High-level Language Interface

Computer Organization and Assembly Langnages

Yung-Yu Chuang
2006/12/18

with slides by Kip Trvine



— i :
[~ Y-

Why link ASM and HLL programs? S

o Assembly is rarely used to develop the entire
program.

* Use high-level language for overall project
development
— Relieves programmer from low-level details

e Use assembly language code
— Speed up critical sections of code
— Access nonstandard hardware devices
— Write platform-specific code
— Extend the HLL's capabilities



General conventions S

o Considerations when calling assembly language
procedures from high-level languages:

— Both must use the same naming convention (rules
regarding the naming of variables and procedures)

— Both must use the same memory model, with
compatible segment names

— Both must use the same calling convention



Calling convention S

dentifies specific registers that must be
preserved by procedures

Determines how arguments are passed to
orocedures: In registers, on the stack, in shared
memory, etc.

Determines the order in which arguments are
passed by calling programs to procedures

Determines whether arguments are passed by
value or by reference

Determines how the stack pointer Is restored
after a procedure call

Determines how functions return values




External identifiers S

 An external identifier Is a name that has been
placed in a module’s object file In such a way
that the linker can make the name available to
other program modules.

* The linker resolves references to external
iIdentifiers, but can only do so If the same
naming convention is used in all program
modules.




Inline assembly code S

Assembly language source code that is inserted
directly into a HLL program.

Compilers such as Microsoft Visual C++ and
Borland C++ have compiler-specific directives
that identify inline ASM code.

Efficient inline code executes quickly because
CALL and RET instructions are not required.

Simple to code because there are no external
names, memory models, or naming conventions
Involved.

Decidedly not portable because it Is written for
a single platform.



___asm directive In Microsoft Visual C+-

o]
)

e Can be placed at the beginning of a single
statement

e Or, It can mark the beginning of a block of
assembly language statements

e Syntax: | asm statement

__asm {
statement-1
statement-2

statement-n

}




Commenting styles

All of the following comment styles are acceptable,
but the latter two are preferred:

mov esi,buf ; nitializ Index register
mov esi,buf // initialize 1ndex register
mov esi,buf /* initialize 1ndex register*/




You can do the following . . . S

e Use any instruction from the Intel instruction set
* Use register names as operands
 Reference function parameters by name

e Reference code labels and variables that were
declared outside the asm block

e Use numeric literals that incorporate either
assembler-style or C-style radix notation

 Use the PTR operator in statements such as Inc
BYTE PTR [esi]

 Use the EVEN and ALIGN directives
e Use the LENGTH, SI1ZE and TYPE directives



You cannot do the following . . .

e Use data definition directives such as DB, DW,
or BYTE

e Use assembler operators other than PTR
 Use STRUCT, RECORD, WIDTH, and MASK

e Use macro directives such as MACRO, REPT,
IRC, IRP



Register usage S

* In general, you can modify EAX, EBX, ECX, and
EDX in your inline code because the compiler
does not expect these values to be preserved
between statements

e Conversely, always save and restore ESI, EDI,
and EBP.

 You can’'t use OFFSET, but you can us LEA
Instruction to retrieve the offset of a variable.

lea esi1, buffer




File encryption example S

e Reads a file, encrypts it, and writes the output
to another file.

« The TranslateBuffer function uses an
___asm block to define statements that loop

through a character array and XOR each
character with a predefined value.



TranslateBuffer

voild TranslateBuffer(char * buf,
unsigned count,
unsigned char eChar )

{

__asm {
mov esi,buf , set Index register
mov ecx,count /* set loop counter */
mov al,eChar

L1:
xor [esi],al
IncC esi
Loop L1

} 7/ asm

}



File encryption

while (1infile.eof() )

{
infile.read(buffer, BUFSIZE );
count = Infile.gcount();
TranslateBuffer(buffer, count, encryptCode);
outfile.write(buffer, count);

}



TranslateBuffer

push ebp

mov ebp, esp

sub esp, 40h

push ebx

push esi

push edi

mov esi,buf , set Index register
mov ecx,count /* set loop counter */
mov al,eChar

L1:
xor [esi],al
IncC esi
Loop L1
pop edi
pop esl
pop ebx

mov esp, ebp
pop ebp



File encryption

while (1infile.eof() )
{
infile.read(buffer, BUFSIZE );
count = Infile.gcount();
__asm { to avoid the calling overhead
lea esi,buffer
mov ecx,count
mov al, encryptChar
L1:
xor [esi],al
InC esi
Loop L1
} // asm
outfile.write(buffer, count);

}



