Computer Organization and Assembly Languages

Final Project —Tower Defense on Game Boy Advance

THANK TO
J VIIN AND TONC
FAVONIA

DAVID SCOOT PAUL PREECE  NINJA Kiwi

B95902034  [ffi ="
B95902049  [Hiy2$)
B95902106 it



BACKGROUND

I Tower Defense ; is the game which player should defend something. There are
many player in the different kind of T tower defense ;. With the development of the
technology, there are more and more T Tower defense ; Flash-based browser game
of the tower defense and that can play through the internet by browser and let the

game know well.

Take recent example:

I Desktop Tower Defense j is a Flash-based browser game of the tower defense
genre created by first-time game designer Paul Preece in March of 2007. In the span
of a few months, the game had been played over 15.7 million times as of July
2007.The game was among one of Webware 100's top ten entertainment web
applications of 2007.

The Classic of T Tower Defense ; :
1. Enemy appears and goes to some goal on the map
2. Attack the enemy by different method.

After considering, we try to implement our Ttower defense ; game in the GBA.

IDEAL

Just like other T Tower defense ; game, our [ Tower defense ; game's basic prime is
simple. The game is played on the map which contains waste, lake, river, and
mountain at the center of the map. The player should build some tower to kill the
monster. The tower can upgrade by spending some money and contain different
technology tree, the player can choose the part that he think it more well. And kill

the monster before they are able to reach their objective.



The player has some life points. When the monster reaches some goal it will

decrease the remaining life point. When the life point is equal 0, the game is over.

How 1O PLAY

Direction key Move Frame on the map

A Construct the tower which been chosen.

B Call next monsters wave. (Need on no tower’s tiles)
L Not need in this Game

R Look next menu

START Select option on menu

SELECT Pause when play

Tablel. Key

When staying on a tower, you can press R to choose whether to upgrade

(speed/range) or not, or even choose to sell it.

You can only construct a tower on the map without road and tower.
Every monster have different grades, a bullet will decrease one grade of it.

Monster which has higher grade will move faster than those who has lower grade.

TOWER TYPE

Common Tower:\
Attack feature: attack single monster
Attack Speed: Common

Attack Range: Common

Range Tower:\

Attack feature: attack monster in the range of the bullet
Attack Speed: Slow
Attack Range: Small

Slow Tower:\

Attack feature: no damage, but the speed of the monster which is attacked will
decrease
Attack Speed: Common

Attack Range: Common




IMPLEMENTATION OVERVIEW

After deciding our goal that is to build a tower defense game, we request that we
will not implement the program by HAM function or TONC function during the
period of our implementation

We separate this game's implementation into two parts. One part is implemented by
C++, another part is implemented by assembly. For the C++ part, we use a lot of
classes like Game, Menu, Tower, Tower_type, Monster and Bullet to implement the
game.

As we known, T Tower defense ; is composed by towers, bullets, and monsters. To
handle these three components, we have "main" to handle the whole game, and
"game" to handle the pace of the game.

All of these operations are supported by function call which is implemented by

assembly.

As soon as we open the GBA file, "main" will initialize the setting and be ready to be

played.

IMPLEMENTATION - BACKGROUND DISPLAY CONTROL

GBA has 5 different display mode including bitmap mode and tile map mode. We
choose to use mode 0 which has 4 tiles backgrounds using 256 colors palette. Each
pixel is represented by 8 bits. So a 8x8 tile will use 64 bits. The total tile that can be
place in to the VRAM memory is 1024.

Each background can have different priority and can be switch on or off separately.
This feature let us easily switch from play screen to menu screen. And can display

some text message over the play screen.

The following table listed those tables we used and what is display on it.

Background Usage

0 Display the road which the monster can walk on it.

1 The true background.

2 Display the state panel include tower state, memory, life left etc.

3 Anything that cannot be placed in the OAM memory. Such as
menu the blue cross that indicate the range of tower and etc.

Table2. Background




IMPLEMENTATION - OBJECT DISPLAY CONTROL

We have three type of object: tower, monster and bullet. Because there are so many
different objects we have implement an OAM memory management system call that
have two functions. One for allocate memory and one will free the memory that will
not be used anymore. By this way we can place more object on the screen at one

time. And can prevent potential memory leak.

The reason that we do not use OAM to display the state panel is that we already have

too many objects need to display.

IMPLEMENTATION - OBJECT DiSPLAY CONTROL API

To let our C++ program access OAM more easily. We have implemented a set of
function in assembly that supports almost every feature the GBA provide. The
complete list of function is listed below:

void init sprite(int number, int size, int tile no)

void set sprite pic(int number, int size, int tile no)

void set sprite priority(int number, int priority)

void set sprite pos(int number, int x, int vy)

void set sprite affine(int number, int enable, int affine matrix no)

void set sprite alpha(int number, int enable)

void set affine matrix(int number, int pa, int pb, int pc, int pd);

void enable sprite(int number, bool enable)

int load sprite img(void *ptr, int half words)

int allocate(int size, int tile no);

void deallocate(int number);

To use this APl we first use load_sprite_img() to load picture into VRAM. This
function will return a number that point to the memory address that place in VRAM.
Loading the picture will not display it on the screen. To display it you need to call
allocate which will call init_sprite and set an free OAM slot to this picture. Function
allocate() also return a number indicate the OAM slot that will be needed by

set_sprite_* functions.



PICTURE USE IN GAME

Since small memory and few colors can be used, we have a difficult time finding the
background picture. It is also difficult to find suitable pictures for other objects ex:
tower, monster.

So we use A~Y to represent the monsters, and finally find some simple pictures for
the towers (if it is not simple the tower is not good looking due to DPI problem),

and draw a very simple picture for the bullets.

Background image use in game

MAP AND BACKGROUND GENERATOR

For extension in the further, the road which monster walks on should be changed

easily. We obtain this goal by creating a map file define below:

EAMGE 30 SFEED 5@
MOME 'Y Y30 SCORE

Background describe file *.bg File Format

First line contain two integer X Y indicate the map size.

For the next Y line there will be X character describe the map.

Each character can be '0', '1', 'S' or 'E', which indicate wall, road, start point or end

point, respectively.

An example is given at Appendix A.
Program bg2s:
This program will translate *.bg to a tile map that can be read by the GBA. The tile

map will be place at background 0.



Program mm:
This program can translate *.bg to *.h which contain the array which show where the

monster should go at the moment T.

#ifndef TEST1

#define TEST1

static int START_X = 0, START_Y = 2;

static int walk x[83] =
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1, -
l,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1};

static int walk y[83] =
{¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,9,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1, -1, -1,
-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0};

#endif

walk_x[t] and walk_y[t] array means what direct the monster should walk at moment
8*T.

BIOS CALL PROBLEM

At first we want to use atan2() to calculate the angle of the tower. But we find that
the GBA emulator we use do not have a BIOS file. And we cannot find a legal copy on
the web. So we decide that we should use a picture which need not be rotate

instead.

SOUND HANDLE

After investigating Sound part in GBA, it has four channels and two direct sound

channels.

Sound Channel 1 produces square wave variable duty cycle, frequency sweep and
envelope function.

Sound Channel 2 is identical to channel 1 but without the frequency sweep function.
Sound Channel 3 acts as a 4-bit Digital-To-Analog Converts that repeatedly plays a
pattern of samples. And we can sore sixty-four 4-bits sample and separate into two
banks.



Sound Channel 4 produces Pseudo-Noise with an envelope function.
And Direct Sound A and Direct Sound B are the two 8-bit digital-to-analog converts
part of the Game boy Advance Sound System. The samples are stored in consecutive

addresses. These addresses act as a First-In-First-Out.

Every Sound Channel is needed to set 2 to 4 registers.

ENCOUNTER PROBLEM

Display Handle:

I. Because We use mode 0 which is a tile mode. If the background image is too
complicated it may not have enough memory space to save it. To handle this
problem we have to change the background image we first draw manually. By copy
the same tile many times we finally fit the image into memory.

. At first we want to use affine sprite which can be rotate by a rotation matrix
automatically. But we find that the object picture we use is too small and after
rotation it will be out of shape.

lll. The

After trying to set registers of every Sound Channel, because our interrupt process by

assembly is not work well, we cannot play sound by direct sound in interrupt mode.

And Sound Channel 4 produces Pseudo-Noise exactly produce noise. So, we also
cannot use Sound Channel 4.

Therefore, we fail in playing sound by a lot of pattern that is stored by us. Finally, we
play sound by composing of many single notes. And playing it at the begin of the

game and the end of the game.

We search the famous music of the Mario through internet. And transform music to

notes and implement function to handle music.

The definition of the function:
void ini();
void set volume(int right,int left);
void ini chl();
void play chl(int freq);

void len chl(int len);



Above functions are all implemented by assembly.

ini():

Initial all sound channels to let them be ready for playing.

set volume(int right, int left):
Set the volume of all sound channel
Right is for right volume
Left is for left volume

ini chl():

Initial sound channel 1 to let it be ready for playing

len _chl(int len): //len means length 0 <= len <= 0x003F
Set the length of the sound channel 1' sound
The sound length is a 6 bit value obtained from the following formula:
Sound length = (64-register value)*(1/256) seconds.

play chl(int freq): //freq means frequency 0 <= freq <= Ox07FF
Play sound channel 1 with frequency
The exactly frequency which is played:
(2717)/(2048 - freq)

Set for easy to use:

#define RATE(note, oct) ( 2048-(notes[note]>>(4+(oct)))

//The above definition let we can use note and octave to generate the
value which register should be set.

enum{
cC = 0, CI1Is, DD, DIS, EE, FF, FIS, GG, GIS, AA, BES, BB
}

//Above let we can use the note more intuitively

const int notes[12] = {
8013, 7566, 7144, 6742, // C , C#, D , D#



6362, 6005, 5666, 5346, // E , F , F#, G
5048, 4766, 4499, 4246 // G#, A , A#, B
};

//Above let the note can match its value for the define RATE



APPENDIX A BINARY MAP

File: test.bg

32 20
00000000000000000000000000000000
00000000000000000000000000000000
S1111111111111111110000000000000
00000000000000000010000000000000
00000000000000000010000000000000
00111111111111111110000000000000
00100000000000000000000000000000
00100000000000000000000000000000
00100000000000000000000000000000
00100000000000000000000000000000
00100000000000001111111111111E00
00100000000000001000000000000000
00100000000000001000000000000000
00100000000000001000000000000000
00100000000000001000000000000000
00100000000000001000000000000000
00100000000000001000000000000000
00111111111111111000000000000000
00000000000000000000000000000000
00000000000000000000000000000000



SCREEN SHOOT

APPENDIX B




