
Virtual machines

Abstractions for computers

High-Level Language Level 5

Assembly Language Level 4

Operating System

Instruction Set

Level 3

Architecture

Microarchitecture Level 1

Level 2

Digital Logic Level 0

Level 1

1

Virtual machines

Abstractions for computers

High-Level Language Level 5

Assembly Language Level 4

Operating System

Instruction Set

Level 3

Architecture

Microarchitecture Level 1

Level 2

Digital Logic Level 0

Level 1

2

Virtual machines

Abstractions for computers

High-Level Language Level 5

Assembly Language Level 4

Operating System

Instruction Set

Level 3

Architecture

Microarchitecture Level 1

Level 2

Digital Logic Level 0

Level 1

3

Problems with programming using machine code

Difficult to remember instructions
Difficult to remember variablesDifficult to remember variables
Hard to calculate addresses/relocate variables or
functionsfunctions
Need to handle instruction encoding (e.g. jr Rt)

4

Virtual machines

Abstractions for computers

High-Level Language Level 5

Assembly Language Level 4

Operating System

Instruction Set

Level 3

Architecture

Microarchitecture Level 1

Level 2

Digital Logic Level 0

Level 1

5

 lTOY assembly

Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.cs.Princeton.EDU/IntroCS

TOY assembly
opcode mnemonic syntaxNot mapping to instruction opcode mnemonic syntax

0 hlt hlt
1 add add rd, rs, rt

Data directives
A DW n: initialize a

i bl A

Not mapping to instruction

2 sub sub rd, rs, rt
3 and and rd, rs, rt
4 xor xor rd rs rt

variable A as n
B DUP n: reserve n words
(n is decimal) 4 xor xor rd, rs, rt

5 shl shl rd, rs, rt
6 shr shr rd, rs, rt

ld ld d dd

(m)
Support two types of
literals, decimal and
hexadecimal (0x) 7 lda lda rd, addr

8 ld ld rd, addr
9 st st rd, addr

hexadecimal (0x)
Label begins with a letter
Comment begins with ; 9 t t r , a r

A ldi ldi rd, rt
B sti sti rd, rt
C bz bz rd addr

g
Case insensitive
Program starts with the
first instruction it meets C bz bz rd, addr

D bp bp rd, addr
E jr jr rd (rt)

first instruction it meets

Some tricks to handle the
t ti dd 0 10

7

j j ()
F jl jl rd, addrstarting address 0x10

Assembler
Assembler’s task:

Convert mnemonic operation codes to their
h l lmachine language equivalents

Convert symbolic operands to their equivalent
machine addresses machine addresses
Build machine instructions in proper format
Convert data constants into internal machine
representations (data formats)
Write object program and the assembly listing

8

Forward Reference

Definition
A reference to a label that is defined later in the
program

SolutionSolution
Two passes
– First pass: scan the source program for label p p g
definition, address accumulation, and address
assignment

– Second pass: perform most of the actual Second pass: perform most of the actual
instruction translation

9

Assembly version of REVERSE
A DUP 32

ld R1 1

int A[32]; 10: C020

20 7101lda R1, 1
lda RA, A
lda RC, 0i=0;

20: 7101
21: 7A00
22: 7C00

read ld RD, 0xFF
bz RD exit

Do {
RD=stdin;
if (RD==0) break;

23: 8DFF
24: CD29bz RD, exit

add R2, RA, RC
sti RD, R2

if (RD==0) break;

A[i]=RD;

24: CD29
25: 12AC
26: BD02

add RC, RC, R1
bz R0, read

i=i+1;
} while (1);

27: 1CC1
28: C023

exit jl RF, printr
hlt

printr(); 29: FF2B
2A: 0000

10

Assembly version of REVERSE
; print reverse
; array address (RA)
 b f l t (RC)

printr()
{
d { ; number of elements (RC)

printr sub RC, RC, R1
add R2, RA, RC

do {
i=i-1; 2B: 2CC1

2C: 12AC
ldi RD, R2
st RD, 0xFF
bp RC printr

print A[i];
} while (i>=0);

2D: AD02
2E: 9DFF
2F: DC2Bbp RC, printr

bz RC, printr
return jr RF

} while (i>=0);

return;

2F: DC2B
30: CC2B
31: EF00

}

toyasm < reverse.asm > reverse.toy

11

Function Call: A Failed Attempt
Goal: x × y × z.

Need two multiplications: x × y, (x × y) × z.
S l ti 1 it lti l d 2 ti

10: 8AFF

function?

Solution 1: write multiply code 2 times.
Solution 2: write a TOY function.

11: 8BFF
12: C030
13: 1AC0

A failed attempt:
Write multiply loop at 30-36.
Calling program agrees to store arguments

14: 8BFF
15: C030
16: 9CFFCalling program agrees to store arguments

in registers A and B.
Function agrees to leave result in register C.

ll f h b l 0

17: 0000

30: 7C00
31 7101Call function with jump absolute to 30.

Return from function with jump absolute.
31: 7101
32: CA36
33: 1CCB
34 2AA1

Reason for failure.
Need to return to a VARIABLE

 dd

34: 2AA1
35: C032
36: C013?

12

memory address.

Multiplication Function
Calling convention.

Jump to line 30.
St nd b in ist s A nd B 10: 8AFF

function

Store a and b in registers A and B.
Return address in register F.
Put result c = a × b in register C.

11: 8BFF
12: FF30
13: 1AC0g

Register 1 is scratch.
Overwrites registers A and B.

14: 8BFF
15: FF30
16: 9CFF

function.toy

17: 0000

30: 7C00
31 7101

30: 7C00 R[C] ← 00
31: 7101 R[1] ← 01

y
31: 7101
32: CA36
33: 1CCB
34 2AA132: CA36 if (R[A] == 0) goto 36

33: 1CCB R[C] += R[B]
34: 2AA1 R[A]--
35 C032 t 32

opcode E

34: 2AA1
35: C032
36: EF00

13

35: C032 goto 32
36: EF00 pc ← R[F] return

jump register

Multiplication Function Call
Client program to compute x × y × z.

Read x, y, z from standard input.
N t : PC is in m nt d b f inst ti n is Note: PC is incremented before instruction is
executed.

– value stored in register F is correct return addressg

function.toy (cont)
opcode F
jump and link

10: 8AFF read R[A] x
11: 8BFF read R[B] y
12: FF30 R[F] ← pc; goto 30 x * y

R[F] ←
12: FF30 R[F] ← pc; goto 30 x * y
13: 1AC0 R[A] ← R[C] (x * y)
14: 8BFF read R[B] z
15: FF30 R[F] ← pc; goto 30 (x * y) * z R[F] ←

13

15: FF30 R[F] ← pc; goto 30 (x * y) * z
16: 9CFF write R[C]
17: 0000 halt

16

14

Function Call: One Solution
Contract between calling program and
function:

C llin p m st s f n ti n p m t s in Calling program stores function parameters in
specific registers.
Calling program stores return address in a specific g p g p
register.

– jump-and-link
Calling program sets PC to address of functionCalling program sets PC to address of function.
Function stores return value in specific register.
Function sets PC to return address when finished.

– jump register

What if you want a function to call another What if you want a function to call another
function?

Use a different register for return address.
M l: st t dd ss s st k

15

More general: store return addresses on a stack.

stack
STK_TOP DW 0xFF

 th d ill R8 R9
data

; these procedures will use R8, R9
; assume return address is in RE, instead of RF
; it is the only exception

code

y p

; push RF into stack
push lda R8 1push lda R8, 1

ld R9, STK_TOP
sub R9, R9, R8
st R9, STK_TOP
sti RF, R9
jr RE stack

STK_TOP

jr RE

stdin/stdoutFF

FE
stack

16

stack
; pop and return [top] to RF
pop lda R8, 0xFF

ld R9 STK TOPld R9, STK_TOP
sub R8, R8, R9
bz R8, popexitp p
ldi RF, R9
lda R8, 1
add R9 R9 R8add R9, R9, R8
st R9, STK_TOP

popexitjr RE

; the size of the stack, the result is in R9
stksize lda R8 0xFFstksize lda R8, 0xFF

ld R9, STK_TOP
sub R9, R8, R9
j RE

17

jr RE

Procedure prototype

With a stack, the procedure prototype is changed. It
allows us to have a deeper call graph by using the
stack.
mul mul jl RE, push A A

B

code
code

A() B() C()

jr RF

jl RE pop

call B
call C

jl RE, pop
jr RF

before after

A

18

Assembly programming flow
 asm source asm source

assembler assembler

object
•Combine separate object codes

l f flinker

t bl

•Supply necessary information for
references between them

loader

executable

Bring the object program into loader g j p g
memory for execution

19

Target machine

Linking
Many programs will need multiply. Since multiply will
be used by many applications, could we make multiply
 lib ?a library?

Toyasm has an option to generate an object file so y p g j
that it can be later linked with other object files.

That is why we need linking Write a subroutine mul3 That is why we need linking. Write a subroutine mul3
which multiplies three numbers in RA, RB, RC
together and place the result in RD.

h f lThree files:
stack.obj: implementation of stack, needed for
procedureprocedure
mul.obj: implementation of multiplication.
multest.obj: main program and procedure of mul3

20

toylink multest.obj mul.obj stack.obj > multest.toy

object file (multest.asm)
A DW 3
B DW 4
C DW 5
; calculate A*B*C
main ld RA, A

ld RB, B
ld RC Cld RC, C
jl RF, mul3
st RD, 0xFF
hlt

; RD=RA*RB*RC
; return address is in RF
mul3 jl RE, push

lda RD, 0
add RD, RC, R0
jl RF, mul
add RA RC R0add RA, RC, R0
add RB, RD, R0
jl RF, mul
add RD, RC, R0

21

jl RE, pop
jr RF

object file (mul.obj)
SIXTEEN DW 16

; multiply RC=RA*RB

// size 29
// export 4
// SIXTEEN 0x00
// mul 0x10

export
tablep y

; return address is in RF
; it will modify R2, R3 and R4 as well
mul jl RE, push

// mul 0x10
// m_loop 0x14
// m_end 0x1A
// literal 2 17 18
// li 14

table

Th lit l
lda RC, 0
lda R1, 1
ld R2, SIXTEEN

// lines 14
00: 0010
10: FE00
11: 7C00

need to fill in
address of push

These are literals.
No need to relocate

ld R2, SIXTEEN
m_loop sub R2, R2, R1

shl R3, RA, R2
shr R4, RB, R2

d R4 R4 R1

12: 7101
13: 8200
14: 2221
15: 53A2

p
once we know it

and R4, R4, R1
bz R4, m_end
add RC, RC, R3

m end bp R2 m loop

15 53A2
16: 64B2
17: 3441
18: C41A
19: 1CC3m_end bp R2, m_loop

jl RE, pop
jr RF

19: 1CC3
1A: D214
1B: FE00
1C: EF00
// i t 2

need to fill in
address of pop
once we know it

22

j
// import 2
// push 1 0x10
// pop 1 0x1B

import
table

Linking
multest obj mul objmultest.obj mul.obj

29

0x00
mul 0x10

32
29

push 0x10
pop 0x1B

start address
0x20

start address=0
start address
=0+32=0x20

stack.obj

0x3Dpush 0x10
pop 0x16

0x3D+0x10=0x4D
0x3D+0x16=0x53

35

pop 0x16 0x3D+0x16=0x53

start address
32 29 0 3D

23

=32+29=0x3D

Resolve external symbols
// i 29// size 29
// export 4
// SIXTEEN 0x00
// mul 0x10

export
table

// m_loop 0x14
// m_end 0x1A
// literal 2 17 18
// lines 14These are literals

20: 0010
30: FE4D
31: 7C00
32: 7101

// lines 14
00: 0010
10: FE00
11: 7C00
12: 7101

need to fill in
address of push
once we know it

These are literals.
No need to relocate

32: 7101
33: 8220
34: 2221
35: 53A2
36 64B2

12: 7101
13: 8200
14: 2221
15: 53A2
16 64B2

once we know it

36: 64B2
37: 3441
38: C43A
39: 1CC3

16: 64B2
17: 3441
18: C41A
19: 1CC3

d t fill i3A: D234
3B: FE53
3C: EF20

1A: D214
1B: FE00
1C: EF00
// import 2

need to fill in
address of pop
once we know it

24

// import 2
// push 1 0x10
// pop 1 0x1B

import
table

Virtual machines

Abstractions for computers

High-Level Language Level 5
compiler

Assembly Language Level 4

Operating System

Instruction Set

Level 3

Architecture

Microarchitecture Level 1

Level 2

Digital Logic Level 0

Level 1

25

Virtual machines

Abstractions for computers
Operating system is a

High-Level Language Level 5

Operating system is a
resource allocator

Managing all resources
Assembly Language Level 4

system call

– Managing all resources
(memory, I/O, execution)

– Resolving requests for
Operating System

Instruction Set

Level 3

g q
efficient and fair usage

Operating system is a
Architecture

Microarchitecture Level 1

Level 2 control program
– Controlling execution of

Digital Logic Level 0

Level 1
programs to prevent errors
and improper use of the
computer

26

computer

Virtual machines

Abstractions for computers

High-Level Language Level 5

Assembly Language Level 4

assemblerOperating System

Instruction Set

Level 3
assembler

Architecture

Microarchitecture Level 1

Level 2

Digital Logic Level 0

Level 1

27

Virtual machines

Abstractions for computers

High-Level Language Level 5

Assembly Language Level 4

Operating System

Instruction Set

Level 3

Architecture

Microarchitecture Level 1

Level 2architecture

Digital Logic Level 0

Level 1

28

Virtual machines

Abstractions for computers

High-Level Language Level 5

Assembly Language Level 4

Operating System

Instruction Set

Level 3

Architecture

Microarchitecture Level 1

Level 2

Digital Logic Level 0

Level 1
DSD, electronics

29

Assignment #2
Assigned: 11/03/2008
Due: 11:59pm 11/16/2008
P t 1 (50%) it d BCD t t h d i l Part 1 (50%): write a procedure BCD to convert a hexadecimal
number into a BCD (Binary-Coded Decimal). The input number is
placed in RA. The result should be placed in RB. The return p p
address is in RF. (Hint: you need to implement division)

Part 2 (30%): write a procedure CNT0 to count 0’s in an array Part 2 (30%): write a procedure CNT0 to count 0 s in an array.
The address of the array is placed at RA. The size of the array
is specified by RC. The result should be placed in RB. The return
address is in RF.

Part 3 (20%): write a program to read a series of numbers Part 3 (20%): write a program to read a series of numbers
specified by the user from stdin until the input is 0x0000.
Count the number of 0-bits in the input array and display this

b i BCD i td t

30

number using BCD in stdout.

