Course overview

Computer Organization and Assembly 1anguages
Yung-Yn Chuang
2008/09/15

with slides by Kip Irvine

Logistics S

e Meeting time: 2:20pm-5:20pm, Monday
e Classroom: CSIE Room 104
e Instructor: Yung-Yu Chuang
e Teaching assistants: Z {2:&./§ 3+ fa
 Webpage:
http://www.csie.ntu.edu.tw/~cyy/asm
id / password

e Forum:
http://www.cmlab.csie.ntu.edu.tw/~cyy/forum/viewforum.php?f=13

e Mailing list: assembly@cmlab.csie.ntu.edu.tw
Please subscribe via

https://cmlmail.csie.ntu.edu.tw/mailman/listinfo/assembly/

Prerequisites e

Textbook et

e Better to have programming experience with
some high-level language such C, C ++,Java ...

e Readings and slides

References (TOY) I

Princeton’s Introduction to CS,
http://www.cs.princeton.edu/intro

cs/50machine/
http://www.cs.princeton.edu/intro

cs/60circuits/

References (ARM) i

ARM Assembly Language
Programming, Peter Knaggs and
Stephen Welsh

ARM System Developer’s Guide,
Andrew Sloss, Dominic Symes and
Chris Wright

References (ARM) I

~ Whirlwind Tour of ARM Assembly,
~ TONC, Jasper Vijn.

ARM System-on-chip Architecture,
Steve Furber.

References (IA32) Bt

ASSEMBLY
LANGUAGE

Assembly Language for Intel-Based
Computers, 5th Edition, Kip Irvine

The Art of Assembly Language, Randy
Hyde

References (IA32) i

i Grading (subject to change) “11.-'-‘7%
e \lichael Abrash' s Graphics Programming = Assignments (4~5 projects, 50%)
HAPHl Black Book e Class participation (5%)
Einek Sook - Midterm exam (20%)

e Final project (25%)
- Examples from last years

COMPUTER SYSTEMS

Computer Systems: A Programmer's

g Perspective, Randal E. Bryant and David
. R. O'Hallaron

Computer Organization and Assembly Ianguef”g@é-‘““lE Early computers i

e It is not only about assembly and not only about
“computer”.

o/t By
o il s = :
OO | ARTTnTTn

Early programming tools

ALGER 3993 1114382
nn

First popular PCs i

Early PCs

I _

Intel 8086
processor

768KB memory
20MB disk

Dot-Matrix
printer (9-pin)

GUI/IDE e

- File Hindow Help

Compile IEBHEN Options
[=]
type pstiva="tstiva;

Fvaluate/modify.. . Ctrl-Fi
tstiva = record *

next : pstiva; 8
val : longint;
end; Delete watch
Edit watch...
var Remove all watches
a ; arrayll..100,1..100] of longi
d,pi : array[l..100] of longint;
n : longint;
prim,ultim : pstiva;

Fdit Search Run

procedure AddToStivali:longint);
begin
if (prim = nil) then
begin
new(prim);
ultim := prim;
prim~.next := nil;
end
else

F1 Help |

Insert a watch expression into the Watch window

More advanced architectures et More advanced software etk

Pipeline
SIMD
Multi-core
Cache

[L NORS =1 REl-:
i .
i 0

My computers gl

s

Desktop
(Intel Pentium D

VAIO TXL7TP
(Intel Pentium M 1.1GHz)

/GBA SP iPod classic Nokia 6070
(ARM7 16.78MHz) (ARM7 80MHz) (ARM7 51MHz)

Computer Organization and Assembly Iangua[ﬁg:@e'_-‘_“E

e It is not only about assembly and not only about
“computer”.

e |t will cover

- Basic concept of computer systems and architecture
- ARM assembly language

- x86 assembly language

TOY machine B G

Load Look Step

ADDR OUTPUT

. . .

TOY machine e

e Starting from a simple construct

control aff -

-— magnet off

connechon

- Spring

TOY machine B G

» Build several components and connect them
together

~ «
Cond [=0
Regi Eval -
\; W Data
2
Memory A Dat: +
L
Addr # u
PC B Data
W Addr A5
RDat
! >— A Addr
— W Data B Addr
1 w
W

) I
+
H-h |
1 1
Fetch

by 1-bit Opcode
m counter I > Execute Control -
Lot Fetch

Clock

. ol . B =
TOY machine St TOY machine St
int A[32]; A DUP 32 10: €020
Ida R1,1 20: 7101
Ida RA, A 21: 7A00
i=0; Ida RC,0 22:7€00
Do {
RD=stdin; read Id RD, OxFF 23: 8DFF
if (RD==0) break; bz RD, exit 24: CD29
add R2,RA,RC 25: 12AC
A[i]=RD; sti RD, R2 26: BDO2
i=i+l; add RC, RC, R1 27: 1ccl
} while (1); bz RO, read 28: €023
printr(); exit |l RF, printr 29: FF2B
hit 2A: 0000
ARM it IA32 IS

* ARM architecture
e ARM assembly programming

D afl -

IA-32 Processor Architecture
Data Transfers, Addressing, and Arithmetic
Procedures

Conditional Processing
Integer Arithmetic

Advanced Procedures

Strings and Arrays

High-Level Language Interface
Real Arithmetic (FPU)

SIMD

Code Optimization

Writing toy OS

What you will learn I e

e Basic principle of computer architecture
e How your computer works

e How your C programs work

e Assembly basics

ARM assembly programming

IA-32 assembly programming

Specific components, FPU/MMX

Code optimization

Interface between assembly to high-level
language

Toy OS writing

Why taking this course? fio i

e Does anyone really program in assembly
nowadays?

« Yes, at times, you do need to write assembly
code.

e |t is foundation for computer architecture and
compilers. It is related to electronics, logic
design and operating system.

CSIE courses IS

e Hardware: electronics, digital system,
architecture

» Software: operating system, compiler

wikipedia flo s

e Today, assembly language is used primarily for
direct hardware manipulation, access to
specialized processor instructions, or to address
critical performance issues. Typical uses
are device drivers, low-level embedded systems,
and real-time systems.

Reasons for not using assembly Tt

Reasons for using assembly Tt

e Development time: it takes much longer to
develop in assembly. Harder to debug, no type
checking, side effects...

» Maintainability: unstructured, dirty tricks
e Portability: platform-dependent

e Educational reasons: to understand how CPUs
and compilers work. Better understanding to
efficiency issues of various constructs.

« Developing compilers, debuggers and other
development tools.

e Hardware drivers and system code
e Embedded systems
e Developing libraries.

e Accessing instructions that are not available
through high-level languages.

e Optimizing for speed or space

To sum up S

Overview Tt

e It is all about lack of smart compilers

e Faster code, compiler is not good enough

e Smaller code , compiler is not good enough, e.g.

mobile devices, embedded devices, also
Smaller code — better cache performance —
faster code

e Unusual architecture , there isn’t even a
compiler or compiler quality is bad, eg GPU,
DSP chips, even MMX.

« Virtual Machine Concept
» Data Representation
» Boolean Operations

Translating Languages

English: Display the sum of A times B plus C.

C++:
cout << (A * B + C);

Virtual machines Tt

!

Intel Machine Language:

Abstractions for computers

High-Level Language Level 5

Assembly Language Level 4

Operating System Level 3

Instruction Set

Architecture Level 2
Assembly Language: A1 00000000
mov eax,A Microarchitecture Level 1
mul B — | F7 25 00000004
add eax,C 03 05 00000008 Digital Logic Level 0
call Writelnt E8 00500000
High-Level Language S Assembly Language IS

e Level 5
» Application-oriented languages

e Programs compile into assembly language
(Level 4)

cout << (A * B + O);

e Level 4

e Instruction mnemonics that have a one-to-one
correspondence to machine language

= Calls functions written at the operating
system level (Level 3)

e Programs are translated into machine
language (Level 2)
mov eax, A
mul B

add eax, C
call Writelnt

Operating System Tt

Instruction Set Architecture i

e Level 3
e Provides services

e Programs translated and run at the instruction
set architecture level (Level 2)

e Level 2
= Also known as conventional machine language

e Executed by Level 1 program
(microarchitecture, Level 1)

Al 00000000
F7 25 00000004
03 05 00000008
E8 00500000

Microarchitecture St

Digital Logic e

e level 1

« Interprets conventional machine instructions
(Level 2)

» Executed by digital hardware (Level 0)

=

Eapigy
pEEE
il | W'fg'

i] 3

Level O
CPU, constructed from digital logic gates
System bus __
Memory

!
3
4

riloe e o
R
i
E B i 4
; =
E & i
I
= -
| I
; e
i) A
I
i = s
L
=l
o4

Data representation Ry

e Computer is a construction of digital circuits
with two states: on and off

* You need to have the ability to translate
between different representations to examine
the content of the machine

e Common number systems: binary, octal,
decimal and hexadecimal

Binary Representations it

e Electronic Implementation
- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

3.3V
2.8V

0.5v
0.0v

Binary numbers S
e Digitsare 1 and 0

(a binary digit is called a bit)

1 =true

0 = false
e MSB -most significant bit
e LSB -least significant bit

]] MSB LSB
= Bitnumbering: 71 611001010011100
15 0

e A bit string could have different interpretations

Unsigned binary integers sl

e Each digit (bit) is either 1 or 0

e Each bit represents a powerof 2: [1[1[1[1[1[1][1][1]
27 26 25 24 28 22 2t 20

Table 1-3 Binary Bit Position Values.

Pl Decimal Value el Decimal Value

20 1 28 256
Every bmary o 5 29 512
number is a - 10

52 4 2 1024
sum of powers . -

= - -
of 2 2 8 2 2048

2* 16 212 4006

23 32 213 8192

26 64 214 16384

27 128 215 32768

Translating Binary to Decimal I

Weighted positional notation shows how to
calculate the decimal value of each binary bit:

dec = (D, ; x 2" + (D, x 22 + ... + (D, x 21) + (D,

Translating Unsigned Decimal to Binary;i“-.j—ﬁi

» Repeatedly divide the decimal integer by 2. Each
remainder is a binary digit in the translated value:

X 20) Division Quotient Remainder
D = binary digit 3772 I8 ! 37 =100101
18/2 9 0
972 4 1
binary 00001001 = decimal 9: e 5 0
(1x28)+(1x20=9 2/2 ! 0
1/2 0 |
Binary addition gt Integer storage sizes Toe
» Starting with the LSB, add each pair of digits, byte
include the carry if present. Standard sizes: word
doubleword
carry. 1 quadword‘ 64

0,0/ 0]O0]O0O/1 0|0 (4)

+ lolololojo|11 1| @

ojoojol1/0|1]|1 (1)

bit positon:. 7 6 5 4 3 2 1 O

Table 1-4 Ranges of Unsigned Integers.

Storage Type Range (low—high) Powers of 2
Unsigned byte 0to 255 0w 2®- 1)

Unsigned word 0 to 65.335 Oto (26— 1)
Unsigned doubleword 0 to 4,294,967,295 0w (22 -1
Unsigned quadword 0 to 18.446,744.073,709.551,615 Ot (2% -1y

Practice: What is the largest unsigned integer that may be stored in 20 bits?

Large measurements —[m

Hexadecimal integers Tt

Kilobyte (KB), 21° bytes
Megabyte (MB), 220 bytes
Gigabyte (GB), 230 bytes
Terabyte (TB), 240 bytes
Petabyte

Exabyte

Zettabyte

Yottabyte

All values in memory are stored in binary. Because long
binary numbers are hard to read, we use hexadecimal

representation.
Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary Decimal Hexadecimal Binary Decimal | Hexadecimal
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 1010 10 A
0011 3 3 1011 I B
0100 4 4 1100 12 C
0101 5 5 1101 13 D
0110 6 6 1110 14 E
0111 7 7 111 15 F

Translating binary to hexadecimal

1T

r b1
=

Converting hexadecimal to decimal ==

» Each hexadecimal digit corresponds to 4 binary

bits.

» Example: Translate the binary integer
000101101010011110010100 to hexadecimal:

I

6

A

)

4

0001

0110

1010

Ol111

1001

0100

« Multiply each digit by its corresponding
power of 16:
dec = (D5 x 163) + (D, x 162) + (D, x 16%) + (D, x 16°)

e Hex 1234 equals (1 x 16%) + (2 x 162) + (3 x 161) + (4
x 169), or decimal 4,660.

* Hex 3BA4 equals (3 x 16%) + (11 * 162) + (10 x 16%)
+ (4 x 169), or decimal 15,268.

Powers of 16 =

Converting decimal to hexadecimal ‘==

Used when calculating hexadecimal values up to Division Quotient Remainder
8 digits long:
422716 26 6
16" Decimal Value 16" Decimal Value
16 1 16+ 65,536 26/16 l A
16! 16 167 1,048,576 1/16 0 |
16> | 256 16° 16,777.216
160 | 4096 16’ 268,435,456 decimal 422 = 1A6 hexadecimal
Hexadecimal addition et Hexadecimal subtraction et

Divide the sum of two digits by the number base
(16). The quotient becomes the carry value, and
the remainder is the sum digit.

1 1
36 28 28 O6A
42 45 58 4B
78 6D 80 B5S

Important skill: Programmers frequently add and subtract the
addresses of variables and instructions.

When a borrow is required from the digit to the
left, add 10h to the current digit's value:

-1
C6 75
A2 47
24 2E

Practice: The address of varl is 00400020. The address of the next
variable after varl is 0040006A. How many bytes are used by varl?

Signed integers 1SS

The highest bit indicates the sign. 1 = negative,
0 = positive

sign bit
1 1 1,101 1|0 Negative
0jo0 07011703170 Positive

If the highest digit of a hexadecmal integer is > 7, the value is
negative. Examples: 8A, C5, A2, 9D

Twao's complement notation et

Steps:
- Complement (reverse) each bit
- Add 1
Starting value 00000001
Step 1: reverse the bils 11111110
Step 2: add 1 to the value from Step | 11111110
+00000001
Sum: two’s complement representation 11111111

Note that 00000001 + 11111111 = 00000000

Binary subtraction el

e When subtracting A — B, convert B to its two's
complement

e Add A to (-B)
01100 —— 01100

-00011 11101
01001
Advantages for 2’s complement:
e No two O’s
e Sign bit

 Remove the need for separate circuits for add
and sub

Ranges of signed integers St

The highest bit is reserved for the sign. This limits
the range:

Storage Type Range (low—high) Powers of 2

Signed byte —128 10 +127 2T (@' -1

Signed word ~32,768 to +32,767 =2V (219 - 1)

Signed doubleword ~2.147.483.648 10 2.147.483.647 081 (2% 1y

Signed quadword -9.223.372.036.854.775.808 to 2810 (2% - 1)
+9.223.372,036,854.775.807

Character

e Character sets

Standard ASCII(0 — 127)
Extended ASCII (0 — 255)
ANSI (0 — 255)
Unicode (0 — 65,535)
* Null-terminated String
- Array of characters followed by a null byte
= Using the ASCII table
- back inside cover of book

Representing Instructions

int sum(int x, iInt y)

{ Alpha sum Sun sum PC sum
return x+y; 00 81 55
} 00 C3 89
- For this example, Alpha & ?1(2) Eg :2
Sun use two 4-byte 01 90 75
instructions 80 02 0C
- Use differing numbers of FA 00 03
instructions in other cases 68 09 45
. . 08
- PC uses 7 instructions 89
with lengths 1, 2, and 3 EC
bytes 5D
« Same for NT and for Linux c3

« NT / Linux not fully binary
compatible

Different machines use totally different
instructions and encodings

Boolean algebra

« Boolean expressions created from:

- NOT, AND, OR
Expression Description
X NOT X
XAy XANDY
Xv Y XORY
X v Y (NOTX)ORY
X AY) NOT (X AND Y)
XAy XAND(NOTY)

NOT

= Inverts (reverses) a boolean value
e Truth table for Boolean NOT operator:

X —X

Digital gate diagram for NOT:
F T
T F >

AND

e Truth if both are true

= Truth table for Boolean AND operator:

e True if either is true
e Truth table for Boolean OR operator:

XY XAY XY XvY
Digital gate diagram for AND: Digital gate diagram for OR:
F F F 7} F F F j ;
F T F AND F T T OR
T F F T F T
T T T T T T
Operator precedence Implementation of gates T

< NOT > AND > OR
e Examples showing the order of operations:

Expression Order of Operations
XvY NOT, then OR
TIXvY) OR, then NOT
Xv(YAZ) AND, then OR

= Use parentheses to avoid ambiguity

°o F|U|d SWitCh (http://www.cs.princeton.edu/introcs/lectures/fluid-computer.swf)

Click the lnput Buttons t
animate the OR BLOCK.

Implementation of gates At Implementation of gates
NOT = x'
xrr \ e o
1lo j\-‘m’ ' .-i_o
seheniatic control off “ contral o e
e OR = x+y
— magnet off - PHAGHEL OIF i i *°
connection i 8 I T e
é 101 s;nn’.‘ [o8 gate "i_TTl
é - spring < 1111 +lT1 i 1
a 1] 1 1 AND = xy
0—+—0 1—'—1 o—l—o 1—'—0 xy o _H»LO
Anatomy of a relay (controlled switch) paje .2 [X 140 ._:ch_o
v ’ AND gate ' #u
11 1 #1
Truth Tables @1 of 2) i Truth Tables (2 of 2)
» A Boolean function has one or more Boolean e Example: X A =Y
inputs, and returns a single Boolean output.
e A truth table shows all the inputs and outputs X Y Y XA Y
of a Boolean function
F F T F
X | ™X | Y X v Y
Example: =X v Y F T F T F T F F
T T T T 3 T T
T F F F
T T F F
T F T T

