
Memory Hierarchy

Computer Organization and Assembly Languages
Yung-Yu Chuang
2007/01/08

with slides by CMU15-213

Announcement

• Please submit homeworks if you haven’t by
1/10.

• Final project demo time on 1/24 or 1/31. The
mechanism for signup will be mailed to the
mailing list soon.

• Mail your report to TA before your demo time.
The length of report depends on your project
type. It can be html, pdf, doc, ppt…

• TA evaluation today

Reference

• Chapter 6 from “Computer System: A
Programmer’s Perspective”

Computer system model

• We assume memory is a linear array which
holds both instruction and data, and CPU can
access memory in a constant time.

Central Processor Unit
(CPU)

Memory Storage
Unit

registers

ALU clock

I/O
Device

#1

I/O
Device

#2

data bus

control bus

address bus

CU

SRAM vs DRAM

Tran. Access Needs
per bit time refresh? Cost Applications

SRAM 4 or 6 1X No 100X cache memories

DRAM 1 10X Yes 1X Main memories,
frame buffers

The CPU-Memory gap

The gap widens between DRAM, disk, and CPU speeds.

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

1980 1985 1990 1995 2000

year

ns

Disk seek time
DRAM access time
SRAM access time
CPU cycle time

20,000,00050-1001-101Access time
(cycles)

diskmemorycacheregister

Memory hierarchies

• Some fundamental and enduring properties of
hardware and software:
– Fast storage technologies cost more per byte, have

less capacity, and require more power (heat!).
– The gap between CPU and main memory speed is

widening.
– Well-written programs tend to exhibit good locality.

• They suggest an approach for organizing
memory and storage systems known as a
memory hierarchy.

Memory system in practice

Larger, slower, and
cheaper (per byte)
storage devices

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

remote secondary storage
(tapes, distributed file systems, Web servers)

off-chip L2
cache (SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller, faster, and
more expensive (per
byte) storage devices

Why does it work?

• Most programs tend to access the storage at
any particular level more frequently than the
storage at the lower level.

• Locality: tend to access the same set of data
items over and over again or tend to access sets
of nearby data items.

Why learning it?

• A programmer needs to understand this
because the memory hierarchy has a big impact
on performance.

• You can optimize your program so that its data
is more frequently stored in the higher level of
the hierarchy.

• For example, the difference of running time for
matrix multiplication could up to a factor of 6
even if the same amount of arithmetic
instructions are performed.

Locality
• Principle of Locality: programs tend to reuse

data and instructions near those they have used
recently, or that were recently referenced
themselves.
– Temporal locality: recently referenced items are

likely to be referenced in the near future.
– Spatial locality: items with nearby addresses tend to

be referenced close together in time.
• In general, programs with good locality run

faster then programs with poor locality
• Locality is the reason why cache and virtual

memory are designed in architecture and
operating system. Another example is web
browser caches recently visited webpages.

Locality example

• Data
– Reference array elements in succession (stride-1

reference pattern):
– Reference sum each iteration:

• Instructions
– Reference instructions in sequence:
– Cycle through loop repeatedly:

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Spatial locality

Temporal locality

Temporal locality

Locality example

• Being able to look at code and get a qualitative
sense of its locality is important. Does this
function have good locality?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;
for (i = 0; i < M; i++)

for (j = 0; j < N; j++)
sum += a[i][j];

return sum;
} stride-1 reference pattern

Locality example

• Does this function have good locality?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;
for (j = 0; j < N; j++)

for (i = 0; i < M; i++)
sum += a[i][j];

return sum;
} stride-N reference pattern

Memory hierarchies

Larger, slower, and
cheaper (per byte)
storage devices

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

remote secondary storage
(tapes, distributed file systems, Web servers)

off-chip L2
cache (SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller, faster, and
more expensive (per
byte) storage devices

Cache memories

• Cache memories are small, fast SRAM-based
memories managed automatically in hardware.

• CPU looks first for data in L1, then in L2, then in
main memory.

• Typical system structure:

main
memory

I/O
bridgebus interfaceL2 data

ALU

register file
CPU chip

SRAM Port system bus
memory busL1

cache

Caching in a memory hierarchy

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper
Storage device at level
k+1 is partitioned into
blocks.

Data is copied between levels
in block-sized transfer units

8 9 14 3
Smaller, faster, more
Expensive device at
level k caches a
subset of the blocks
from level k+1

level k

level
k+1

4

4

4 10

10

10

Request
14

Request
12

General caching concepts

• Program needs object d, which is
stored in some block b.

• Cache hit
– Program finds b in the cache at

level k. E.g., block 14.

• Cache miss
– b is not at level k, so level k cache

must fetch it from level k+1.
E.g., block 12.

– If level k cache is full, then some
current block must be replaced
(evicted). Which one is the “victim”?

• Placement policy: where can the new
block go? E.g., b mod 4

• Replacement policy: which block
should be evicted? E.g., LRU

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

level
k

level
k+1

1414

12

14

4*

4*12

12

0 1 2 3

Request
12

4*4*12

Type of cache misses

• Cold (compulsory) miss: occurs because the
cache is empty.

• Capacity miss: occurs when the active cache
blocks (working set) is larger than the cache.

• Conflict miss
– Most caches limit blocks at level k+1 to a small

subset of the block positions at level k, e.g. block i
at level k+1 must be placed in block (i mod 4) at
level k.

– Conflict misses occur when the level k cache is large
enough, but multiple data objects all map to the
same level k block, e.g. Referencing blocks 0, 8, 0,
8, 0, 8, ... would miss every time.

General organization of a cache

• • • B–110

• • • B–110

valid

valid

tag

tag
set 0:

B = 2b bytes
per cache block

E lines
per set

S = 2s sets

t tag bits
per line

Cache size: C = B x E x S data bytes

• • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set 1: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set S-1: • • •

• • •

Cache is an array
of sets.

Each set contains
one or more lines.

Each line holds a
block of data.

1 valid bit per line

Addressing caches

t bits s bits b bits

<tag> <set index> <block offset>

0m-1

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
The word at address A is in the cache if
the tag bits in one of the <valid> lines in
set <set index> match <tag>.

The word contents begin at offset
<block offset> bytes from the beginning
of the block.

Addressing caches

t bits s bits b bits

<tag> <set index> <block offset>

0m-1

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
1. Locate the set based on

<set index>
2. Locate the line in the set based on

<tag>
3. Check that the line is valid
4. Locate the data in the line based on

<block offset>

Direct-mapped cache

• Simplest kind of cache, easy to build
(only 1 tag compare required per access)

• Characterized by exactly one line per set.

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

E=1 lines per setcache block

cache block

cache block

Cache size: C = B x S data bytes

Accessing direct-mapped caches

• Set selection
– Use the set index bits to determine the set of

interest.

t bits s bits
0 0 0 0 1

0m-1

b bits

tag set index block offset

selected set
valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

cache block

cache block

cache block

Accessing direct-mapped caches

• Line matching and word selection
– Line matching: Find a valid line in the selected set

with a matching tag
– Word selection: Then extract the word

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i): 1 0110 w3w0 w1 w2

30 1 2 74 5 6

=1? (1) The valid bit must be set

= ?
(2) The tag bits in the

cache line must
match the tag bits
in the address

If (1) and (2), then cache hit

Accessing direct-mapped caches

• Line matching and word selection
– Line matching: Find a valid line in the selected set

with a matching tag
– Word selection: Then extract the word

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i): 1 0110 w3w0 w1 w2

30 1 2 74 5 6

(3) If cache hit,
block offset selects
starting byte.

Direct-mapped cache simulation
M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 entry/set

Address trace (reads):
0 [00002], 1 [00012], 7 [01112], 8 [10002], 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v tag data

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]

What’s wrong with direct-mapped?
float dotprod(float x[8], y[8]) {

float sum=0.0;
for (int i=0; i<8; i++)

sum+= x[i]*y[i];
return sum;

}

160y[7]128x[7]
156y[6]124x[6]
152y[5]120x[5]
148y[4]116x[4]
044y[3]012x[3]
040y[2]08x[2]
036y[1]04x[1]
032y[0]00x[0]
setaddresselementsetaddresselement

two sets
block size=16 bytes

Solution? padding

076y[7]128x[7]
072y[6]124x[6]
068y[5]120x[5]
064y[4]116x[4]
160y[3]012x[3]
156y[2]08x[2]
152y[1]04x[1]
148y[0]00x[0]

setAddresselementsetaddresselement

float dotprod(float x[12], y[8]) {
float sum=0.0;
for (int i=0; i<8; i++)

sum+= x[i]*y[i];
return sum;

}

Set associative caches

• Characterized by more than one line per set

E=2
lines per set

valid tagset 0:

set 1:

set S-1:

• • •

cache block
valid tag cache block

valid tag cache block
valid tag cache block

valid tag cache block
valid tag cache block

E-way associative cache

Accessing set associative caches
• Set selection

– identical to direct-mapped cache
valid
valid

tag
tag

set 0:

valid
valid

tag
tag

set 1:

valid
valid

tag
tagset S-1:

• • •

cache block
cache block

cache block
cache block

cache block
cache block

t bits s bits
0 0 0 0 1

0m-1

b bits

tag set index block offset

selected set

Accessing set associative caches

• Line matching and word selection
– must compare the tag in each valid line in the

selected set.

1 0110 w3w0 w1 w2

1 1001
selected set (i):

30 1 2 74 5 6

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

=1? (1) The valid bit must be set

= ?

(2) The tag bits in one
of the cache lines
must match the tag
bits in the address

If (1) and (2), then cache hit

Accessing set associative caches

• Line matching and word selection
– Word selection is the same as in a direct mapped

cache

1 0110 w3w0 w1 w2

1 1001
selected set (i):

30 1 2 74 5 6

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

(3) If cache hit,
block offset selects
starting byte.

2-Way associative cache simulation
M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 entry/set

Address trace (reads):
0 [00002], 1 [00012], 7 [01112], 8 [10002], 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v tag data

0
0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Why use middle bits as index?

• High-order bit
indexing

– adjacent memory lines
would map to same
cache entry
– poor use of spatial
locality

4-line Cache High-Order
Bit Indexing

Middle-Order
Bit Indexing00

01
10
11

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

What about writes?

• Multiple copies of data exist:
– L1
– L2
– Main Memory
– Disk

• What to do when we write?
– Write-through
– Write-back (need a dirty bit)

• What to do on a replacement?
– Depends on whether it is write through or write back

Multi-level caches

• Options: separate data and instruction caches,
or a unified cache

size:
speed:
$/Mbyte:
line size:

200 B
3 ns

8 B

8-64 KB
3 ns

32 B

128 MB DRAM
60 ns
$1.50/MB
8 KB

30 GB
8 ms
$0.05/MB

larger, slower, cheaper

MemoryMemory

Regs
Unified

L2
Cache

Unified
L2

Cache

Processor

1-4MB SRAM
6 ns
$100/MB
32 B

diskdisk

L1
d-cache

L1
i-cache

Intel Pentium III cache hierarchy

Processor ChipProcessor Chip

L1 Data
1 cycle latency

16 KB
4-way assoc

Write-through
32B lines

L1 Instruction
16 KB, 4-way

32B lines

Regs.
L2 Unified

128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

L2 Unified
128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

Main
Memory

Up to 4GB

Main
Memory

Up to 4GB

The memory mountain

• Read throughput: number of bytes read from
memory per second (MB/s)

• Memory mountain
– Measured read throughput as a function of spatial

and temporal locality.
– Compact way to characterize memory system

performance.
void test(int elems, int stride) {

int i, result = 0;
volatile int sink;
for (i = 0; i < elems; i += stride)

result += data[i];
/* So compiler doesn't optimize away the loop */
sink = result;

}

The memory mountain

/* Run test(elems, stride) and return read
throughput (MB/s) */

double run(int size, int stride, double Mhz)
{

double cycles;
int elems = size / sizeof(int);
test(elems, stride); /* warm up the cache */
/* call test(elems,stride) */
cycles = fcyc2(test, elems, stride, 0);
/* convert cycles to MB/s */
return (size / stride) / (cycles / Mhz);

}

The memory mountain

s1

s3

s5

s7

s9

s1
1

s1
3

s1
5

8m

2m 51
2k 12

8k 32
k 8k

2k

0

200

400

600

800

1000

1200

L1

L2

mem

xeSlopes of
Spatial
Locality

Pentium III
550 MHz

16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified

L2 cache

Ridges of
Temporal
Locality

Working set size
(bytes)Stride (words)

Th
ro

ug
hp

ut
 (M

B/
se

c)

Ridges of temporal locality

• Slice through the memory mountain (stride=1)
– illuminates read throughputs of different caches and

memory

0

200

400

600

800

1000

1200

8m 4m 2m

10
24

k

51
2k

25
6k

12
8k 64

k

32
k

16
k 8k 4k 2k 1k

working set size (bytes)

re
ad

 th
ro

ug
pu

t (
M

B
/s

)

L1 cache
region

L2 cache
region

main memory
region

L2 is unified

calling
overhead
is not
amortized

A slope of spatial locality

• Slice through memory mountain (size=256KB)
– shows cache block size.

0

100

200

300

400

500

600

700

800

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

stride (words)

re
ad

 th
ro

ug
hp

ut
 (M

B
/s

)

one access per cache line

Matrix multiplication example

• Major cache effects to consider
– Total cache size
• Exploit temporal locality and keep the working set small

(e.g., use blocking)

– Block size
• Exploit spatial locality

• Description:
– Multiply N x N matrices
– O(N3) total operations
– Accesses
• N reads per source element
• N values summed per destination

– but may be able to hold in register

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

}

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

}

Variable sum
held in register

Miss rate analysis for matrix multiply

• Assume:
– Line size = 32B (big enough for four 64-bit words)
– Matrix dimension (N) is very large

• Approximate 1/N as 0.0

– Cache is not even big enough to hold multiple rows

• Analysis method:
– Look at access pattern of inner loop

CA

k

i

B

k

j

i

j

Matrix multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

}

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per Inner Loop Iteration:
A B C

0.25 1.0 0.0

Matrix multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum
}

}

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum
}

}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per Inner Loop Iteration:
A B C

0.25 1.0 0.0

Matrix multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per Inner Loop Iteration:
A B C

0.0 0.25 0.25

Matrix multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

/* ikj */
for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per Inner Loop Iteration:
A B C

0.0 0.25 0.25

Matrix multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column -
wise

Column-
wise

Fixed

Misses per Inner Loop Iteration:
A B C

1.0 0.0 1.0

Matrix multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

/* kji */
for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per Inner Loop Iteration:
A B C

1.0 0.0 1.0

Summary of matrix multiplication

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

Pentium matrix multiply performance

• Miss rates are helpful but not perfect predictors.
• Code scheduling matters, too.

0

10

20

30

40

50

60

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Array size (n)

C
yc

le
s/

ite
ra

tio
n

kji
jki
kij
ikj
jik
ijk

kji & jki

kij & ikj

jik & ijk

Improving temporal locality by blocking

• Example: Blocked matrix multiplication
– Here, “block” does not mean “cache block”.
– Instead, it mean a sub-block within the matrix.
– Example: N = 8; sub-block size = 4

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

A11 A12

A21 A22

B11 B12

B21 B22
X =

C11 C12

C21 C22

Key idea: Sub-blocks (i.e., Axy) can be treated just like
scalars.

Blocked matrix multiply (bijk)
for (jj=0; jj<n; jj+=bsize) {

for (i=0; i<n; i++)
for (j=jj; j < min(jj+bsize,n); j++)

c[i][j] = 0.0;
for (kk=0; kk<n; kk+=bsize) {

for (i=0; i<n; i++) {
for (j=jj; j < min(jj+bsize,n); j++) {

sum = 0.0
for (k=kk; k < min(kk+bsize,n); k++) {

sum += a[i][k] * b[k][j];
}
c[i][j] += sum;

}
}

}
}

Blocked matrix multiply analysis
– Innermost loop pair multiplies a 1 X bsize sliver of A by

a bsize X bsize block of B and accumulates into 1 X
bsize sliver of C

– Loop over i steps through n row slivers of A & C, using
same B

A B C

block reused n
times in succession

row sliver accessed
bsize times

Update successive
elements of sliver

i i
kk

kk jjjj

for (i=0; i<n; i++) {
for (j=jj; j < min(jj+bsize,n); j++) {
sum = 0.0
for (k=kk; k < min(kk+bsize,n); k++) {
sum += a[i][k] * b[k][j];

}
c[i][j] += sum;

}Innermost
Loop Pair

Blocked matrix multiply performance
• Blocking (bijk and bikj) improves performance

by a factor of two over unblocked versions (ijk
and jik)
– relatively insensitive to array size.

0

10

20

30

40

50

60

25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

Array size (n)

C
yc

le
s/

ite
ra

tio
n

kji
jki
kij
ikj
jik
ijk
bijk (bsize = 25)
bikj (bsize = 25)

Writing cache friendly code

•Repeated references to variables are good
(temporal locality)

•Stride-1 reference are good (spatial locality)
•Examples: cold cache, 4-byte words, 4-word cache
blocks

int sum_array_rows(int a[4][8])
{
int i, j, sum = 0;
for (i = 0; i < M; i++)

for (j = 0; j < N; j++)
sum += a[i][j];

return sum;
}

int sum_array_cols(int a[4][8])
{
int i, j, sum = 0;
for (j = 0; j < N; j++)

for (i = 0; i < M; i++)
sum += a[i][j];

return sum;
}

Miss rate = Miss rate = 1/4 = 25% 100%

Cache-conscious programming

• make sure that memory is cache-aligned

• Use union and bitfields to reduce size and
increase locality

• Split data into hot and cold (list example)

Cache-conscious programming

• Prefetching
• Blocked 2D array

…
.

w

h

…

…
.

…
.

h

w

K-d tree
struct KdAccelNode {
u_int flags;

float split; // Interior
u_int aboveChild; // Interior

u_int nPrims; // Leaf
MailboxPrim *Primitives; // Leaf

}

interior

n

leaf

K-d tree

8-byte (reduced from 20-byte, 20% gain)
struct KdAccelNode {
...
union {
u_int flags; // Both
float split; // Interior
u_int nPrims; // Leaf

};
union {
u_int aboveChild; // Interior
MailboxPrim **primitives; // Leaf

};
}

interior

n

leaf

Tree representation

Flag: 0,1,2 (interior x, y, z) 3 (leaf)

S E M

flags

1 8 23

2

n

Concluding observations
• Programmer can optimize for cache

performance
– How data structures are organized
– How data are accessed

• Nested loop structure
• Blocking is a general technique

• All systems favor “cache friendly code”
– Getting absolute optimum performance is very

platform specific
• Cache sizes, line sizes, associativities, etc.

– Can get most of the advantage with generic code
• Keep working set reasonably small (temporal locality)
• Use small strides (spatial locality)

