
Intel SIMD architecture

Computer Organization and Assembly Languages
Yung-Yu Chuang
2006/12/25

Reference

• Intel MMX for Multimedia PCs, CACM, Jan. 1997
• Chapter 11 The MMX Instruction Set, The Art of

Assembly
• Chap. 9, 10, 11 of IA-32 Intel Architecture

Software Developer’s Manual: Volume 1: Basic
Architecture

Overview

• SIMD
• MMX architectures
• MMX instructions
• examples
• SSE/SSE2

• SIMD instructions are probably the best place
to use assembly since compilers usually do not
do a good job on using these instructions

Performance boost

• Increasing clock rate is not fast enough for
boosting performance

• Architecture improvement is more significant
such as pipeline/cache/SIMD

• Intel analyzed multimedia applications and
found they share the following characteristics:
– Small native data types (8-bit pixel, 16-bit audio)
– Recurring operations
– Inherent parallelism

SIMD

• SIMD (single instruction multiple data)
architecture performs the same operation on
multiple data elements in parallel

• PADDW MM0, MM1

SISD/SIMD/Streaming

IA-32 SIMD development

• MMX (Multimedia Extension) was introduced in
1996 (Pentium with MMX and Pentium II).

• SSE (Streaming SIMD Extension) was introduced
with Pentium III.

• SSE2 was introduced with Pentium 4.
• SSE3 was introduced with Pentium 4 supporting

hyper-threading technology. SSE3 adds 13 more
instructions.

MMX

• After analyzing a lot of existing applications
such as graphics, MPEG, music, speech
recognition, game, image processing, they
found that many multimedia algorithms
execute the same instructions on many pieces
of data in a large data set.

• Typical elements are small, 8 bits for pixels, 16
bits for audio, 32 bits for graphics and general
computing.

• New data type: 64-bit packed data type. Why
64 bits?
– Good enough
– Practical

MMX data types

MMX integration into IA

79

11…11
NaN or infinity as real
because bits 79-64 are
zeros.

Even if MMX registers
are 64-bit, they don’t
extend Pentium to a
64-bit CPU since only
logic instructions are
provided for 64-bit
data.

8 MM0~MM7

Compatibility

• To be fully compatible with existing IA, no new
mode or state was created. Hence, for context
switching, no extra state needs to be saved.

• To reach the goal, MMX is hidden behind FPU.
When floating-point state is saved or restored,
MMX is saved or restored.

• It allows existing OS to perform context
switching on the processes executing MMX
instruction without be aware of MMX.

• However, it means MMX and FPU can not be
used at the same time.

Compatibility

• Although Intel defenses their decision on
aliasing MMX to FPU for compatibility. It is
actually a bad decision. OS can just provide a
service pack or get updated.

• It is why Intel introduced SSE later without any
aliasing

MMX instructions

• 57 MMX instructions are defined to perform the
parallel operations on multiple data elements
packed into 64-bit data types.

• These include add, subtract, multiply,
compare, and shift, data conversion,
64-bit data move, 64-bit logical
operation and multiply-add for multiply-
accumulate operations.

• All instructions except for data move use MMX
registers as operands.

• Most complete support for 16-bit operations.

Saturation arithmetic

wrap-around saturating

• Useful in graphics applications.
• When an operation overflows or underflows,

the result becomes the largest or smallest
possible representable number.

• Two types: signed and unsigned saturation

MMX instructions

MMX instructions

Call it before you switch to FPU from MMX;
Expensive operation

Arithmetic

• PADDB/PADDW/PADDD: add two packed
numbers, no CFLAGS is set, ensure overflow
never occurs by yourself

• Multiplication: two steps
• PMULLW: multiplies four words and stores the

four lo words of the four double word results
• PMULHW/PMULHUW: multiplies four words and

stores the four hi words of the four double word
results. PMULHUW for unsigned.

Arithmetic

• PMADDWD

Detect MMX/SSE
mov eax, 1 ; request version info
cpuid ; supported since Pentium
test edx, 00800000h ;bit 23

; 02000000h (bit 25) SSE
; 04000000h (bit 26) SSE2

jnz HasMMX

cpuid

:
:

Example: add a constant to a vector
char d[]={5, 5, 5, 5, 5, 5, 5, 5};
char clr[]={65,66,68,...,87,88}; // 24 bytes
__asm{

movq mm1, d
mov cx, 3
mov esi, 0

L1: movq mm0, clr[esi]
paddb mm0, mm1
movq clr[esi], mm0
add esi, 8
loop L1
emms

}

Comparison

• No CFLAGS, how many flags will you need?
Results are stored in destination.

• EQ/GT, no LT

Change data types

• Pack: converts a larger data type to the next
smaller data type.

• Unpack: takes two operands and interleave
them. It can be used for expand data type for
immediate calculation.

Pack with signed saturation

Pack with signed saturation

Unpack low portion

Unpack low portion

Unpack low portion

Unpack high portion

Performance boost (data from 1996)

Benchmark kernels:
FFT, FIR, vector dot-
product, IDCT,
motion compensation.

65% performance gain

Lower the cost of
multimedia programs
by removing the need
of specialized DSP
chips

Keys to SIMD programming

• Efficient data layout
• Elimination of branches

Application: frame difference

A B

|A-B|

Application: frame difference

A-B B-A

(A-B) or (B-A)

Application: frame difference
MOVQ mm1, A //move 8 pixels of image A
MOVQ mm2, B //move 8 pixels of image B
MOVQ mm3, mm1 // mm3=A
PSUBSB mm1, mm2 // mm1=A-B
PSUBSB mm2, mm3 // mm2=B-A
POR mm1, mm2 // mm1=|A-B|

Example: image fade-in-fade-out

A*α+B*(1-α) = B+α(A-B)

A B

α=0.75

α=0.5

α=0.25

Example: image fade-in-fade-out

• Two formats: planar and chunky
• In Chunky format, 16 bits of 64 bits are wasted
• So, we use planar in the following example

R G B A R G B A

Example: image fade-in-fade-out

Image A Image B

Example: image fade-in-fade-out
MOVQ mm0, alpha//4 16-b zero-padding α
MOVD mm1, A //move 4 pixels of image A
MOVD mm2, B //move 4 pixels of image B
PXOR mm3, mm3 //clear mm3 to all zeroes
//unpack 4 pixels to 4 words
PUNPCKLBW mm1, mm3 // Because B-A could be
PUNPCKLBW mm2, mm3 // negative, need 16 bits
PSUBW mm1, mm2 //(B-A)
PMULHW mm1, mm0 //(B-A)*fade/256
PADDW mm1, mm2 //(B-A)*fade + B
//pack four words back to four bytes
PACKUSWB mm1, mm3

Data-independent computation

• Each operation can execute without needing to
know the results of a previous operation.

• Example, sprite overlay
for i=1 to sprite_Size
if sprite[i]=clr
then out_color[i]=bg[i]
else out_color[i]=sprite[i]

• How to execute data-dependent calculations on
several pixels in parallel.

Application: sprite overlay

Application: sprite overlay
MOVQ mm0, sprite
MOVQ mm2, mm0
MOVQ mm4, bg
MOVQ mm1, clr
PCMPEQW mm0, mm1
PAND mm4, mm0
PANDN mm0, mm2
POR mm0, mm4

Application: matrix transport

Application: matrix transport
char M1[4][8];// matrix to be transposed
char M2[8][4];// transposed matrix
int n=0;
for (int i=0;i<4;i++)
for (int j=0;j<8;j++)
{ M1[i][j]=n; n++; }

__asm{
//move the 4 rows of M1 into MMX registers
movq mm1,M1
movq mm2,M1+8
movq mm3,M1+16
movq mm4,M1+24

Application: matrix transport
//generate rows 1 to 4 of M2
punpcklbw mm1, mm2
punpcklbw mm3, mm4
movq mm0, mm1
punpcklwd mm1, mm3 //mm1 has row 2 & row 1
punpckhwd mm0, mm3 //mm0 has row 4 & row 3
movq M2, mm1
movq M2+8, mm0

Application: matrix transport
//generate rows 5 to 8 of M2
movq mm1, M1 //get row 1 of M1
movq mm3, M1+16 //get row 3 of M1
punpckhbw mm1, mm2
punpckhbw mm3, mm4
movq mm0, mm1
punpcklwd mm1, mm3 //mm1 has row 6 & row 5
punpckhwd mm0, mm3 //mm0 has row 8 & row 7
//save results to M2
movq M2+16, mm1
movq M2+24, mm0
emms
} //end

SSE

• Adds eight 128-bit registers
• Allows SIMD operations on packed single-

precision floating-point numbers.

SSE features

• Add eight 128-bit data registers (XMM registers)
in non-64-bit modes; sixteen XMM registers are
available in 64-bit mode.

• 32-bit MXCSR register (control and status)
• Add a new data type: 128-bit packed single-

precision floating-point (4 FP numbers.)
• Instruction to perform SIMD operations on 128-

bit packed single-precision FP and additional
64-bit SIMD integer operations.

• Instructions that explicitly prefetch data,
control data cacheability and ordering of store

SSE programming environment

XMM0
|
XMM7

MM0
|
MM7

EAX, EBX, ECX, EDX
EBP, ESI, EDI, ESP

MXCSR control and status register

SSE packed FP operation

• ADDPS/SUBPS: packed single-precision FP

SSE scalar FP operation

• ADDSS/SUBSS: scalar single-precision FP
used as FPU?

SSE2

• Provides ability to perform SIMD operations on
double-precision FP, allowing advanced
graphics such as ray tracing

• Provides greater throughput by operating on
128-bit packed integers, useful for RSA and RC5

SSE2 features

• Add data types and instructions for them

• Programming environment unchanged

Example
void add(float *a, float *b, float *c) {
for (int i = 0; i < 4; i++)
c[i] = a[i] + b[i];

}
__asm {
mov eax, a
mov edx, b
mov ecx, c
movaps xmm0, XMMWORD PTR [eax]
addps xmm0, XMMWORD PTR [edx]
movaps XMMWORD PTR [ecx], xmm0
}

movaps: move aligned packed single-
precision FP

addps: add packed single-precision FP

Intrinsics

• An intrinsic is a function known by the compiler
that directly maps to a sequence of one or
more assembly language instructions. Intrinsic
functions are inherently more efficient than
called functions because no calling linkage is
required.

• Intrinsics make the use of processor-specific
enhancements easier because they provide a
C/C++ language interface to assembly
instructions. In doing so, the compiler manages
things that the user would normally have to be
concerned with, such as register names,
register allocations, and memory locations of
data.

Vector algebra

• Used extensively in graphics
• In C era, typedef float vector[3];

• In C++ era,
class Vector {

private:
float x , y , z;

};

Vector operator + (const Vector& a ,
const float & b) {

return Vector(a.x+b, a.y+b, a.z+b);
}

SSE intrinsic
#include <xmmintrin.h>

__m128 a , b , c;
c = _mm_add_ps(a , b);

float a[4] , b[4] , c[4];
for(int i = 0 ; i < 4 ; ++ i)

c[i] = a[i] + b[i];

// a = b * c + d / e;
__m128 a = _mm_add_ps(_mm_mul_ps(b , c) ,

_mm_div_ps(d , e));

SSE Shuffle (SHUFPS)

SHUFPS xmm1, xmm2, imm8

Select[1..0] decides which DW of DEST to be
copied to the 1st DW of DEST

...

SSE Shuffle (SHUFPS)

Example (cross product)
Vector cross(const Vector& a , const Vector& b) {

return Vector(
(a[1] * b[2] - a[2] * b[1]) ,
(a[2] * b[0] - a[0] * b[2]) ,
(a[0] * b[1] - a[1] * b[0]));

}

Example (cross product)
/* cross */
__m128 _mm_cross_ps(__m128 a , __m128 b) {

__m128 ea , eb;
// set to a[1][2][0][3] , b[2][0][1][3]
ea = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3,0,2,1));
eb = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3,1,0,2));
// multiply
__m128 xa = _mm_mul_ps(ea , eb);
// set to a[2][0][1][3] , b[1][2][0][3]
a = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3,1,0,2));
b = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3,0,2,1));
// multiply
__m128 xb = _mm_mul_ps(a , b);
// subtract
return _mm_sub_ps(xa , xb);

}

Example: dot product

• Given a set of vectors {v1,v2,…vn}={(x1,y1,z1),
(x2,y2,z2),…, (xn,yn,zn)} and a vector vc=(xc,yc,zc),
calculate {vc⋅vi}

• Two options for memory layout
• Array of structure (AoS)
typedef struct { float dc, x, y, z; } Vertex;
Vertex v[n];

• Structure of array (SoA)
typedef struct { float x[n], y[n], z[n]; }

VerticesList;
VerticesList v;

Example: dot product (AoS)
movaps xmm0, v ; xmm0 = DC, x0, y0, z0
movaps xmm1, vc ; xmm1 = DC, xc, yc, zc
mulps xmm0, xmm1 ;xmm0=DC,x0*xc,y0*yc,z0*zc
movhlps xmm1, xmm0 ; xmm1= DC, DC, DC, x0*xc
addps xmm1, xmm0 ; xmm1 = DC, DC, DC,

; x0*xc+z0*zc
movaps xmm2, xmm0
shufps xmm2, xmm2, 55h ; xmm2=DC,DC,DC,y0*yc
addps xmm1, xmm2 ; xmm1 = DC, DC, DC,

; x0*xc+y0*yc+z0*zc

movhlps:DEST[63..0] := SRC[127..64]

Example: dot product (SoA)
; X = x1,x2,...,x3
; Y = y1,y2,...,y3
; Z = z1,z2,...,z3
; A = xc,xc,xc,xc
; B = yc,yc,yc,yc
; C = zc,zc,zc,zc
movaps xmm0, X ; xmm0 = x1,x2,x3,x4
movaps xmm1, Y ; xmm1 = y1,y2,y3,y4
movaps xmm2, Z ; xmm2 = z1,z2,z3,z4
mulps xmm0, A ;xmm0=x1*xc,x2*xc,x3*xc,x4*xc
mulps xmm1, B ;xmm1=y1*yc,y2*yc,y3*xc,y4*yc
mulps xmm2, C ;xmm2=z1*zc,z2*zc,z3*zc,z4*zc
addps xmm0, xmm1
addps xmm0, xmm2 ;xmm0=(x0*xc+y0*yc+z0*zc)…

Reciprocal
#define FP_ONE_BITS 0x3F800000
// r = 1/p from NVidia’s fastmath.cpp
#define FP_INV(r,p) \
{ \

int _i = 2 * FP_ONE_BITS - *(int *)&(p); \
r = *(float *)&_i; \
r = r * (2.0f - (p) * r); \

}

εεεε)(')(~...)()()()(00
2

0
''

0
'

00 xfxfxfxfxfxf ++++=+
That is, if we want to find the root for f(x)=0 with an initial
guess x0. Then the correction term should be

0)(')(~)(000 =++ εε xfxfxf
)('
)(

0

0

xf
xf

−=ε

So we can solve it by this iteration
)('
)(

1
n

n
nn xf

xfxx −=+

Reciprocal

)('
)(

1
n

n
nn xf

xfxx −=+
If r is the reciprocal of p,
It means that r is the root
for

p
x

xf −=
1)(

Thus, if r0 is the initial
guess, the next one is

2

1)('
x

xf −=

2
00

2
0

0
0 21

1

prr

r

p
rrr −=
−

−
−=

Reciprocal
#define FP_ONE_BITS 0x3F800000
// r = 1/p from NVidia’s fastmath.cpp
#define FP_INV(r,p) \
{ \

int _i = 2 * FP_ONE_BITS - *(int *)&(p); \
r = *(float *)&_i; \
r = r * (2.0f - (p) * r); \

}

2
00

2
0

0
0 21

1

prr

r

p
rrr −=
−

−
−=

The remaining question is how to pick up the initial guess.

Reciprocal
#define FP_ONE_BITS 0x3F800000
// r = 1/p from NVidia’s fastmath.cpp
#define FP_INV(r,p) \
{ \

int _i = 2 * FP_ONE_BITS - *(int *)&(p); \

E M 127
23 2

2
1 −×⎟

⎠
⎞

⎜
⎝
⎛ + EM

EE

E

M
MM

−−

−
×⎟
⎠
⎞

⎜
⎝
⎛ −≈×

+
=

×⎟
⎠
⎞

⎜
⎝
⎛ +

127
23

127

23
127

23

2
2

12

2
1

1

2
2

1

1

EEE MMM −−− ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+≈×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+=×⎟

⎠
⎞

⎜
⎝
⎛ −= 126

23
126

23
126

23 2
2

112
2
2112

2
22

Inverse square root

• In graphics, we often have to normalize a
vector

Vector &normalize()
float invlen=1.0/sqrt(x*x + y*y + z*z);
x *= invlen;
y *= invlen;
z *= invlen;
return *this;

}

invSqrt
// used in QUAKE3
float InvSqrt (float x)
{

float xhalf = 0.5f*x;
int i = *(int*)&x;
i = 0x5f3759df - (i >> 1);
x = *(float*)&i;
x = x*(1.5f - xhalf*x*x);
return x;

}

invSqrt (experiments by littleshan)
void inv_sqrt_v1(float* begin, float* end, float* out)
{ /* naive method */

for(; begin < end; ++begin, ++output)
*out = 1.0f / sqrtf(*begin);

}
void inv_sqrt_v2(float* begin, float* end, float* out)
{

float xhalf, x;
int i;
for(; begin < end; ++begin, ++out){

xhalf = 0.5f * (*begin);
i = *(int*)begin;
i = 0×5f3759df - (i>>1);
x = *(float*)&i;
out = x(1.5f - xhalf*x*x);

}
}

invSqrt
void inv_sqrt_v3(float* begin, float* end, float* out)
{ /* vectorized SSE */

long size = end - begin;
long padding = size % 16;
size -= padding;

// each time, we use simd to do 16 invsqrt
// do the rest (padding) first
for(; padding > 0; --padding, ++begin, ++output)

*output = 1.0f / sqrt(*begin);

invSqrt
__asm {

mov esi, [begin]
mov edi, [output]

loop_begin:
cmp esi, [end]
ja loop_end

movups xmm0, [esi]
movups xmm1, [esi+16]
movups xmm2, [esi+32]
movups xmm3, [esi+48]

rsqrtps xmm4, xmm0
rsqrtps xmm5, xmm1
rsqrtps xmm6, xmm2
rsqrtps xmm7, xmm3

invSqrt
movups [edi], xmm4
movups [edi+16], xmm5
movups [edi+32], xmm6
movups [edi+48], xmm7

add esi, 64
add edi, 64

jmp loop_begin
loop_end:

}

Experiments
method 1: naive sqrt()
CPU cycle used: 13444770
method 2: marvelous solution
CPU cycle used: 2806215
method 3: vectorized SSE
CPU cycle used: 1349355

Other SIMD architectures

• Graphics Processing Unit (GPU): nVidia 7800, 24
pipelines (8 vector/16 fragment)

NVidia GeForce 8800, 2006

• Each GeForce 8800 GPU stream processor is a
fully generalized, fully decoupled, scalar,
processor that supports IEEE 754 floating point
precision.

• Up to 128 stream processors

Cell processor

• Cell Processor (IBM/Toshiba/Sony): 1 PPE
(Power Processing Unit) +8 SPEs (Synergistic
Processing Unit)

• An SPE is a RISC processor with 128-bit SIMD for
single/double precision instructions, 128 128-
bit registers, 256K local cache

• used in PS3.

Cell processor

Announcements

• Voting
• TA evaluation on 1/8
• Final project due date? 1/24 or 1/31?

