
Advanced Architecture

Computer Organization and Assembly Languages p g z y g g
Yung-Yu Chuang 
2008/11/102008/11/10

with slides by S. Dandamudi, Peng-Sheng Chen, Kip Irvine, Robert Sedgwick and Kevin Wayne

Basic architecture

Basic microcomputer design

• clock synchronizes CPU operations
l i  (CU) di   f • control unit (CU) coordinates sequence of 

execution steps
• ALU performs arithmetic and logic operations

data bus

registers

Central Processor Unit
(CPU)

Memory Storage
Unit

ALU l k

I/O
Device

#1

I/O
Device

#2

CUALU clock

control bus

CU

address bus

Basic microcomputer design

• The memory storage unit holds instructions and 
data for a running programdata for a running program

• A bus is a group of wires that transfer data from 
 t t  th  (d t  dd  t l)one part to another (data, address, control)

data bus

registers

Central Processor Unit
(CPU)

Memory Storage
Unit

ALU l k

I/O
Device

#1

I/O
Device

#2

CUALU clock

control bus

CU

address bus



Clock

• synchronizes all CPU and BUS operations
hi  ( l k) l   i  f  i l  • machine (clock) cycle measures time of a single 

operation
• clock is used to trigger events

one cycley

1

0

• Basic unit of time, 1GHz→clock cycle=1ns
• An instruction could take multiple cycles to p y

complete, e.g. multiply in 8088 takes 50 cycles

Instruction execution cycle

program counter

• FetchPC  program

instruction queue

• Fetch
• Decode
• Fetch 

I-1 I-2 I-3 I-4
p g

op1
memory fetch

d • Fetch 
operands

• Execute I-1
instruction
register

op1
op2

registers

read

registers

• Execute 
• Store output

register

te

decodete

ALUw
ri

e

execute

w
ri

( t t)

flags

(output)

Pipeline

Multi-stage pipeline

• Pipelining makes it possible for processor to 
execute instructions in parallelexecute instructions in parallel

• Instruction execution divided into discrete stages

S1 S2 S3 S4 S5
1

Stages
S6

I-1Example of a non- 1
2
3
4

I-1
I-1

I-1
I-1

Example of a non-
pipelined processor. 
For example, 80386. 

C
yc

le
s 5

6
7 I-2

I-1
I-1

p
Many wasted cycles.

8
9

10
11

I-2
I-2

I-2
I 211

12
I-2

I-2



Pipelined execution

• More efficient use of cycles, greater throughput 
of instructions: (80486 started to use pipelining)

S1 S2 S3 S4 S5

Stages
S6 For k stages and 

n instructions the1

es

2
3

I-1
I-2 I-1

I-2 I-1

n instructions, the 
number of 
required cycles is:

C
yc

le

4
5
6

I-2 I-1
I-2 I-1

I 2 I 1

q y

k + (n – 1)

d t k*6
7

I-2 I-1
I-2

compared to k*n

Pipelined execution

• Pipelining requires buffers
E h b ff  h ld   i l  l– Each buffer holds a single value

– Ideal scenario: equal work for each stage
S i  i  i   ibl• Sometimes it is not possible

• Slowest stage determines the flow rate in the 
ti  i lientire pipeline

Pipelined execution

• Some reasons for unequal work stages
A complex step cannot be subdivided conveniently– A complex step cannot be subdivided conveniently

– An operation takes variable amount of time to 
execute, e.g. operand fetch time depends on where , g p p
the operands are located

• Registers 
Cache • Cache 

• Memory

– Complexity of operation depends on the type of C p y p p yp
operation

• Add: may take one cycle
M lti l   t k  l l• Multiply: may take several cycles

Pipelined execution

• Operand fetch of I2 takes three cycles
Pipeline stalls for two cycles– Pipeline stalls for two cycles
• Caused by hazards

– Pipeline stalls reduce overall throughputPipeline stalls reduce overall throughput



Wasted cycles (pipelined)

• When one of the stages requires two or more 
clock cycles  clock cycles are again wastedclock cycles, clock cycles are again wasted.

Stages
exe

S1 S2 S3 S4 S5
1

S6

2
I-1
I 2 I 1

exe

For k stages and n
instructions the

cl
es

2
3
4
5

I-2
I-3

I-1
I-2
I-3

I-1
I-2
I 3

I-1
I 1

instructions, the 
number of required 
cycles is:

C
yc 5

6
7

I-3
I-2 I-1

I-1
8 I 3 I 2

I-1

I-2

cycles is:

k + (2n – 1)
8
9

I-3 I-2
I-2

10 I-3
I-3

11 I-3

Superscalar

A superscalar processor has multiple execution 
pipelines  In the following  note that Stage S4 pipelines. In the following, note that Stage S4 
has left and right pipelines (u and v).

Stages

S1 S2 S3 u S5

Stages

S6v

S4
For k states and n
instructions, the 

S1 S2 S3 u S5
1

S6

2
3

I-1
I-2
I-3

I-1
I-2 I-1

v
number of required 
cycles is:

C
yc

le
s 4

5
6

I-4 I-3
I-4

I-2
I-3
I-4

I-1

I-3 I-1
I-2
I-2

I-1
k + n

7 I-2 I-1I-4
8
9

I-3
I-4

I-2
I-3

10 I 4

I-4
I-3

Pentium: 2 pipelines
P ti  P  310 I-4 Pentium Pro: 3

Pipeline stages

• Pentium 3: 10
P i  4  20 31• Pentium 4: 20~31

• Next-generation micro-architecture: 14
• ARM7: 3

Hazards

• Three types of hazards
Resource hazards– Resource hazards
• Occurs when two or more instructions use the same 

resource  also called structural hazardsresource, also called structural hazards
– Data hazards

• Caused by data dependencies between instructions  • Caused by data dependencies between instructions, 
e.g. result produced by I1 is read by I2

– Control hazardsControl hazards
• Default: sequential execution suits pipelining
• Altering control flow (e g  branching) causes • Altering control flow (e.g., branching) causes 

problems, introducing control dependencies



Data hazards
add r1, r2, #10 ; write r1
sub r3 r1 #20 ; read r1sub r3, r1, #20 ; read r1

fetch decode reg ALU wbfetch decode reg ALU wb

fetch decode reg ALUstall wb

Data hazards

• Forwarding: provides output result as soon as 
possiblepossible

add r1, r2, #10 ; write r1
sub r3, r1, #20 ; read r1

fetch decode reg ALU wb

fetch decode reg ALUstall wb

Data hazards

• Forwarding: provides output result as soon as 
possiblepossible

add r1, r2, #10 ; write r1
sub r3, r1, #20 ; read r1

fetch decode reg ALU wb

fetch decode reg ALUstall wb

fetch decode reg ALUstall wb

Control hazards
bz r1, target
add r2, r4, 0add r2, r4, 0
...

target: add r2 r3 0
fetch decode reg ALU wb

target: add r2, r3, 0

fetch decode reg ALU wb

fetch decode reg ALU wb

fetch decode reg ALU wb

fetch decode reg ALU



Control hazards

• Braches alter control flow
R i  i l tt ti  i  i li i– Require special attention in pipelining

– Need to throw away some instructions in the 
pipelinepipeline
• Depends on when we know the branch is taken

Pipeline wastes three clock cycles• Pipeline wastes three clock cycles
– Called branch penalty

R d i g b h lt– Reducing branch penalty
• Determine branch decision early

Control hazards

• Delayed branch execution
Eff ti l  d  th  b h lt– Effectively reduces the branch penalty

– We always fetch the instruction following the branch
Wh  th  it ?• Why throw it away?

• Place a useful instruction to execute
h   ll d d l  l• This is called delay slot Delay slot

add     R2,R3,R4
branch  target

branch  target
add     R2,R3,R4

sub     R5,R6,R7
. . .

sub     R5,R6,R7
. . .

Branch prediction

• Three prediction strategies
Fi d– Fixed

• Prediction is fixed
– Example: branch-never-takenExample: branch-never-taken

» Not proper for loop structures

– StaticStatic
• Strategy depends on the branch type

– Conditional branch: always not taken
– Loop: always taken

– Dynamic
• Takes run-time history to make more accurate predictions

Branch prediction

• Static prediction
I  di ti    Fi d– Improves prediction accuracy over Fixed

I i I i P di i CInstruction type Instruction 
Distribution 

(%) 

Prediction: 
Branch 
taken? 

Correct 
prediction 

(%) ( ) ( )
Unconditional 
branch 

70*0.4 = 28 Yes 28 

Conditional 70*0 6 = 42 No 42*0 6 = 25 2Conditional 
branch 

70 0.6  42 No 42 0.6  25.2 

Loop 10 Yes 10*0.9 = 9 

Call/return 20 Yes 20 

   Overall prediction accuracy = 82.2% p y
 

 



Branch prediction

• Dynamic branch prediction
U  ti  hi t– Uses runtime history

• Takes the past n branch executions of the branch type and 
makes the predictionmakes the prediction

– Simple strategy
• Prediction of the next branch is the majority of the j y

previous n branch executions
• Example: n = 3

If two or more of the last three branches were taken  the – If two or more of the last three branches were taken, the 
prediction is “branch taken”

• Depending on the type of mix, we get more than 90% 
di i  prediction accuracy

Branch prediction

• Impact of past n branches on prediction 
accuracyaccuracy

  Type of mix  
n Compiler Business Scientific 
0 64.1 64.4 70.4 
1 91.9 95.2 86.6 
2 93.3 96.5 90.82 93.3 96.5 90.8 
3 93.7 96.6 91.0 
4 94 5 96 8 91 84 94.5 96.8 91.8 
5 94.7 97.0 92.0 

 

 

Branch prediction

0100 01

Predict 
no branch

00

Predict 
no branch

branchno
branch

no
branch

branchno
branch branch

10 11no10

Predict 
branch

11

Predict 
branch

branch

no
branch

Multitasking

• OS can run multiple programs at the same time.
M l i l  h d  f i  i hi  h   • Multiple threads of execution within the same 
program.

• Scheduler utility assigns a given amount of CPU 
time to each running program.

• Rapid switching of tasks
– gives illusion that all programs are running at onceg p g g
– the processor must support task switching
– scheduling policy, round-robin, priorityscheduling policy, round robin, priority



Cache

SRAM vs DRAM
data bus

Central Processor Unit
(CPU)

Memory Storage
Unit

registers

I/O
Device

#1

I/O
Device

#2

ALU clock

#1 #2

control bus

CU

Tran Access Needs

address bus

Tran. Access  Needs
per bit    time    refresh?  Cost         Applications

SRAM 4 or 6    1X No       100X cache memories

DRAM 1 10X Y 1X M i iDRAM 1      10X Yes         1X Main memories,
frame buffers

The CPU-Memory gap

The gap widens between DRAM, disk, and CPU speeds.
100 000 000

1,000,000
10,000,000

100,000,000

1 000
10,000

100,000

ns

Disk seek time
DRAM access time
SRAM access time

10
100

1,000
CPU cycle time

1
1980 1985 1990 1995 2000

yearyear

register cache memory disk

Access time 1 1-10 50-100 20,000,000
(cycles)

, ,

Memory hierarchies

• Some fundamental and enduring properties of 
hardware and software:hardware and software:
– Fast storage technologies cost more per byte, have 

less capacity  and require more power (heat!)  less capacity, and require more power (heat!). 
– The gap between CPU and main memory speed is 

wideningwidening.
– Well-written programs tend to exhibit good locality.

• They suggest an approach for organizing • They suggest an approach for organizing 
memory and storage systems known as a 
memory hierarchymemory hierarchy.



Memory system in practice

L0:
registers

on-chip L1
cache (SRAM)

L1:
Smaller, faster, and 
more expensive (per 
byte) storage devices

off-chip L2
cache (SRAM)

L2:

byte) storage devices

Larger, slower, and 

main memory
(DRAM)

L3:

Larger, slower, and 
cheaper (per byte) 
storage devices local secondary storage (virtual memory)

(local disks)
L4:

remote secondary storageL5:
(tapes, distributed file systems, Web servers)

Reading from memory

• Multiple machine cycles are required when reading 
from memory  because it responds much more slowly from memory, because it responds much more slowly 
than the CPU (e.g.33 MHz). The wasted clock cycles are 
called wait states.

L1 Data
1 l  l t1 cycle latency

16 KB
4-way assoc

Write through

Regs. L2 Unified
128KB--2 MB MainWrite-through

32B lines

L1 I t ti

4-way assoc
Write-back

Write allocate

Main
Memory

Up to 4GB
L1 Instruction
16 KB, 4-way

32B lines

32B lines

Processor Chip Pentium III cache hierarchy

Cache memory

• High-speed expensive static RAM both inside 
and outside the CPUand outside the CPU.
– Level-1 cache: inside the CPU

L l 2 h  t id  th  CPU– Level-2 cache: outside the CPU

• Cache hit: when data to be read is already in 
h  cache memory

• Cache miss: when data to be read is not in 
cache memory. When? compulsory, capacity 
and conflict.

• Cache design: cache size, n-way, block size, 
replacement policyp p y

Caching in a memory hierarchy

8 9 14 3
Smaller, faster, more 
Expensive device at level k 4 10

level k caches a 
subset of the blocks 
f l l k+1

Data is copied between levels 

from level k+1

4

10

p
in block-sized transfer units

0 1 2 3

4 5 6 7
Larger, slower, cheaper 
Storage device at levellevel 44 5 6 7

8 9 10 11

12 13 14 15

Storage device at level 
k+1 is partitioned into 
blocks.

k+1
4

10

12 13 14 15



General caching  concepts

RequestRequest
• Program needs object d, which is 

stored in some block b1412 q
14
q
12

stored in some block b.
• Cache hit

– Program finds  b  in the cache at 9 3level 1414

1412

0 1 2 3

4*4*12 Program finds  b  in the cache at 
level k.  E.g.,  block 14.

• Cache miss

9 3
k

14

4*12 Request
12

412

– b is not at level k, so level k cache  
must fetch it from level k+1.             
E.g.,  block 12.

12

E.g.,  block 12.
– If level k cache is full, then some 

current block must be replaced 
(evicted)  Which one is the “victim”? 

0 1 2 3

4 5 6 7

8 9 10 11
level 
k+1

4*

(evicted). Which one is the “victim”? 
• Placement policy: where can the new 

block go? E.g., b mod 4

8 9 10 11

12 13 14 15

k+1
12

• Replacement policy: which block 
should be evicted? E.g., LRU

Locality
• Principle of Locality: programs tend to reuse 

data and instructions near those they have used y
recently, or that were recently referenced 
themselves.
– Temporal locality: recently referenced items are 

likely to be referenced in the near future.
Spatial locality: items with nearby addresses tend to – Spatial locality: items with nearby addresses tend to 
be referenced close together in time.

• In general, programs with good locality run In general, programs with good locality run 
faster then programs with poor locality

• Locality is the reason why cache and virtual Locality is the reason why cache and virtual 
memory are designed in architecture and 
operating system. Another example is web p g y p
browser caches recently visited webpages.

Locality example

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];

• Data

return sum;

• Data
– Reference array elements in succession (stride-1 

reference pattern): Spatial localityreference pattern):
– Reference sum each iteration:

• Instructions

Spatial locality
Temporal locality

• Instructions
– Reference instructions in sequence:

C l  th h l  t dl  
Spatial locality

T l l lit– Cycle through loop repeatedly: Temporal locality

Locality example

• Being able to look at code and get a qualitative 
sense of its locality is important  Does this sense of its locality is important. Does this 
function have good locality?

int sum_array_rows(int a[M][N])
{{

int i, j, sum = 0;
for (i = 0; i < M; i++)

for (j = 0; j < N; j++)
sum += a[i][j];sum += a[i][j];

return sum;
} stride-1 reference patternp



Locality example

• Does this function have good locality?

int sum_array_cols(int a[M][N])
{{

int i, j, sum = 0;
for (j = 0; j < N; j++)

for (i = 0; i < M; i++)
sum += a[i][j];sum += a[i][j];

return sum;
} stride-N reference patternp

Blocked matrix multiply performance
• Blocking (bijk and bikj) improves performance 

by a factor of two over unblocked versions (ijk by a factor of two over unblocked versions (ijk 
and jik)
– relatively insensitive to array size.relatively insensitive to array size.

50

60

40

er
at

io
n

kji
jki
kij
ikj

20

30

C
yc

le
s/

ite ikj
jik
ijk
bijk (bsize = 25)

0

10

bijk (bsize  25)
bikj (bsize = 25)

0

25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

Array size (n)

Cache-conscious programming

• make sure that memory is cache-aligned

• Split data into hot and cold (list example)• Split data into hot and cold (list example)

• Use union and bitfields to reduce size and 
increase localityy

K-d tree
struct KdAccelNode {
u int flags;

interior
u_int flags;  

float split; // Interiorfloat split;      // Interior
u_int aboveChild; // Interior

n

leaf

u_int nPrims;  // Leaf
M ilb P i *P i iti // L f

n

MailboxPrim *Primitives;  // Leaf
}



K-d tree

8-byte (reduced from 20-byte, 20% gain)
struct KdAccelNode { interiorstruct KdAccelNode {
... 
union {union {
u_int flags;   // Both
float split;   // Interior leafp ; //
u_int nPrims;  // Leaf

};
n

union {
u_int aboveChild;           // Interior
MailboxPrim **primitives;   // Leaf

};
}

Tree representation

1 8 23

S E M

flags

2

n

Flag: 0,1,2 (interior x, y, z) 3 (leaf)

RISC v.s. CISC

Trade-offs of instruction sets

high-level language machine code
compiler

high-level language machine code
semantic gapC, C++

Lisp, Prolog, Haskell…

• Before 1980, the trend is to increase instruction 
l i  (  i  if ibl )  

p g

complexity (one-to-one mapping if possible) to 
bridge the gap. Reduce fetch from memory. 
S lli  i  b  f i i  Selling point: number of instructions, 
addressing modes. (CISC)

• 1980, RISC. Simplify and regularize instructions 
to introduce advanced architecture for better 
performance, pipeline, cache, superscalar.



RISC

• 1980, Patternson and Ditzel (Berkeley),RISC
Features• Features
– Fixed-length instructions

Load store architecture– Load-store architecture
– Register file

• Organization• Organization
– Hard-wired logic
– Single-cycle instructionSingle-cycle instruction
– Pipeline

• Pros: small die size  short development time  • Pros: small die size, short development time, 
high performance

• Cons: low code density  not x86 compatible • Cons: low code density, not x86 compatible 

RISC Design Principles

• Simple operations
Simple instructions that can execute in one cycle– Simple instructions that can execute in one cycle

• Register-to-register operations
Only load and store operations access memory– Only load and store operations access memory

– Rest of the operations on a register-to-register basis
• Simple addressing modes• Simple addressing modes

– A few addressing modes (1 or 2)
• Large number of registers• Large number of registers

– Needed to support register-to-register operations
– Minimize the procedure call and return overhead– Minimize the procedure call and return overhead

RISC Design Principles

• Fixed-length instructions
F ilit t  ffi i t i t ti  ti– Facilitates efficient instruction execution

• Simple instruction format
– Fixed boundaries for various fields 

• opcode, source operands,…

CISC and RISC

• CISC – complex instruction set
large instruction set– large instruction set

– high-level operations (simpler for compiler?)
requires microcode interpreter (could take a long – requires microcode interpreter (could take a long 
time)

– examples: Intel 80x86 familyp y

• RISC – reduced instruction set
– small instruction setsmall instruction set
– simple, atomic instructions
– directly executed by hardware very quicklydirectly executed by hardware very quickly
– easier to incorporate advanced architecture design
– examples: ARM (Advanced RISC Machines) and DEC p ( )

Alpha (now Compaq), PowerPC, MIPS



CISC and RISC

CISC RISC
(Intel 486) (MIPS R4000)

#i t ti 235 94#instructions 235 94

Addr. modes 11 1

Inst. Size (bytes) 1-12 4

GP registers 8 32

Why RISC?

• Simple instructions are preferred
Complex instructions are mostly ignored by – Complex instructions are mostly ignored by 
compilers
• Due to semantic gapg p

• Simple data structures
– Complex data structures are used relatively p y

infrequently
– Better to support a few simple data types efficiently

• Synthesize complex ones
• Simple addressing modes

– Complex addressing modes lead to variable length 
instructions

• Lead to inefficient instruction decoding and scheduling• Lead to inefficient instruction decoding and scheduling

Why RISC? (cont’d)

• Large register set
Effi i t t f  d  ll  d t– Efficient support for procedure calls and returns

• Patterson and Sequin’s study
– Procedure call/return: 12−15% of HLL statementsProcedure call/return: 12 15% of HLL statements

» Constitute 31−33% of machine language instructions
» Generate nearly half (45%) of memory references

S ll ti ti  d– Small activation record
• Tanenbaum’s study

– Only 1 25% of the calls have more than 6 argumentsOnly 1.25% of the calls have more than 6 arguments
– More than 93% have less than 6 local scalar variables
– Large register set can avoid memory references 

ISA design issues



Instruction set design

• Issues when determining ISA
I t ti  t– Instruction types

– Number of addresses
Add i  d– Addressing modes

Instruction types

• Arithmetic and logic
D  • Data movement

• I/O (memory-mapped, isolated I/O) 
• Flow control

– Branches (unconditional, conditional)Branches (unconditional, conditional)
• set-then-jump (cmp AX, BX; je target)
• Test-and-jump (beq r1, r2, target)Test and jump (beq r1, r2, target)

– Procedure calls (register-based, stack-based)
• Pentium: ret; MIPS: jrPentium: ret; MIPS: jr
• Register: faster but limited number of parameters
• Stack: slower but more general• Stack: slower but more general

Operand types

• Instructions support basic data types
Ch t– Characters

– Integers
Fl ti i t– Floating-point

• Instruction overload
– Same instruction for different data types
– Example: Pentium

mov    AL,address   ;loads an 8-bit value
mov    AX,address   ;loads a 16-bit value
mov EAX address ;loads a 32 bit valuemov    EAX,address  ;loads a 32-bit value

Operand types

• Separate instructions
I t ti  if  th  d i– Instructions specify the operand size

– Example: MIPS
lb Rdest address loads a b telb    Rdest,address   ;loads a byte
lh    Rdest,address   ;loads a halfword 

;(16 bits) ;( )
lw    Rdest,address   ;loads a word 

;(32 bits) 
ld    Rdest,address   ;loads a doubleword 

;(64 bits)



Number of addresses

Number of addresses

• Four categories
3-address machines– 3-address machines
• two for the source operands and one for the result

– 2-address machines2 address machines
• One address doubles as source and result

– 1-address machine
• Accumulator machines
• Accumulator is used for one source and result

– 0-address machines
• Stack machines
• Operands are taken from the stack
• Result goes onto the stack

Number of addresses

Number of instruction operationaddresses instruction operation

3 OP A, B, C A ← B OP C

2 OP A, B A ← A OP B

1 OP A AC ← AC OP A

0 OP T (T 1) OP T0 OP T ← (T-1) OP T

A, B, C: memory or register locations
AC: accumulator
T: top of stack
T 1: second element of stackT-1: second element of stack

3-address

)( EDC
BAY −

=Example: RISC machines, TOY

SUB Y, A, B ; Y = A - B
)( EDC ×+

p ,

opcode A B C

MUL T, D, E ; T = D × E
ADD T, T, C ; T = T + C
DIV Y, Y, T ; Y = Y / T



2-address

)( EDC
BAY −

=Example: IA32

MOV Y, A ; Y = A
SUB Y B Y Y B

)( EDC ×+
p

opcode A B
SUB Y, B ; Y = Y - B
MOV T, D ; T = D
MUL T, E ; T = T × E
ADD T, C ; T = T + C
DIV Y, T ; Y = Y / T

1-address

)( EDC
BAY −

=Example: IA32’s MUL (EAX)

LD D ; AC = D
)( EDC ×+

p ( )

opcode A

MUL E ; AC = AC × E
ADD C ; AC = AC + C
ST Y ; Y = AC
LD A ; AC = A
SUB B ; AC = AC – B
DIV Y ; AC = AC / Y
ST Y ; Y = AC

0-address

)( EDC
BAY −

=Example: IA32’s FPU, HP3000 

PUSH A ; A
PUSH B A B

)( EDC ×+
p ,

opcode
PUSH B ; A, B
SUB ; A-B
PUSH C ; A-B, C
PUSH D ; A-B, C, D
PUSH E ; A-B, C, D, E
MUL ; A-B, C, D× E
ADD ; A-B, C+(D× E)
DIV ; (A-B) / (C+(D× E))
POP Y

Number of addresses

• A basic design decision; could be mixed
Fewer addresses per instruction results in• Fewer addresses per instruction results in
– a less complex processor

h t  i t ti– shorter instructions
– longer and more complex programs
– longer execution time

• The decision has impacts on register usage p g g
policy as well
– 3-address usually means more general-

purpose registers
– 1-address usually means less



Addressing modes

Addressing modes

• How to specify location of operands? Trade-off 
for address range  address flexibility  number for address range, address flexibility, number 
of memory references, calculation of addresses

• Operands can be in three places• Operands can be in three places
– Registers

• Register addressing mode• Register addressing mode

– Part of instruction
• ConstantConstant
• Immediate addressing mode
• All processors support these two addressing modes

– Memory
• Difference between RISC and CISC
• CISC supports a large variety of addressing modes
• RISC follows load/store architecture

Addressing modes

• Common addressing modes
Implied – Implied 

– Immediate (lda R1, 1)
– Direct (st R1, A)Direct (st R1, A)
– Indirect
– Register (add R1, R2, R3)g ( , , )
– Register indirect (sti R1, R2)
– Displacementp
– Stack

Implied addressing

• No address field; 
operand is implied by 

instruction
opcode operand is implied by 

the instruction 
CLC l

opcode

CLC ; clear carry
• A fixed and unvarying 

ddaddress



Immediate addressing

• Address field contains 
the operand value 

instruction
operandopcode the operand value 

ADD 5; AC=AC+5
P    

operandopcode

• Pros: no extra 
memory reference; 
ffaster

• Cons: limited range

Direct addressing

• Address field contains 
the effective address address Aopcode

instruction

the effective address 
of the operand

address Aopcode

Memory ADD A; AC=AC+[A]
• single memory 

Memory

reference
• Pros: no additional 

address calculation
• Cons: limited address operand • Cons: limited address 

space
p

Indirect addressing

• Address field contains 
the address of a address Aopcode

instruction

the address of a 
pointer to the 
operand

address Aopcode

Memory operand
ADD [A]; AC=AC+[[A]]

operand

Memory

• multiple memory 
references

operand

• Pros: large address 
spacep

• Cons: slower

Register addressing

• Address field contains 
the address of a Ropcode

instruction

the address of a 
register

Ropcode

ADD R; AC=AC+R
• Pros: only need a 

small address field; 
shorter instruction 

operand and faster fetch; no 
memory reference

operand

R i t • Cons: limited address 
space

Registers

p



Register indirect addressing

• Address field contains 
the address of the Ropcode

instruction

the address of the 
register containing a 
pointer to the operand

Ropcode

Memory pointer to the operand
ADD [R]; AC=AC+[R]

Memory

• Pros: large address 
space

• Cons: extra memory 
reference

R i t
operand

Registers
p

Displacement addressing

• Address field could 
contain a register Ropcode

instruction
A contain a register 

address and an address
MOV EAX [A+ESI*4]

Ropcode

Memory

A

MOV EAX, [A+ESI 4]
• EA=A+[R×S] or vice 

versa

Memory

versa
• Several variants

– Base-offset: [EBP+8]+ Base-offset: [EBP+8]
– Base-index: [EBX+ESI]
– Scaled: [T+ESI*4]R i t

operand

+

Scaled: [T+ESI 4]
• Pros: flexible
• Cons: complex

Registers
p

• Cons: complex

Displacement addressing

MOV EAX, [A+ESI*4]
Of  i  ll d opcode

instruction
AR • Often, register, called 

indexing register, is 
d f  di l t

opcode

Memory

AR

used for displacement.
• Usually, a mechanism 

Memory

is provided to 
efficiently increase the 

+ indexing register.

R i t
operand

+

Registers
p

Stack addressing

• Operand is on top of 
the stackopcode

instruction

the stack
ADD [R]; AC=AC+[R]

opcode

• Pros: large address 
spaceimplicit

• Pros: short and fast 
fetch

• Cons: limited by FILO 
orderSt k orderStack



Addressing modes

Mode Meaning Pros Cons

Implied Fast fetch Limited instructions

Immediate Operand=A No memory ref Limited operandp y p

Direct EA=A Simple Limited address space

Indirect EA=[A] Large address space Multiple memory ref

Register EA=R No memory ref Limited address space

Register 
indirect EA=[R] Large address space Extra memory ref

Displacement EA=A+[R] Flexibility Complexity

stack EA=stack top No memory ref Limited applicabilitystack EA=stack top No memory ref Limited applicability

IA32 addressing modes

Effective address calculation (IA32)

8

A dummy format for one operand

base index s displacement
3 3 2 8 or 32

y p

p

register
file

adder
shifter adder memory

Based Addressing
• Effective address is computed as

base + signed displacementbase + signed displacement
– Displacement:

– 16-bit addresses: 8- or 16-bit number
– 32-bit addresses: 8- or 32-bit number

• Useful to access fields of a structure or record
B  gi t  i t  t  th  b  dd  f th  t t• Base register → points to the base address of the structure

• Displacement → relative offset within the structure

• Useful to access arrays whose element size is • Useful to access arrays whose element size is 
not 2, 4, or 8 bytes

• Displacement → points to the beginning of the array
• Base register → relative offset of an element within the 

array

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

S. Dandamudi Chapter 11: Page 84



Based Addressing Indexed Addressing
• Effective address is computed as

(index * scale factor) + signed displacement(index  scale factor) + signed displacement
– 16-bit addresses:

– displacement: 8- or 16-bit number
l f– scale factor: none (i.e., 1)

– 32-bit addresses:
– displacement: 8- or 32-bit numberp
– scale factor: 2, 4, or 8

• Useful to access elements of an array 
(particularly if the element size is 2  4  or 8 (particularly if the element size is 2, 4, or 8 
bytes)

• Displacement → points to the beginning of the arrayp p g g y
• Index register → selects an element of the array (array 

index)
• Scaling factor → size of the array element• Scaling factor → size of the array element

Indexed Addressing
Examples
add AX,[DI+20]add  AX,[DI+20]

– We have seen similar usage to access parameters off the stack

add  AX,marks_table[ESI*4]
A bl  l  k bl b   t t (i  – Assembler replaces marks_table by a constant (i.e., 
supplies the displacement)

– Each element of marks_table takes 4 bytes (the scale factor 
value)

– ESI needs to hold the element subscript value

add AX,table1[SI]add  AX,table1[SI]
– SI needs to hold the element offset in bytes
– When we use the scale factor we avoid such byte counting

Based-Indexed Addressing

Based-indexed addressing with no scale factor
Eff i  dd  i  d • Effective address is computed as

base + index + signed displacement

• Useful in accessing two-dimensional arrays
• Displacement → points to the beginning of the array
• Base and index registers point to a row and an element 

within that row

Useful in accessing arrays of records• Useful in accessing arrays of records
• Displacement → represents the offset of a field in a record
• Base and index registers hold a pointer to the base of the • Base and index registers hold a pointer to the base of the 

array and the offset of an element relative to the base of 
the array



Based-Indexed Addressing

• Useful in accessing arrays passed on to a 
procedureprocedure

• Base register → points to the beginning of the array
• Index register → represents the offset of an element 

l i   h  b  f h   relative to the base of the array 

ExampleExample
Assuming BX points to table1

mov AX [BX+SI]mov  AX,[BX+SI]
cmp AX,[BX+SI+2]

compares t o s ccessi e elements of t bl 1compares two successive elements of table1

Based-Indexed Addressing

Based-indexed addressing with scale factor
• Effective address is computed as

base + (index * scale factor) + signed 
displacement

• Useful in accessing two-dimensional arrays g y
when the element size is 2, 4, or 8 bytes

• Displacement ==> points to the beginning of the array
• Base register ==> holds offset to a row (relative to start of 

array)
• Index register ==> selects an element of the row• Index register ==> selects an element of the row
• Scaling factor ==> size of the array element


