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Announcement

• Please submit homeworks if you haven’t by 
1/10.

• Final project demo time on 1/24 or 1/31. The 
mechanism for signup will be mailed to the 
mailing list soon.

• Mail your report to TA before your demo time. 
The length of report depends on your project 
type. It can be html, pdf, doc, ppt…

• TA evaluation today

Reference

• Chapter 6 from “Computer System: A 
Programmer’s Perspective”

Computer system model

• We assume memory is a linear array which 
holds both instruction and data, and CPU can 
access memory in a constant time. 
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SRAM vs DRAM

Tran. Access  Needs
per bit time    refresh? Cost         Applications

SRAM 4 or 6 1X No       100X cache memories

DRAM 1 10X Yes         1X Main memories,
frame buffers

The CPU-Memory gap

The gap widens between DRAM, disk, and CPU speeds.
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Memory hierarchies

• Some fundamental and enduring properties of 
hardware and software:
– Fast storage technologies cost more per byte, have 

less capacity, and require more power (heat!). 
– The gap between CPU and main memory speed is 

widening.
– Well-written programs tend to exhibit good locality.

• They suggest an approach for organizing 
memory and storage systems known as a 
memory hierarchy.

Memory system in practice

Larger, slower, and 
cheaper (per byte)
storage devices

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

remote secondary storage
(tapes, distributed file systems, Web servers)

off-chip L2
cache (SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller, faster, and
more expensive (per 
byte) storage devices



Why does it work?

• Most programs tend to access the storage at 
any particular level more frequently than the 
storage at the lower level.

• Locality: tend to access the same set of data 
items over and over again or tend to access sets 
of nearby data items.

Why learning it?

• A programmer needs to understand this 
because the memory hierarchy has a big impact 
on performance. 

• You can optimize your program so that its data 
is more frequently stored in the higher level of 
the hierarchy.

• For example, the difference of running time for 
matrix multiplication could up to a factor of 6 
even if the same amount of arithmetic 
instructions are performed.

Locality
• Principle of Locality: programs tend to reuse 

data and instructions near those they have used 
recently, or that were recently referenced 
themselves.
– Temporal locality: recently referenced items are 

likely to be referenced in the near future.
– Spatial locality: items with nearby addresses tend to 

be referenced close together in time.
• In general, programs with good locality run 

faster then programs with poor locality
• Locality is the reason why cache and virtual 

memory are designed in architecture and 
operating system. Another example is web 
browser caches recently visited webpages.

Locality example

• Data
– Reference array elements in succession (stride-1 

reference pattern):
– Reference sum each iteration:

• Instructions
– Reference instructions in sequence:
– Cycle through loop repeatedly: 

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Spatial locality

Temporal locality

Temporal locality



Locality example

• Being able to look at code and get a qualitative 
sense of its locality is important. Does this 
function have good locality?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;
for (i = 0; i < M; i++)

for (j = 0; j < N; j++)
sum += a[i][j];

return sum;
} stride-1 reference pattern

Locality example

• Does this function have good locality?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;
for (j = 0; j < N; j++)

for (i = 0; i < M; i++)
sum += a[i][j];

return sum;
} stride-N reference pattern

Memory hierarchies

Larger, slower, and 
cheaper (per byte)
storage devices

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

remote secondary storage
(tapes, distributed file systems, Web servers)

off-chip L2
cache (SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller, faster, and
more expensive (per 
byte) storage devices

Cache memories

• Cache memories are small, fast SRAM-based 
memories managed automatically in hardware. 

• CPU looks first for data in L1, then in L2, then in 
main memory.

• Typical system structure:

main
memory

I/O
bridgebus interfaceL2 data

ALU

register file
CPU chip

SRAM Port system bus
memory busL1 

cache



Caching in a memory hierarchy

0 1 2 3
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Larger, slower, cheaper 
Storage device at level 
k+1 is partitioned into 
blocks.

Data is copied between levels 
in block-sized transfer units
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Smaller, faster, more 
Expensive device at 
level k caches a 
subset of the blocks 
from level k+1
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General caching  concepts

• Program needs object d, which is 
stored in some block b.

• Cache hit
– Program finds  b  in the cache at 

level k.  E.g.,  block 14.

• Cache miss
– b is not at level k, so level k cache  

must fetch it from level k+1.             
E.g.,  block 12.

– If level k cache is full, then some 
current block must be replaced 
(evicted). Which one is the “victim”? 

• Placement policy: where can the new 
block go? E.g., b mod 4

• Replacement policy: which block 
should be evicted? E.g., LRU

9 3
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Type of cache misses

• Cold (compulsory) miss: occurs because the 
cache is empty.

• Capacity miss: occurs when the active cache 
blocks (working set) is larger than the cache.

• Conflict miss
– Most caches limit blocks at level k+1 to a small 

subset of the block positions at level k, e.g. block i 
at level k+1 must be placed in block (i mod 4) at 
level k.

– Conflict misses occur when the level k cache is large 
enough, but multiple data objects all map to the 
same level k block, e.g. Referencing blocks 0, 8, 0, 
8, 0, 8, ... would miss every time.

General organization of a cache

• • • B–110

• • • B–110

valid

valid

tag

tag
set 0:

B = 2b bytes
per cache block

E lines 
per set

S = 2s sets

t tag bits
per line

Cache size:  C = B x E x S data bytes

• • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set 1: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set S-1: • • •

• • •

Cache is an array
of sets.

Each set contains
one or more lines.

Each line holds a
block of data.

1 valid bit per line



Addressing caches

t bits s bits b bits

<tag> <set index> <block offset>

0m-1

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
The word at address A is in the cache if
the tag bits in one of the <valid> lines in 
set <set index> match <tag>.

The word contents begin at offset 
<block offset> bytes from the beginning 
of the block.   

Addressing caches

t bits s bits b bits

<tag> <set index> <block offset>

0m-1

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
1. Locate the set based on 

<set index>
2. Locate the line in the set based on 

<tag>
3. Check that the line is valid
4. Locate the data in the line based on

<block offset>

Direct-mapped cache

• Simplest kind of cache, easy to build
(only 1 tag compare required per access)

• Characterized by exactly one line per set.

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

E=1  lines per setcache block

cache block

cache block

Cache size:  C = B x S data bytes

Accessing direct-mapped caches

• Set selection
– Use the set index bits to determine the set of 

interest.

t bits s bits
0 0  0 0 1

0m-1

b bits

tag set index block offset

selected set
valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

cache block

cache block

cache block



Accessing direct-mapped caches

• Line matching and word selection
– Line matching: Find a valid line in the selected set 

with a matching tag
– Word selection: Then extract the word

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i): 1 0110 w3w0 w1 w2

30 1 2 74 5 6

=1? (1) The valid bit must be set

= ?
(2) The tag bits in the 

cache line must 
match the tag bits 
in the address

If (1) and (2), then cache hit

Accessing direct-mapped caches

• Line matching and word selection
– Line matching: Find a valid line in the selected set 

with a matching tag
– Word selection: Then extract the word

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i): 1 0110 w3w0 w1 w2

30 1 2 74 5 6

(3) If cache hit,
block offset selects 
starting byte. 

Direct-mapped cache simulation
M=16 byte addresses, B=2 bytes/block, 
S=4 sets, E=1 entry/set

Address trace (reads):
0 [00002], 1 [00012],  7 [01112],  8 [10002],  0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v tag data

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]

What’s wrong with direct-mapped?
float dotprod(float x[8], y[8]) {

float sum=0.0;
for (int i=0; i<8; i++)

sum+= x[i]*y[i];
return sum;

}

160y[7]128x[7]
156y[6]124x[6]
152y[5]120x[5]
148y[4]116x[4]
044y[3]012x[3]
040y[2]08x[2]
036y[1]04x[1]
032y[0]00x[0]
setaddresselementsetaddresselement

two sets
block size=16 bytes



Solution? padding

076y[7]128x[7]
072y[6]124x[6]
068y[5]120x[5]
064y[4]116x[4]
160y[3]012x[3]
156y[2]08x[2]
152y[1]04x[1]
148y[0]00x[0]

setAddresselementsetaddresselement

float dotprod(float x[12], y[8]) {
float sum=0.0;
for (int i=0; i<8; i++)

sum+= x[i]*y[i];
return sum;

}

Set associative caches

• Characterized by more than one line per set

E=2
lines per set

valid tagset 0:

set 1:

set S-1:

• • •

cache block
valid tag cache block

valid tag cache block
valid tag cache block

valid tag cache block
valid tag cache block

E-way associative cache

Accessing set associative caches
• Set selection

– identical to direct-mapped cache
valid
valid

tag
tag

set 0:

valid
valid

tag
tag

set 1:

valid
valid

tag
tagset S-1:

• • •

cache block
cache block

cache block
cache block

cache block
cache block

t bits s bits
0 0  0 0 1

0m-1

b bits

tag set index block offset

selected set

Accessing set associative caches

• Line matching and word selection
– must compare the tag in each valid line in the 

selected set.

1 0110 w3w0 w1 w2

1 1001
selected set (i):

30 1 2 74 5 6

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

=1? (1) The valid bit must be set

= ?

(2) The tag bits in one 
of the cache lines 
must match the tag 
bits in the address

If (1) and (2), then cache hit



Accessing set associative caches

• Line matching and word selection
– Word selection is the same as in a direct mapped 

cache

1 0110 w3w0 w1 w2

1 1001
selected set (i):

30 1 2 74 5 6

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

(3) If cache hit,
block offset selects 
starting byte. 

2-Way associative cache simulation
M=16 byte addresses, B=2 bytes/block, 
S=2 sets, E=2 entry/set

Address trace (reads):
0 [00002], 1 [00012],  7 [01112],  8 [10002],  0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v tag data

0
0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Why use middle bits as index?

• High-order bit 
indexing

– adjacent memory lines 
would map to same 
cache entry
– poor use of spatial 
locality

4-line Cache High-Order
Bit Indexing

Middle-Order
Bit Indexing00

01
10
11

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

What about writes?

• Multiple copies of data exist:
– L1
– L2
– Main Memory
– Disk

• What to do when we write?
– Write-through
– Write-back (need a dirty bit)

• What to do on a replacement?
– Depends on whether it is write through or write back



Multi-level caches

• Options: separate data and instruction caches, 
or a unified cache

size:
speed:
$/Mbyte:
line size:

200 B
3 ns

8 B

8-64 KB
3  ns

32 B

128 MB DRAM
60 ns
$1.50/MB
8  KB

30 GB
8 ms
$0.05/MB

larger, slower, cheaper

MemoryMemory

Regs
Unified

L2 
Cache

Unified
L2 

Cache

Processor

1-4MB SRAM
6 ns
$100/MB
32 B

diskdisk

L1 
d-cache

L1 
i-cache

Intel Pentium III cache hierarchy

Processor ChipProcessor Chip

L1 Data
1 cycle latency

16 KB
4-way assoc

Write-through
32B lines

L1 Instruction
16 KB, 4-way

32B lines

Regs.
L2 Unified

128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

L2 Unified
128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

Main
Memory

Up to 4GB

Main
Memory

Up to 4GB

The memory mountain

• Read throughput: number of bytes read from 
memory per second (MB/s)

• Memory mountain
– Measured read throughput as a function of spatial 

and temporal locality.
– Compact way to characterize memory system 

performance. 
void test(int elems, int stride) {

int i, result = 0; 
volatile int sink; 
for (i = 0; i < elems; i += stride)

result += data[i];
/* So compiler doesn't optimize away the loop */
sink = result;

}

The memory mountain

/* Run test(elems, stride) and return read 
throughput (MB/s) */

double run(int size, int stride, double Mhz)
{

double cycles;
int elems = size / sizeof(int); 
test(elems, stride);      /* warm up the cache */
/* call test(elems,stride) */
cycles = fcyc2(test, elems, stride, 0); 
/* convert cycles to MB/s */
return (size / stride) / (cycles / Mhz);

}



The memory mountain
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Ridges of temporal locality

• Slice through the memory mountain (stride=1)
– illuminates read throughputs of different caches and 

memory
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• Slice through memory mountain (size=256KB)
– shows cache block size.
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Matrix multiplication example

• Major cache effects to consider
– Total cache size
• Exploit temporal locality and keep the working set small 

(e.g., use blocking)

– Block size
• Exploit spatial locality

• Description:
– Multiply N x N matrices
– O(N3) total operations
– Accesses
• N reads per source element
• N values summed per destination

– but may be able to hold in register

/* ijk */
for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

} 

/* ijk */
for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

} 

Variable sum
held in register



Miss rate analysis for matrix multiply

• Assume:
– Line size = 32B (big enough for four 64-bit words)
– Matrix dimension (N) is very large

• Approximate 1/N as 0.0

– Cache is not even big enough to hold multiple rows

• Analysis method:
– Look at access pattern of inner loop

CA

k

i

B

k

j

i

j

Matrix multiplication (ijk)

/* ijk */
for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

} 

/* ijk */
for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

} 

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per Inner Loop Iteration:
A B C

0.25 1.0 0.0

Matrix multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum
}

}

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum
}

}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per Inner Loop Iteration:
A B C

0.25 1.0 0.0

Matrix multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per Inner Loop Iteration:
A B C

0.0 0.25 0.25



Matrix multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

/* ikj */
for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per Inner Loop Iteration:
A B C

0.0 0.25 0.25

Matrix multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column -
wise

Column-
wise

Fixed

Misses per Inner Loop Iteration:
A B C

1.0 0.0 1.0

Matrix multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

/* kji */
for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per Inner Loop Iteration:
A B C

1.0 0.0 1.0

Summary of matrix multiplication

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
} 
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];   

}
}
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}



Pentium matrix multiply performance

• Miss rates are helpful but not perfect predictors.
• Code scheduling matters, too.
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Improving temporal locality by blocking

• Example: Blocked matrix multiplication
– Here, “block” does not mean “cache block”.
– Instead, it mean a sub-block within the matrix.
– Example: N = 8; sub-block size = 4

C11 =  A11B11 + A12B21           C12 =  A11B12 + A12B22

C21 =  A21B11 + A22B21           C22 =  A21B12 + A22B22

A11 A12

A21 A22

B11 B12

B21 B22
X = 

C11 C12

C21 C22

Key idea: Sub-blocks (i.e., Axy) can be treated just like 
scalars.

Blocked matrix multiply (bijk)
for (jj=0; jj<n; jj+=bsize) {

for (i=0; i<n; i++)
for (j=jj; j < min(jj+bsize,n); j++)

c[i][j] = 0.0;
for (kk=0; kk<n; kk+=bsize) { 

for (i=0; i<n; i++) {
for (j=jj; j < min(jj+bsize,n); j++) { 

sum = 0.0
for (k=kk; k < min(kk+bsize,n); k++) {

sum += a[i][k] * b[k][j];
}
c[i][j] += sum;

}
}

}
}

Blocked matrix multiply analysis
– Innermost loop pair multiplies a 1 X bsize sliver of A by 

a bsize X bsize block of B and accumulates into 1 X 
bsize sliver of C

– Loop over i steps through n row slivers of A & C, using 
same B

A B C

block reused n
times in succession

row sliver accessed
bsize times

Update successive
elements of sliver

i i
kk

kk jjjj

for (i=0; i<n; i++) {
for (j=jj; j < min(jj+bsize,n); j++) { 
sum = 0.0
for (k=kk; k < min(kk+bsize,n); k++) {
sum += a[i][k] * b[k][j];

}
c[i][j] += sum;

}Innermost
Loop Pair



Blocked matrix multiply performance
• Blocking (bijk and bikj) improves performance 

by a factor of two over unblocked versions (ijk
and jik)
– relatively insensitive to array size.
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Writing cache friendly code

•Repeated references to variables are good
(temporal locality)

•Stride-1 reference are good (spatial locality)
•Examples: cold cache, 4-byte words, 4-word cache 
blocks

int sum_array_rows(int a[4][8])
{
int i, j, sum = 0;
for (i = 0; i < M; i++)

for (j = 0; j < N; j++)
sum += a[i][j];

return sum;
}

int sum_array_cols(int a[4][8])
{
int i, j, sum = 0;
for (j = 0; j < N; j++)

for (i = 0; i < M; i++)
sum += a[i][j];

return sum;
}

Miss rate = Miss rate = 1/4 = 25% 100%

Cache-conscious programming

• make sure that memory is cache-aligned

• Use union and bitfields to reduce size and 
increase locality

• Split data into hot and cold (list example)

Cache-conscious programming

• Prefetching
• Blocked 2D array
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K-d tree
struct KdAccelNode {
u_int flags;  

float split;      // Interior
u_int aboveChild; // Interior

u_int nPrims;  // Leaf
MailboxPrim *Primitives;  // Leaf

}

interior

n

leaf

K-d tree

8-byte (reduced from 20-byte, 20% gain)
struct KdAccelNode {
... 
union {
u_int flags;   // Both
float split;   // Interior
u_int nPrims;  // Leaf

};
union {
u_int aboveChild;           // Interior
MailboxPrim **primitives;   // Leaf

};
}

interior

n

leaf

Tree representation

Flag: 0,1,2 (interior x, y, z) 3 (leaf)
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Concluding observations
• Programmer can optimize for cache 

performance
– How data structures are organized
– How data are accessed

• Nested loop structure
• Blocking is a general technique

• All systems favor “cache friendly code”
– Getting absolute optimum performance is very 

platform specific
• Cache sizes, line sizes, associativities, etc.

– Can get most of the advantage with generic code
• Keep working set reasonably small (temporal locality)
• Use small strides (spatial locality)


