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Overview

• SIMD
• MMX architectures
• MMX instructions
• examples
• SSE/SSE2

• SIMD instructions are probably the best place 
to use assembly since compilers usually do not 
do a good job on using these instructions



Performance boost

• Increasing clock rate is not fast enough for 
boosting performance

• Architecture improvement is more significant 
such as pipeline/cache/SIMD

• Intel analyzed multimedia applications and 
found they share the following characteristics:
– Small native data types (8-bit pixel, 16-bit audio)
– Recurring operations
– Inherent parallelism



SIMD

• SIMD (single instruction multiple data) 
architecture performs the same operation on 
multiple data elements in parallel

• PADDW MM0, MM1



SISD/SIMD/Streaming



IA-32 SIMD development

• MMX (Multimedia Extension) was introduced in 
1996 (Pentium with MMX and Pentium II).

• SSE (Streaming SIMD Extension) was introduced 
with Pentium III.

• SSE2 was introduced with Pentium 4.
• SSE3 was introduced with Pentium 4 supporting 

hyper-threading technology. SSE3 adds 13 more 
instructions.



MMX

• After analyzing a lot of existing applications 
such as graphics, MPEG, music, speech 
recognition, game, image processing, they 
found that many multimedia algorithms 
execute the same instructions on many pieces 
of data in a large data set.

• Typical elements are small, 8 bits for pixels, 16 
bits for audio, 32 bits for graphics and general 
computing.

• New data type: 64-bit packed data type. Why 
64 bits?
– Good enough
– Practical



MMX data types



MMX integration into IA

79

11…11
NaN or infinity as real
because bits 79-64 are
zeros.

Even if MMX registers
are 64-bit, they don’t
extend Pentium to a
64-bit CPU since only
logic instructions are
provided for 64-bit 
data.   

8 MM0~MM7



Compatibility

• To be fully compatible with existing IA, no new 
mode or state was created. Hence, for context 
switching, no extra state needs to be saved.

• To reach the goal, MMX is hidden behind FPU. 
When floating-point state is saved or restored, 
MMX is saved or restored.

• It allows existing OS to perform context 
switching on the processes executing MMX 
instruction without be aware of MMX.

• However, it means MMX and FPU can not be 
used at the same time.



Compatibility

• Although Intel defenses their decision on 
aliasing MMX to FPU for compatibility. It is 
actually a bad decision. OS can just provide a 
service pack or get updated.

• It is why Intel introduced SSE later without any 
aliasing  



MMX instructions

• 57 MMX instructions are defined to perform the 
parallel operations on multiple data elements 
packed into 64-bit data types.

• These include add, subtract, multiply, 
compare, and shift, data conversion, 
64-bit data move, 64-bit logical 
operation and multiply-add for multiply-
accumulate operations.

• All instructions except for data move use MMX 
registers as operands.

• Most complete support for 16-bit operations.



Saturation arithmetic

wrap-around saturating

• Useful in graphics applications.
• When an operation overflows or underflows, 

the result becomes the largest or smallest 
possible representable number.

• Two types: signed and unsigned saturation



MMX instructions



MMX instructions

Call it before you switch to FPU from MMX;
Expensive operation



Arithmetic

• PADDB/PADDW/PADDD: add two packed 
numbers, no CFLAGS is set, ensure overflow 
never occurs by yourself

• Multiplication: two steps
• PMULLW: multiplies four words and stores the 

four lo words of the four double word results
• PMULHW/PMULHUW: multiplies four words and 

stores the four hi words of the four double word 
results. PMULHUW for unsigned.



Arithmetic

• PMADDWD



Detect MMX/SSE
mov eax, 1 ; request version info 
cpuid ; supported since Pentium
test  edx, 00800000h ;bit 23

; 02000000h (bit 25) SSE
; 04000000h (bit 26) SSE2

jnz HasMMX



cpuid

:
:





Example: add a constant to a vector
char d[]={5, 5, 5, 5, 5, 5, 5, 5}; 
char clr[]={65,66,68,...,87,88}; // 24 bytes
__asm{

movq mm1, d 
mov cx, 3
mov esi, 0

L1: movq mm0, clr[esi] 
paddb mm0, mm1 
movq clr[esi], mm0 
add esi, 8
loop L1
emms

} 



Comparison

• No CFLAGS, how many flags will you need? 
Results are stored in destination.

• EQ/GT, no LT



Change data types

• Pack: converts a larger data type to the next 
smaller data type.

• Unpack: takes two operands and interleave 
them. It can be used for expand data type for 
immediate calculation.



Pack with signed saturation



Pack with signed saturation



Unpack low portion



Unpack low portion



Unpack low portion



Unpack high portion



Performance boost (data from 1996)

Benchmark kernels: 
FFT, FIR, vector dot-
product, IDCT, 
motion compensation.

65% performance gain

Lower the cost of 
multimedia programs 
by removing the need 
of specialized DSP 
chips



Keys to SIMD programming

• Efficient data layout
• Elimination of branches



Application: frame difference

A B

|A-B|



Application: frame difference

A-B B-A

(A-B) or (B-A)



Application: frame difference
MOVQ      mm1, A //move 8 pixels of image A
MOVQ      mm2, B //move 8 pixels of image B
MOVQ      mm3, mm1 // mm3=A
PSUBSB    mm1, mm2 // mm1=A-B
PSUBSB    mm2, mm3 // mm2=B-A
POR       mm1, mm2 // mm1=|A-B|



Example: image fade-in-fade-out

A*α+B*(1-α) = B+α(A-B)

A B



α=0.75



α=0.5



α=0.25



Example: image fade-in-fade-out

• Two formats: planar and chunky
• In Chunky format, 16 bits of 64 bits are wasted
• So, we use planar in the following example

R G B A R G B A



Example: image fade-in-fade-out

Image A Image B



Example: image fade-in-fade-out
MOVQ      mm0, alpha//4 16-b zero-padding α
MOVD      mm1, A //move 4 pixels of image A
MOVD      mm2, B //move 4 pixels of image B
PXOR      mm3, mm3 //clear mm3 to all zeroes
//unpack 4 pixels to 4 words
PUNPCKLBW mm1, mm3 // Because B-A could be 
PUNPCKLBW mm2, mm3 // negative, need 16 bits
PSUBW     mm1, mm2 //(B-A)
PMULHW    mm1, mm0 //(B-A)*fade/256
PADDW     mm1, mm2 //(B-A)*fade + B
//pack four words back to four bytes
PACKUSWB  mm1, mm3



Data-independent computation

• Each operation can execute without needing to 
know the results of a previous operation.

• Example, sprite overlay
for i=1 to sprite_Size
if  sprite[i]=clr
then out_color[i]=bg[i]
else out_color[i]=sprite[i]

• How to execute data-dependent calculations on 
several pixels in parallel.



Application: sprite overlay



Application: sprite overlay
MOVQ mm0, sprite
MOVQ mm2, mm0
MOVQ mm4, bg
MOVQ mm1, clr
PCMPEQW mm0, mm1
PAND    mm4, mm0
PANDN   mm0, mm2
POR     mm0, mm4



Application: matrix transport



Application: matrix transport
char M1[4][8];// matrix to be transposed
char M2[8][4];// transposed matrix
int n=0;
for (int i=0;i<4;i++)
for (int j=0;j<8;j++)
{ M1[i][j]=n; n++; }

__asm{
//move the 4 rows of M1 into MMX registers
movq mm1,M1
movq mm2,M1+8
movq mm3,M1+16
movq mm4,M1+24



Application: matrix transport
//generate rows 1 to 4 of M2
punpcklbw mm1, mm2 
punpcklbw mm3, mm4
movq mm0, mm1
punpcklwd mm1, mm3 //mm1 has row 2 & row 1
punpckhwd mm0, mm3 //mm0 has row 4 & row 3
movq M2, mm1
movq M2+8, mm0



Application: matrix transport
//generate rows 5 to 8 of M2
movq mm1, M1 //get row 1 of M1
movq mm3, M1+16 //get row 3 of M1
punpckhbw mm1, mm2
punpckhbw mm3, mm4
movq mm0, mm1
punpcklwd mm1, mm3 //mm1 has row 6 & row 5
punpckhwd mm0, mm3 //mm0 has row 8 & row 7
//save results to M2
movq M2+16, mm1
movq M2+24, mm0
emms
} //end



SSE

• Adds eight 128-bit registers
• Allows SIMD operations on packed single-

precision floating-point numbers. 



SSE features

• Add eight 128-bit data registers (XMM registers) 
in non-64-bit modes; sixteen XMM registers are 
available in 64-bit mode.

• 32-bit MXCSR register (control and status)
• Add a new data type: 128-bit packed single-

precision floating-point (4 FP numbers.)
• Instruction to perform SIMD operations on 128-

bit packed single-precision FP and additional 
64-bit SIMD integer operations.

• Instructions that explicitly prefetch data, 
control data cacheability and ordering of store



SSE programming environment

XMM0
|
XMM7

MM0
|
MM7

EAX, EBX, ECX, EDX
EBP, ESI, EDI, ESP



MXCSR control and status register



SSE packed FP operation

• ADDPS/SUBPS: packed single-precision FP



SSE scalar FP operation

• ADDSS/SUBSS: scalar single-precision FP
used as FPU?



SSE2

• Provides ability to perform SIMD operations on 
double-precision FP, allowing advanced 
graphics such as ray tracing

• Provides greater throughput by operating on 
128-bit packed integers, useful for RSA and RC5



SSE2 features

• Add data types and instructions for them

• Programming environment unchanged



Example
void add(float *a, float *b, float *c) {
for (int i = 0; i < 4; i++)
c[i] = a[i] + b[i];

}
__asm {
mov eax, a
mov edx, b
mov ecx, c
movaps xmm0, XMMWORD PTR [eax]
addps xmm0, XMMWORD PTR [edx]
movaps XMMWORD PTR [ecx], xmm0
}

movaps: move aligned packed single-
precision FP

addps: add packed single-precision FP



Intrinsics

• An intrinsic is a function known by the compiler 
that directly maps to a sequence of one or 
more assembly language instructions. Intrinsic 
functions are inherently more efficient than 
called functions because no calling linkage is 
required.

• Intrinsics make the use of processor-specific 
enhancements easier because they provide a 
C/C++ language interface to assembly 
instructions. In doing so, the compiler manages 
things that the user would normally have to be 
concerned with, such as register names, 
register allocations, and memory locations of 
data.



Vector algebra

• Used extensively in graphics
• In C era, typedef float vector[3];

• In C++ era, 
class Vector {

private:
float x , y , z;

};

Vector operator + ( const Vector& a , 
const float & b ) {

return Vector( a.x+b, a.y+b, a.z+b );
}



SSE intrinsic
#include <xmmintrin.h>

__m128 a , b , c;
c = _mm_add_ps( a , b );

float a[4] , b[4] , c[4];
for( int i = 0 ; i < 4 ; ++ i )

c[i] = a[i] + b[i];

// a = b * c + d / e; 
__m128 a = _mm_add_ps( _mm_mul_ps( b , c ) , 

_mm_div_ps( d , e ) ); 



SSE Shuffle (SHUFPS)

SHUFPS xmm1, xmm2, imm8

Select[1..0] decides which DW of DEST to be 
copied to the 1st DW of DEST

...



SSE Shuffle (SHUFPS)



Example (cross product)
Vector cross(const Vector& a , const Vector& b ) {

return Vector(
( a[1] * b[2] - a[2] * b[1] ) ,
( a[2] * b[0] - a[0] * b[2] ) ,
( a[0] * b[1] - a[1] * b[0] ) );

}



Example (cross product)
/* cross */
__m128 _mm_cross_ps( __m128 a , __m128 b ) {

__m128 ea , eb;
// set to a[1][2][0][3] , b[2][0][1][3]
ea = _mm_shuffle_ps( a, a, _MM_SHUFFLE(3,0,2,1) );
eb = _mm_shuffle_ps( b, b, _MM_SHUFFLE(3,1,0,2) );
// multiply
__m128 xa = _mm_mul_ps( ea , eb );
// set to a[2][0][1][3] , b[1][2][0][3]
a = _mm_shuffle_ps( a, a, _MM_SHUFFLE(3,1,0,2) );
b = _mm_shuffle_ps( b, b, _MM_SHUFFLE(3,0,2,1) );
// multiply
__m128 xb = _mm_mul_ps( a , b );
// subtract
return _mm_sub_ps( xa , xb );

}



Example: dot product

• Given a set of vectors {v1,v2,…vn}={(x1,y1,z1), 
(x2,y2,z2),…, (xn,yn,zn)} and a vector vc=(xc,yc,zc), 
calculate {vc⋅vi}

• Two options for memory layout
• Array of structure (AoS)
typedef struct { float dc, x, y, z; } Vertex;
Vertex v[n];

• Structure of array (SoA)
typedef struct { float x[n], y[n], z[n]; }

VerticesList;
VerticesList v;



Example: dot product (AoS)
movaps xmm0, v  ; xmm0 = DC, x0, y0, z0
movaps xmm1, vc ; xmm1 = DC, xc, yc, zc
mulps xmm0, xmm1 ;xmm0=DC,x0*xc,y0*yc,z0*zc
movhlps xmm1, xmm0 ; xmm1= DC, DC, DC, x0*xc
addps xmm1, xmm0 ; xmm1 = DC, DC, DC,

;              x0*xc+z0*zc
movaps xmm2, xmm0
shufps xmm2, xmm2, 55h ; xmm2=DC,DC,DC,y0*yc
addps xmm1, xmm2 ; xmm1 = DC, DC, DC,

;        x0*xc+y0*yc+z0*zc

movhlps:DEST[63..0] := SRC[127..64]



Example: dot product (SoA)
; X = x1,x2,...,x3
; Y = y1,y2,...,y3
; Z = z1,z2,...,z3
; A = xc,xc,xc,xc
; B = yc,yc,yc,yc
; C = zc,zc,zc,zc
movaps xmm0, X ; xmm0 = x1,x2,x3,x4
movaps xmm1, Y ; xmm1 = y1,y2,y3,y4
movaps xmm2, Z ; xmm2 = z1,z2,z3,z4
mulps xmm0, A ;xmm0=x1*xc,x2*xc,x3*xc,x4*xc
mulps xmm1, B ;xmm1=y1*yc,y2*yc,y3*xc,y4*yc
mulps xmm2, C ;xmm2=z1*zc,z2*zc,z3*zc,z4*zc
addps xmm0, xmm1
addps xmm0, xmm2 ;xmm0=(x0*xc+y0*yc+z0*zc)…



Reciprocal
#define FP_ONE_BITS 0x3F800000
// r = 1/p  from NVidia’s fastmath.cpp
#define FP_INV(r,p)                            \
{ \

int _i = 2 * FP_ONE_BITS - *(int *)&(p); \
r = *(float *)&_i; \
r = r * (2.0f - (p) * r); \

}
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Reciprocal
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Reciprocal
#define FP_ONE_BITS 0x3F800000
// r = 1/p  from NVidia’s fastmath.cpp
#define FP_INV(r,p)                            \
{ \

int _i = 2 * FP_ONE_BITS - *(int *)&(p); \
r = *(float *)&_i; \
r = r * (2.0f - (p) * r); \

}
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The remaining question is how to pick up the initial guess.



Reciprocal
#define FP_ONE_BITS 0x3F800000
// r = 1/p  from NVidia’s fastmath.cpp
#define FP_INV(r,p)                            \
{ \

int _i = 2 * FP_ONE_BITS - *(int *)&(p); \
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Inverse square root

• In graphics, we often have to normalize a 
vector

Vector &normalize() 
float invlen=1.0/sqrt(x*x + y*y + z*z);
x *= invlen;
y *= invlen;
z *= invlen;
return *this;

}



invSqrt
// used in QUAKE3
float InvSqrt (float x) 
{ 

float xhalf = 0.5f*x; 
int i = *(int*)&x; 
i = 0x5f3759df - (i >> 1); 
x = *(float*)&i; 
x = x*(1.5f - xhalf*x*x); 
return x; 

} 



invSqrt (experiments by littleshan)
void inv_sqrt_v1(float* begin, float* end, float* out) 
{ /* naive method */ 

for(; begin < end; ++begin, ++output) 
*out = 1.0f / sqrtf(*begin); 

} 
void inv_sqrt_v2(float* begin, float* end, float* out) 
{ 

float xhalf, x; 
int i; 
for(; begin < end; ++begin, ++out){ 

xhalf = 0.5f * (*begin); 
i = *(int*)begin; 
i = 0×5f3759df - (i>>1); 
x = *(float*)&i; 
*out = x*(1.5f - xhalf*x*x); 

} 
} 



invSqrt
void inv_sqrt_v3(float* begin, float* end, float* out) 
{ /* vectorized SSE */ 

long size = end - begin;
long padding = size % 16;
size -= padding;

// each time, we use simd to do 16 invsqrt
// do the rest (padding) first
for(; padding > 0; --padding, ++begin, ++output)

*output = 1.0f / sqrt(*begin);



invSqrt
__asm {

mov esi, [begin]
mov edi, [output]

loop_begin:
cmp esi, [end]
ja loop_end

movups xmm0, [esi   ]
movups xmm1, [esi+16]
movups xmm2, [esi+32]
movups xmm3, [esi+48]

rsqrtps xmm4, xmm0
rsqrtps xmm5, xmm1
rsqrtps xmm6, xmm2
rsqrtps xmm7, xmm3



invSqrt
movups [edi   ], xmm4
movups [edi+16], xmm5
movups [edi+32], xmm6
movups [edi+48], xmm7

add esi, 64
add edi, 64

jmp loop_begin
loop_end:

}



Experiments
method 1: naive sqrt() 
CPU cycle used: 13444770
method 2: marvelous solution 
CPU cycle used:  2806215
method 3: vectorized SSE 
CPU cycle used:  1349355



Other SIMD architectures

• Graphics Processing Unit (GPU): nVidia 7800, 24 
pipelines (8 vector/16 fragment)



NVidia GeForce 8800, 2006

• Each GeForce 8800 GPU stream processor is a 
fully generalized, fully decoupled, scalar, 
processor that supports IEEE 754 floating point 
precision. 

• Up to 128 stream processors



Cell processor

• Cell Processor (IBM/Toshiba/Sony): 1 PPE 
(Power Processing Unit) +8 SPEs (Synergistic 
Processing Unit)

• An SPE is a RISC processor with 128-bit SIMD for 
single/double precision instructions, 128 128-
bit registers, 256K local cache

• used in PS3.



Cell processor



Announcements

• Voting
• TA evaluation on 1/8
• Final project due date? 1/24 or 1/31?


