execute in one cycle
Register-to-register operations

- Only load and store operations access memory

- Rest of the operations on a register-to-register basis
Simple addressing modes

- A few addressing modes (1 or 2)

Large number of registers

- Needed to support register-to-register operations

- Minimize the procedure call and return overhead

RISC Design Principles flo s

CISC and RISC flo s

e Fixed-length instructions
- Facilitates efficient instruction execution
» Simple instruction format

- Fixed boundaries for various fields
= opcode, source operands,...

e CISC — complex instruction set
large instruction set
high-level operations (simpler for compiler?)
requires microcode interpreter (could take a long
time)
examples: Intel 80x86 family
e RISC — reduced instruction set
- small instruction set
- simple, atomic instructions
- directly executed by hardware very quickly
- easier to incorporate advanced architecture design

- examples: ARM (Advanced RISC Machines) and DEC
Alpha (now Compaq), PowerPC, MIPS

CISC and RISC i

CISC RISC

(Intel 486) | (MIPS R4000)

Why RISC? i

» Simple instructions are preferred

- Complex instructions are mostly ignored by
compilers

« Due to semantic gap

Finstructions 235 4 e Simple data structures
Addr. modes 11 1 - Complex data structures are used relatively

. infrequently
Inst. Size (bytes) 1-12 4 - Better to support a few simple data types efficiently
GP registers 8 32 = Synthesize complex ones

» Simple addressing modes
- Complex addressing modes lead to variable length
instructions
» Lead to inefficient instruction decoding and scheduling

Why RISC? (cont’d) st

e Large register set

- Efficient support for procedure calls and returns
« Patterson and Sequin’s study

- Procedure call/return: 12-15% of HLL statements
» Constitute 31-33% of machine language instructions
» Generate nearly half (45%) of memory references

- Small activation record
* Tanenbaum’s study
- Only 1.25% of the calls have more than 6 arguments

- More than 93% have less than 6 local scalar variables
- Large register set can avoid memory references

ISA design issues

Instruction set design Tt

Instruction types Tt

e Issues when determining ISA
- Instruction types
- Number of addresses
- Addressing modes

e Arithmetic and logic
= Data movement
e |/0 (memory-mapped, isolated I/0)

e Flow control

- Branches (unconditional, conditional)
e set-then-jump (cmp AX, BX; je target)
e Test-and-jump (beq rl, r2, target)

- Procedure calls (register-based, stack-based)
e Pentium: ret; MIPS: jr
» Register: faster but limited number of parameters
 Stack: slower but more general

Operand types Tt

Operand types et

e Instructions support basic data types
- Characters
- Integers
- Floating-point
e Instruction overload
- Same instruction for different data types

- Example: Pentium
mov AL ,address ;loads an 8-bit value
mov AX,address ;loads a 16-bit value
mov EAX,address ;loads a 32-bit value

e Separate instructions
- Instructions specify the operand size

- Example: MIPS
1b Rdest,address ;loads a byte
lh Rdest,address ;loads a halfword

; (16 bits)

w Rdest,address ;loads a word
; (32 bits)

1d Rdest,address ;loads a doubleword
; (64 bits)

Number of addresses

Number of addresses Tt

e Four categories
- 3-address machines
= two for the source operands and one for the result
- 2-address machines
* One address doubles as source and result
- l-address machine
* Accumulator machines
* Accumulator is used for one source and result
- 0-address machines
» Stack machines
= Operands are taken from the stack
e Result goes onto the stack

Number of addresses Tt
Number of . . _
instruction operation

addresses

3 OPA, B, C A< BOPC

2 OPA, B A< AOPB

1 OP A AC < AC OP A

0 OP T~ (T-1)OPT

A, B, C: memory or register locations
AC: accumulator

T: top of stack

T-1: second element of stack

3-address st
. . A-B
Example: RISC machines, TOY Y=———
C+(DxE)
SUB Y, A, B ;Y:A—B‘opcode‘A‘BIC‘
MUL T, D, E ;: T=DXE
ADDT,T,C ;T:T+C
DIV Y, Y, T -Y=Y/T

2-address o 1-address el
Example: 1A32 __AB Example: IA32’s MUL (EAX) ~ Y=_ 2B _

C +(DxE) C+(DxE)
MOV Y, A ;Y = A |opcode| A | B ‘ LD D . AC =D
SUB Y, B ;Y=Y - MUL E ; AC = AC XE
MOV T, D ; T =D ADD C ; AC=AC + C
MUL T, E : T =TXE ST Y ;Y = AC
ADD T, C :T=T+C¢C LD A ; AC = A
DIV Y, T Y =Y/T SUB B ; AC = AC — B

DIV Y i AC=AC/Y
ST Y ;Y = AC
O-address ficn Number of addresses Tt
A—B « A basic design decision; could be mixed

Example: 1A32°s FPU, HP3000 Y =——— : . :

C+(DxE) = Fewer addresses per instruction results in
PUSH A ;A - a less complex processor
PUSH B ; A, B - shorter instructions
SuB . A-B - longer and more complex programs
PUSH C » AB, C - longer execution time
PUSH D » A-B, C, D - The decision has impacts on register usage
PUSH E ; A-B, C, D, E policy as well
MUL > A-B, C, DxE - 3-address usually means more general-
ADD ; A-B, C+(DxE) purpose registers
DIV . (A-B) 7 (C+(DxE)) - 1-address usually means less

POP Y

Addressing modes

Addressing modes fio i

« How to specify location of operands? Trade-off
for address range, address flexibility, number
of memory references, calculation of addresses

e Operands can be in three places

- Registers
« Register addressing mode
- Part of instruction
* Constant
« Immediate addressing mode
= All processors support these two addressing modes
- Memory
= Difference between RISC and CISC
« CISC supports a large variety of addressing modes
= RISC follows load/store architecture

Addressing modes flo s

e Common addressing modes
- Implied
- Immediate (Ida R1, 1)
- Direct (st R1, A)
- Indirect
- Register (add R1, R2, R3)
- Register indirect (sti R1, R2)
- Displacement
- Stack

Implied addressing T
instruction = No address field;
operand is implied by

the instruction
CLC ; clear carry

» A fixed and unvarying
address

Immediate addressing I e

Direct addressing

S

g

instruction « Address field contains instruction e Address field contains
opcode | operand | the operand value opcode| address A | the effective address
ADD 5; AC=AC+5 of the operand
« Pros: no extra Memory ADD A; AC=AC+[A]
memory reference; 'S Sing|e memory
faster reference
= Cons: limited range « Pros: no additional
address calculation
operand e Cons: limited address
space
Indirect addressing st Register addressing e
instruction « Address field contains instruction « Address field contains
opcode| address A | the address of a lopcode | R | the address of a
pointer to the register
Memory operand ADD R; AC=AC+R
operand ADD [Al; AC=ACHLIALL - Pros: only need a
e multiple memory small address field;
references shorter instruction
— operand .
e Pros: |arge address and faster fetch, no
space : memory reference
Registers

e Cons: slower

Cons: limited address
space

Register indirect addressing I e

instruction
lopcode | R |

Memory

—|— operand

« Address field contains

the address of the
register containing a
pointer to the operand

ADD [R]; AC=AC+[R]

e Pros: large address

space

= Cons: extra memory

Displacement addressing I e

instruction
lopcode| R | A |

Memory

e Address field could

contain a register
address and an address

MOV EAX, [A+ESI*4]
EA=A+[RxS] or vice
versa

Several variants

- Base-offset: [EBP+8]

- Base-index: [EBX+ESI]

reference — d - :
Registers Registers operan Scaled: FT+ESI*4]
Pros: flexible
Cons: complex
Displacement addressing st Stack addressing R
instruction MOV EAX, [A+ESI*4] instruction Operand is on top of
opcode[R | A | Often, register, called the stack
indexing register, is ADD [R]; AC=AC+[R]
Memory used for displacement. Pros: |arge addreSS
Usually, a mechanism implicit

— operand

Registers

is provided to
efficiently increase the
indexing register.

L.

Stack

space

Pros: short and fast
fetch

Cons: limited by FILO
order

Addressing modes R IA32 addressing modes R
Mode Meaning Pros Cons Addressing Modes
Implied Fast fetch Limited instructions / \
Immediate Operand=A No memory ref Limited operand Regiter Immedite Memory
Direct EA=A Simple Limited address space
D|rect Indlrect
Indirect EA=[A] Large address space Multiple memory ref (disp]
Register EA=R No memory ref Limited address space
Register Register Indirect Based Indexed Based-Indexed
indirect EA=[R] Large address space Extra memory ref [Base] [Base + disp] [(Index « scale) + disp] / \
Displacement EA=A+[R] Flexibility Complexity Based-Indexed Based-Indexed
— . with no scale factor with scale factor
stack EA=stack top No memory ref Limited applicability [Base + Index + disp] [Base + (Index scale) + disp]
Effective address calculation (IA32) “=5=* Based Addressing R

SEGMENT + BASE + CINDEX = SCALE> + DISPLACEMENT

EnxR EnxR 1
GS ECH ECH
88 EDid EDid 2 HO DISPLACEMENT
DS + EBd + EBA * + 8-BIT DISPLACEMENT
ES ESP — 4 32-BIT DISPLAGEMENT
F§ EBP EBP
GS ESI ESI 8

EDI EDI

A dummy format for one operand

3 3 2 8or32
base | index | s displacement
[B K
| t a
! i — shifter '
| reg_lster shifte e adder —!—> memory
: file !
' I

e Effective address is computed as
base + signed displacement

- Displacement:
- 16-bit addresses: 8- or 16-bit number
- 32-bit addresses: 8- or 32-bit number
» Useful to access fields of a structure or record
* Base register — points to the base address of the structure
= Displacement — relative offset within the structure

» Useful to access arrays whose element size is
not 2, 4, or 8 bytes
* Displacement — points to the beginning of the array

= Base register — relative offset of an element within the
array

2003 S. Dandamudi Chapter 11: Page 84

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Based Addressing R Indexed Addressing R
_ » Effective address is computed as
(index * scale factor) + signed displacement
SSA + 100 .
Enroliment | 2 - 16-bit addresses:
registered | 2 - displacement: 8- or 16-bit number
R:""‘ d ":' Secong g%l;r;i)record - scale factor: none (i.e., 1)
— . - 32-bit addresses:
Course # > - displacement: 8- or 32-bit number
SSA + 50 ———— 5 - scale factor: 2, 4, or 8
registered | 2 = Useful to access elements of an array
Room # s First course record (particularly if the element size is 2, 4, or 8
displacement Term 1 (50 bytes) b t
46 bytes Title 38 y eS)
ssa Course # 2 « Displacement — points to the beginning of the array
Structure Starting Address = Index register — selects an element of the array (array
] index)
« Scaling factor — size of the array element
- G - G
Indexed Addressing e Based-Indexed Addressing e

Examples
add AX, [D1+20]
- We have seen similar usage to access parameters off the stack
add AX,marks_table[ES1*4]

- Assembler replaces marks_table by a constant (i.e.,
supplies the dlsplacement)

- Each element of marks_table takes 4 bytes (the scale factor
value)

ESI needs to hold the element subscript value

add AX tablel[Sl]

- Sl needs to hold the element offset in bytes
- When we use the scale factor we avoid such byte counting

Based-indexed addressing with no scale factor

e Effective address is computed as
base + index + signed displacement

« Useful in accessing two-dimensional arrays
= Displacement — points to the beginning of the array

* Base and index registers point to a row and an element
within that row

e Useful in accessing arrays of records
= Displacement — represents the offset of a field in a record

* Base and index registers hold a pointer to the base of the
array and the offset of an element relative to the base of
the array

Based-Indexed Addressing 1125

» Useful in accessing arrays passed on to a
procedure

= Base register — points to the beginning of the array

< Index register — represents the offset of an element
relative to the base of the array

Example

Assuming BX points to tablel
mov AX, [BX+Sl1]

cmp AX, [BX+SI1+2]
compares two successive elements of tablel

Based-Indexed Addressing 1125

Based-indexed addressing with scale factor

e Effective address is computed as

base + (index * scale factor) + signed
displacement

» Useful in accessing two-dimensional arrays
when the element size is 2, 4, or 8 bytes

= Displacement ==> points to the beginning of the array

« Base register ==> holds offset to a row (relative to start of
array)

= Index register ==> selects an element of the row
= Scaling factor ==> size of the array element

