
High-Level Language Interface

Computer Organization and Assembly Languages
Yung-Yu Chuang
2006/12/18

with slides by Kip Irvine

Why link ASM and HLL programs?

• Assembly is rarely used to develop the entire
program.

• Use high-level language for overall project
development
– Relieves programmer from low-level details

• Use assembly language code
– Speed up critical sections of code
– Access nonstandard hardware devices
– Write platform-specific code
– Extend the HLL's capabilities

General conventions

• Considerations when calling assembly language
procedures from high-level languages:
– Both must use the same naming convention (rules

regarding the naming of variables and procedures)
– Both must use the same memory model, with

compatible segment names
– Both must use the same calling convention

Calling convention
• Identifies specific registers that must be

preserved by procedures
• Determines how arguments are passed to

procedures: in registers, on the stack, in shared
memory, etc.

• Determines the order in which arguments are
passed by calling programs to procedures

• Determines whether arguments are passed by
value or by reference

• Determines how the stack pointer is restored
after a procedure call

• Determines how functions return values

External identifiers

• An external identifier is a name that has been
placed in a module’s object file in such a way
that the linker can make the name available to
other program modules.

• The linker resolves references to external
identifiers, but can only do so if the same
naming convention is used in all program
modules.

Inline assembly code
• Assembly language source code that is inserted

directly into a HLL program.
• Compilers such as Microsoft Visual C++ and

Borland C++ have compiler-specific directives
that identify inline ASM code.

• Efficient inline code executes quickly because
CALL and RET instructions are not required.

• Simple to code because there are no external
names, memory models, or naming conventions
involved.

• Decidedly not portable because it is written for
a single platform.

__asm directive in Microsoft Visual C++

• Can be placed at the beginning of a single
statement

• Or, It can mark the beginning of a block of
assembly language statements

• Syntax: __asm statement

__asm {
statement-1
statement-2
...
statement-n

}

Commenting styles

mov esi,buf ; initialize index register
mov esi,buf // initialize index register
mov esi,buf /* initialize index register*/

All of the following comment styles are acceptable,
but the latter two are preferred:

You can do the following . . .

• Use any instruction from the Intel instruction set
• Use register names as operands
• Reference function parameters by name
• Reference code labels and variables that were

declared outside the asm block
• Use numeric literals that incorporate either

assembler-style or C-style radix notation
• Use the PTR operator in statements such as inc
BYTE PTR [esi]

• Use the EVEN and ALIGN directives
• Use the LENGTH, SIZE and TYPE directives

You cannot do the following . . .

• Use data definition directives such as DB, DW,
or BYTE

• Use assembler operators other than PTR
• Use STRUCT, RECORD, WIDTH, and MASK
• Use macro directives such as MACRO, REPT,
IRC, IRP

Register usage

• In general, you can modify EAX, EBX, ECX, and
EDX in your inline code because the compiler
does not expect these values to be preserved
between statements

• Conversely, always save and restore ESI, EDI,
and EBP.

• You can’t use OFFSET, but you can us LEA
instruction to retrieve the offset of a variable.

lea esi, buffer

File encryption example

• Reads a file, encrypts it, and writes the output
to another file.

• The TranslateBuffer function uses an
__asm block to define statements that loop
through a character array and XOR each
character with a predefined value.

TranslateBuffer
void TranslateBuffer(char * buf,

unsigned count,
unsigned char eChar)

{
__asm {

mov esi,buf ; set index register
mov ecx,count /* set loop counter */
mov al,eChar

L1:
xor [esi],al
inc esi
Loop L1

} // asm
}

File encryption
...
while (!infile.eof())
{
infile.read(buffer, BUFSIZE);
count = infile.gcount();
TranslateBuffer(buffer, count, encryptCode);
outfile.write(buffer, count);

}
...

TranslateBuffer
push ebp
mov ebp, esp
sub esp, 40h
push ebx
push esi
push edi
mov esi,buf ; set index register
mov ecx,count /* set loop counter */
mov al,eChar

L1:
xor [esi],al
inc esi
Loop L1
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp

File encryption
while (!infile.eof())
{
infile.read(buffer, BUFSIZE);
count = infile.gcount();
__asm {

lea esi,buffer
mov ecx,count
mov al, encryptChar

L1:
xor [esi],al
inc esi
Loop L1

} // asm
outfile.write(buffer, count);

}

to avoid the calling overhead

