
Course overview

Computer Organization and Assembly Languages p g z y g g
Yung-Yu Chuang
2008/09/152008/09/15

with slides by Kip Irvine

Logistics

• Meeting time: 2:20pm-5:20pm, Monday
Classroom: CSIE Room 104 • Classroom: CSIE Room 104

• Instructor: Yung-Yu Chuang
T hi i t t 李根逸/黃子桓• Teaching assistants: 李根逸/黃子桓

• Webpage:
http://www.csie.ntu.edu.tw/~cyy/asm

id / password p
• Forum:

http://www.cmlab.csie.ntu.edu.tw/~cyy/forum/viewforum.php?f=13

• Mailing list: assembly@cmlab.csie.ntu.edu.tw
Please subscribe via
https://cmlmail.csie.ntu.edu.tw/mailman/listinfo/assembly/

Prerequisites

• Better to have programming experience with
some high level language such C C ++ Java some high-level language such C, C ++,Java …

Textbook

• Readings and slides

References (TOY)

Princeton’s Introduction to CS,
htt // i t d /i thttp://www.cs.princeton.edu/intro
cs/50machine/
http://www.cs.princeton.edu/intro
cs/60circuits/

References (ARM)

ARM Assembly Language
P i P t K d Programming, Peter Knaggs and
Stephen Welsh

ARM System Developer’s Guide,
Andrew Sloss, Dominic Symes and Andrew Sloss, Dominic Symes and
Chris Wright

References (ARM)

Whirlwind Tour of ARM Assembly,
TONC J VijTONC, Jasper Vijn.

ARM System-on-chip Architecture ARM System on chip Architecture,
Steve Furber.

References (IA32)

Assembly Language for Intel-Based
C t 5th Editi Ki I i Computers, 5th Edition, Kip Irvine

Th A t f A bl L R d The Art of Assembly Language, Randy
Hyde

References (IA32)

Michael Abrash' s Graphics Programming
Bl k B kBlack Book

C t S t A P ' Computer Systems: A Programmer's
Perspective, Randal E. Bryant and David
R O'H ll R. O'Hallaron

Grading (subject to change)

• Assignments (4~5 projects, 50%)
Cl i i i (5%) • Class participation (5%)

• Midterm exam (20%)
• Final project (25%)

– Examples from last years Examples from last years

Computer Organization and Assembly language

• It is not only about assembly and not only about
“computer” computer .

Early computers

Early programming tools First popular PCs

Early PCs

• Intel 8086
processorprocessor

• 768KB memory
• 20MB disk
• Dot-Matrix

printer (9-pin)

GUI/IDE

More advanced architectures

• Pipeline
SIMD• SIMD

• Multi-core
• Cache

More advanced software

More “computers” around us My computers

Desktop
(Intel Pentium D

3GHz Nvidia 7900)

VAIO TX17TP
(I l P i M 1 1GH)

3GHz, Nvidia 7900)

(Intel Pentium M 1.1GHz)

Nokia 6070iPod classicGBA SP Nokia 6070
(ARM7 51MHz)

iPod classic
(ARM7 80MHz)

GBA SP
(ARM7 16.78MHz)

Computer Organization and Assembly language

• It is not only about assembly and not only about
“computer” computer .

• It will cover
– Basic concept of computer systems and architecture
– ARM assembly language
– x86 assembly language

TOY machine

TOY machine

• Starting from a simple construct

TOY machine

• Build several components and connect them
togethertogether

TOY machine

• Almost as good as any computers

TOY machine

A DUP 32int A[32]; 10: C020

lda R1, 1
lda RA, A

20: 7101
21: 7A00

lda RC, 0

d ld RD 0 FF

i=0;
Do {
RD tdi

22: 7C00

23 8DFFread ld RD, 0xFF
bz RD, exit
add R2 RA RC

RD=stdin;
if (RD==0) break;

23: 8DFF
24: CD29
25: 12ACadd R2, RA, RC

sti RD, R2
add RC, RC, R1

A[i]=RD;
i=i+1;

25: 12AC
26: BD02
27: 1CC1

bz R0, read

it jl RF i t

} while (1);

i t ()

28: C023

29 FF2Bexit jl RF, printr
hlt

printr(); 29: FF2B
2A: 0000

ARM

• ARM architecture
ARM bl i• ARM assembly programming

IA32
• IA-32 Processor Architecture
• Data Transfers Addressing and Arithmetic • Data Transfers, Addressing, and Arithmetic
• Procedures
• Conditional Processing g
• Integer Arithmetic
• Advanced Procedures
• Strings and Arrays
• High-Level Language Interface
• Real Arithmetic (FPU)
• SIMD
• Code Optimization
• Writing toy OS

What you will learn

• Basic principle of computer architecture
H k• How your computer works

• How your C programs work
• Assembly basics
• ARM assembly programming• ARM assembly programming
• IA-32 assembly programming

S ifi t FPU/MMX• Specific components, FPU/MMX
• Code optimization
• Interface between assembly to high-level

languageg g
• Toy OS writing

Why taking this course?

• Does anyone really program in assembly
nowadays?nowadays?

Yes at times you do need to write assembly • Yes, at times, you do need to write assembly
code.

• It is foundation for computer architecture and • It is foundation for computer architecture and
compilers. It is related to electronics, logic
design and operating systemdesign and operating system.

CSIE courses

• Hardware: electronics, digital system,
architecturearchitecture

• Software: operating system, compiler

wikipedia

• Today, assembly language is used primarily for
direct hardware manipulation access to direct hardware manipulation, access to
specialized processor instructions, or to address
critical performance issues Typical uses critical performance issues. Typical uses
are device drivers, low-level embedded systems,
and real time systems and real-time systems.

Reasons for not using assembly

• Development time: it takes much longer to
develop in assembly Harder to debug no type develop in assembly. Harder to debug, no type
checking, side effects…
M i t i bilit t t d di t t i k• Maintainability: unstructured, dirty tricks

• Portability: platform-dependent

Reasons for using assembly

• Educational reasons: to understand how CPUs
and compilers work Better understanding to and compilers work. Better understanding to
efficiency issues of various constructs.
D l i il d b d th • Developing compilers, debuggers and other
development tools.

• Hardware drivers and system code
• Embedded systemsy
• Developing libraries.
• Accessing instructions that are not available • Accessing instructions that are not available

through high-level languages.
O ti i i f d • Optimizing for speed or space

To sum up

• It is all about lack of smart compilers

• Faster code, compiler is not good enough
• Smaller code , compiler is not good enough, e.g.

mobile devices, embedded devices, also , ,
Smaller code → better cache performance →
faster code

• Unusual architecture , there isn’t even a
compiler or compiler quality is bad eg GPU compiler or compiler quality is bad, eg GPU,
DSP chips, even MMX.

Overview

• Virtual Machine Conceptp
• Data Representation
• Boolean Operations• Boolean Operations

Translating Languages

English: Display the sum of A times B plus CEnglish: Display the sum of A times B plus C.

C++:

cout << (A * B + C);cout << (A B + C);

Intel Machine Language:
Assembly Language:
mov eax,A

Intel Machine Language:
A1 00000000
F7 25 00000004mul B

add eax,C
ll W it I t

F7 25 00000004
03 05 00000008
E8 00500000call WriteInt E8 00500000

Virtual machines
Abstractions for computers

High-Level Language Level 5

Assembly Language Level 4

Operating System

Instruction Set

Level 3

Architecture

Microarchitecture Level 1

Level 2

Digital Logic Level 0

High-Level Language

• Level 5
• Application-oriented languages
• Programs compile into assembly language Programs compile into assembly language

(Level 4)

cout << (A * B + C);

Assembly Language

• Level 4
• Instruction mnemonics that have a one-to-one

correspondence to machine language
• Calls functions written at the operating

system level (Level 3)y ()
• Programs are translated into machine

language (Level 2)language (Level 2)
mov eax, A
mul Bmul B
add eax, C
call WriteInt

Operating System

• Level 3
• Provides services
• Programs translated and run at the instruction g

set architecture level (Level 2)

Instruction Set Architecture

• Level 2
• Also known as conventional machine language
• Executed by Level 1 program y p g

(microarchitecture, Level 1)

A1 00000000
F7 25 00000004
03 05 00000008
E8 00500000

Microarchitecture

• Level 1
• Interprets conventional machine instructions

(Level 2)
• Executed by digital hardware (Level 0)

Digital Logic

• Level 0
CPU d f di i l l i • CPU, constructed from digital logic gates

• System bus
• Memory

Data representation

• Computer is a construction of digital circuits
with two states: on and offwith two states: on and off

• You need to have the ability to translate
b t diff t t ti t i between different representations to examine
the content of the machine

• Common number systems: binary, octal,
decimal and hexadecimal

Binary Representations

• Electronic Implementation
E t t ith bi t bl l t– Easy to store with bistable elements

– Reliably transmitted on noisy and inaccurate wires

0 1 0

2.8V

3.3V

0.0V

0.5V

Binary numbers

• Digits are 1 and 0
(bi di it i ll d bit) (a binary digit is called a bit)
1 = true
0 = false

• MSB –most significant bit
• LSB –least significant bit

MSB LSB
• Bit numbering: 1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0

MSB LSB

A bit string could have different interpretations

015

• A bit string could have different interpretations

Unsigned binary integers

• Each digit (bit) is either 1 or 0
• Each bit represents a power of 2: 1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

Every binary
number is a

fsum of powers
of 2

Translating Binary to Decimal

Weighted positional notation shows how to Weighted positional notation shows how to
calculate the decimal value of each binary bit:

d (D 2n 1) (D 2n 2) (D 21) (Ddec = (Dn-1 × 2n-1) + (Dn-2 × 2n-2) + ... + (D1 × 21) + (D0
× 20)
D = binary digit

binary 00001001 = decimal 9:

(1 23) (1 20) 9(1 × 23) + (1 × 20) = 9

Translating Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each
remainder is a binary digit in the translated value: remainder is a binary digit in the translated value:

37 = 10010137 = 100101

Binary addition

• Starting with the LSB, add each pair of digits,
include the carry if present include the carry if present.

1carry:

0 0 0 0 0 1 0 0

1

(4)

carry:

0 0 0 0 0 1 1 1+ (7)

0 0 0 0 1 0 1 10 0 0 0 1 0 1 1 (11)

01234bit position: 567 01234bit position: 567

Integer storage sizes

byte

16

8

Standard sizes: 16

32

word

doubleword

64quadword

Standard sizes:

64quadword

Practice: What is the largest unsigned integer that may be stored in 20 bits?Practice: What is the largest unsigned integer that may be stored in 20 bits?

Large measurements

• Kilobyte (KB), 210 bytes
M b (MB) 220 b• Megabyte (MB), 220 bytes

• Gigabyte (GB), 230 bytes
• Terabyte (TB), 240 bytes
• Petabyte• Petabyte
• Exabyte

Z tt b t• Zettabyte
• Yottabyte

Hexadecimal integers

All values in memory are stored in binary. Because long
binary numbers are hard to read we use hexadecimalbinary numbers are hard to read, we use hexadecimal
representation.

Translating binary to hexadecimal

• Each hexadecimal digit corresponds to 4 binary
bits.

• Example: Translate the binary integer• Example: Translate the binary integer
000101101010011110010100 to hexadecimal:

Converting hexadecimal to decimal

• Multiply each digit by its corresponding
 f 16power of 16:

dec = (D3 × 163) + (D2 × 162) + (D1 × 161) + (D0 × 160)

H 1234 l (1 163) + (2 162) + (3 161) + (4• Hex 1234 equals (1 × 163) + (2 × 162) + (3 × 161) + (4
× 160), or decimal 4,660.

• Hex 3BA4 equals (3 × 163) + (11 * 162) + (10 × 161)Hex 3BA4 equals (3 × 16) + (11 16) + (10 × 16)
+ (4 × 160), or decimal 15,268.

Powers of 16

Used when calculating hexadecimal values up to
8 digits long:

Converting decimal to hexadecimal

decimal 422 = 1A6 hexadecimal

Hexadecimal addition

Divide the sum of two digits by the number base
(16) Th ti t b th l d (16). The quotient becomes the carry value, and
the remainder is the sum digit.

36 28 28 6A
11

36 28 28 6A
42 45 58 4B
78 6D 80 B578 6D 80 B5

Important skill: Programmers frequently add and subtract the
addresses of variables and instructionsaddresses of variables and instructions.

Hexadecimal subtraction

When a borrow is required from the digit to the
l ft dd 10h t th t di it' lleft, add 10h to the current digit's value:

C6 75
−1

A2 47
24 2E

Practice: The address of var1 is 00400020. The address of the next
variable after var1 is 0040006A How many bytes are used by var1?variable after var1 is 0040006A. How many bytes are used by var1?

Signed integers

The highest bit indicates the sign. 1 = negative,
0 i i0 = positive

sign bitsign bit

1 1 1 1 0 1 1 0 Negative

0 0 0 0 1 0 1 0 Positive

If the highest digit of a hexadecmal integer is > 7, the value is
negative Examples: 8A C5 A2 9Dnegative. Examples: 8A, C5, A2, 9D

Two's complement notation

Steps:
Complement (reverse) each bit– Complement (reverse) each bit

– Add 1

Note that 00000001 + 11111111 = 00000000

Binary subtraction

• When subtracting A – B, convert B to its two's
complementcomplement

• Add A to (–B)
0 1 1 0 0 0 1 1 0 0

– 0 0 0 1 1 1 1 1 0 1
0 1 0 0 1

Advantages for 2’s complement:Advantages for 2’s complement:
• No two 0’s
• Sign bit
• Remove the need for separate circuits for add

and sub

Ranges of signed integers

The highest bit is reserved for the sign. This limits
the range:the range:

Character

• Character sets
St d d ASCII(0 127)– Standard ASCII(0 – 127)

– Extended ASCII (0 – 255)
ANSI (0 255)– ANSI (0 – 255)

– Unicode (0 – 65,535)

• Null-terminated String
– Array of characters followed by a null byte

• Using the ASCII table
– back inside cover of book

Representing Instructions
int sum(int x, int y)
{ PC sumAlpha sum Sun sum{

return x+y;
}

55
89

00
00

p

81
C3

– For this example, Alpha &
Sun use two 4-byte

E5
8B
45

30
42
01

E0
08
90

instructions
• Use differing numbers of

instructions in other cases

0C
03
45

80
FA
6B

02
00
09instructions in other cases

– PC uses 7 instructions
with lengths 1, 2, and 3

08
89
EC

Diff t hi t t ll diff t

g , ,
bytes

• Same for NT and for Linux

EC
5D
C3

Different machines use totally different
instructions and encodings

• NT / Linux not fully binary
compatible

Boolean algebra

• Boolean expressions created from:
– NOT, AND, OR

NOT

• Inverts (reverses) a boolean value
• Truth table for Boolean NOT operator:

Digital gate diagram for NOT:

NOTNOT

AND

• Truth if both are true
• Truth table for Boolean AND operator:

Digital gate diagram for AND:

AN D

OR

• True if either is true
• Truth table for Boolean OR operator:

Digital gate diagram for OR:

O R

Operator precedence

• NOT > AND > OR
• Examples showing the order of operations:

• Use parentheses to avoid ambiguityUse parentheses to avoid ambiguity

Implementation of gates

• Fluid switch (http://www.cs.princeton.edu/introcs/lectures/fluid-computer.swf)

Implementation of gates Implementation of gates

Truth Tables (1 of 2)

• A Boolean function has one or more Boolean
i d i l B l inputs, and returns a single Boolean output.

• A truth table shows all the inputs and outputs
of a Boolean function

Example: ¬X ∨ Y

Truth Tables (2 of 2)

• Example: X ∧ ¬Y

