
Integer Arithmetic

Computer Organization and Assembly Languages
Yung-Yu Chuang
2006/11/27

with slides by Kip Irvine

Announcements

• Assignment #3 is due today.
• Assignment #4 box filter is online now, due on

12/11.

Assignment #4 Box Filter

Assignment #4 Box Filter

Assignment #4 Box Filter

What is an image

• We can think of an image as a function, f: R2 R:
– f(r, c) gives the intensity at position (r, c)
– defined over a rectangle, with a finite range:

• f: [0,h-1]x[0,w-1] [0,255]

c

r

f

A digital image

• The image can be represented as a matrix of
integer values

100100100100100100100100100100

100100100100100100100100100100

100100100100100100100100100100

1001001001208011090100100100

100110120110130100120100100100

10012011013090100130100100130

1101001009010090110100100100

100100110120110130100100100110

100100100100100100100100130120

100100100100100100100100110110

c

r

Assignment #4 Box Filter
unsigned int c_blur(unsigned char *img_in,

unsigned char *img_out, int knl_size, int w, int h)
{

for each row r
for each column c

calculate k(r, c)
save it

}

• Memory layout
• Only integer arithmetic operations
• MD5/CRC32 checksum

Assignment #4 Box Filter
for (int i = 0; i < height; i++) {

for (int j = 0; j < width; j++) {
pixel = 0; pixel_num = 0;
for (int y=-knl_size/2; y<=knl_size/2; y++) {

for (int x=-knl_size/2; x<=knl_size/2; x++) {
int x_s = j + x;
int y_s = i + y;
/* make sure that it's in the image */
if (x_s>=0 && x_s<w && y_s>=0 && y_s<h) {

pixel += img_in[y_s * w + x_s];
pixel_num++;

}
}

}
pixel = pixel / pixel_num;
img_out[i * width + j] = (unsigned char)pixel;

}
}

Chapter 7 Integer Arithmetic Overview

• Shift and Rotate Instructions
• Shift and Rotate Applications
• Multiplication and Division Instructions
• Extended Addition and Subtraction
• ASCII and Packed Decimal Arithmetic

Shift and Rotate Instructions

• Logical vs Arithmetic Shifts
• SHL Instruction
• SHR Instruction
• SAL and SAR Instructions
• ROL Instruction
• ROR Instruction
• RCL and RCR Instructions
• SHLD/SHRD Instructions

Logical vs arithmetic shifts

• A logical shift fills the newly created bit
position with zero:

• An arithmetic shift fills the newly created bit
position with a copy of the number’s sign bit:

CF

0

CF

SHL instruction

• The SHL (shift left) instruction performs a
logical left shift on the destination operand,
filling the lowest bit with 0.

CF

0

• Operand types: SHL destination,count
SHL reg,imm8
SHL mem,imm8
SHL reg,CL
SHL mem,CL

Fast multiplication

mov dl,5
shl dl,1

Shifting left 1 bit multiplies a number by 2

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 = 5

= 10

Before:

After:

mov dl,5
shl dl,2 ; DL = 20

Shifting left n bits multiplies the operand by 2n

For example, 5 * 22 = 20

SHR instruction

• The SHR (shift right) instruction performs a
logical right shift on the destination operand.
The highest bit position is filled with a zero.

CF

0

mov dl,80
shr dl,1 ; DL = 40
shr dl,2 ; DL = 10

Shifting right n bits divides the operand by 2n

SAL and SAR instructions

• SAL (shift arithmetic left) is identical to SHL.
• SAR (shift arithmetic right) performs a right

arithmetic shift on the destination operand.

CF

An arithmetic shift preserves the number's sign.

mov dl,-80
sar dl,1 ; DL = -40
sar dl,2 ; DL = -10

ROL instruction

• ROL (rotate) shifts each bit to the left
• The highest bit is copied into both the Carry

flag and into the lowest bit
• No bits are lost

CF

mov al,11110000b
rol al,1 ; AL = 11100001b

mov dl,3Fh
rol dl,4 ; DL = F3h

ROR instruction

• ROR (rotate right) shifts each bit to the right
• The lowest bit is copied into both the Carry flag

and into the highest bit
• No bits are lost

CF

mov al,11110000b
ror al,1 ; AL = 01111000b

mov dl,3Fh
ror dl,4 ; DL = F3h

Your turn . . .

mov al,6Bh
shr al,1 a.
shl al,3 b.
mov al,8Ch
sar al,1 c.
sar al,3 d.

Indicate the hexadecimal value of AL after
each shift:

35h
A8h

C6h
F8h

Your turn . . .

mov al,6Bh
ror al,1 a.
rol al,3 b.

Indicate the hexadecimal value of AL after
each rotation:

B5h
ADh

RCL instruction

• RCL (rotate carry left) shifts each bit to the left
• Copies the Carry flag to the least significant bit
• Copies the most significant bit to the Carry flag

CF

clc ; CF = 0
mov bl,88h ; CF,BL = 0 10001000b
rcl bl,1 ; CF,BL = 1 00010000b
rcl bl,1 ; CF,BL = 0 00100001b

RCR instruction

• RCR (rotate carry right) shifts each bit to the
right

• Copies the Carry flag to the most significant bit
• Copies the least significant bit to the Carry flag

stc ; CF = 1
mov ah,10h ; CF,AH = 00010000 1
rcr ah,1 ; CF,AH = 10001000 0

CF

Your turn . . .

stc
mov al,6Bh
rcr al,1 a.
rcl al,3 b.

Indicate the hexadecimal value of AL after
each rotation:

B5h
AEh

SHLD instruction

• Syntax:
SHLD destination, source, count

• Shifts a destination operand a given number of
bits to the left

• The bit positions opened up by the shift are
filled by the most significant bits of the source
operand

• The source operand is not affected

SHLD example

.data
wval WORD 9BA6h
.code
mov ax,0AC36h
shld wval,ax,4

9BA6 AC36

BA6A AC36

wval AX

Shift wval 4 bits to the left and replace its lowest 4
bits with the high 4 bits of AX:

Before:

After:

SHRD instruction

• Syntax:
SHRD destination, source, count

• Shifts a destination operand a given number of
bits to the right

• The bit positions opened up by the shift are
filled by the least significant bits of the source
operand

• The source operand is not affected

SHRD example

mov ax,234Bh
mov dx,7654h
shrd ax,dx,4

Shift AX 4 bits to the right and replace its highest 4
bits with the low 4 bits of DX:

Before:

After:

7654 234B

7654 4234

DX AX

Your turn . . .

mov ax,7C36h
mov dx,9FA6h
shld dx,ax,4 ; DX =
shrd dx,ax,8 ; DX =

Indicate the hexadecimal values of each
destination operand:

FA67h

36FAh

Shift and rotate applications

• Shifting Multiple Doublewords
• Binary Multiplication
• Displaying Binary Bits
• Isolating a Bit String

Shifting multiple doublewords
• Programs sometimes need to shift all bits

within an array, as one might when moving a
bitmapped graphic image from one screen
location to another.

• The following shifts an array of 3 doublewords 1
bit to the right:

mov esi,0
shr array[esi + 8],1 ; high dword
rcr array[esi + 4],1 ; middle dword,
rcr array[esi],1 ; low dword,

[esi+8] [esi+4] [esi]

Binary multiplication

• We already know that SHL performs unsigned
multiplication efficiently when the multiplier is
a power of 2.

• Factor any binary number into powers of 2.
– For example, to multiply EAX * 36, factor 36 into 32

+ 4 and use the distributive property of
multiplication to carry out the operation:

EAX * 36
= EAX * (32 + 4)
= (EAX * 32)+(EAX * 4)

mov eax,123
mov ebx,eax
shl eax,5
shl ebx,2
add eax,ebx

Your turn . . .

mov ax,2 ; test value

mov dx,ax
shl dx,4 ; AX * 16
push dx ; save for later
mov dx,ax
shl dx,3 ; AX * 8
shl ax,1 ; AX * 2
add ax,dx ; AX * 10
pop dx ; recall AX * 16
add ax,dx ; AX * 26

Multiply AX by 26, using shifting and addition
instructions. Hint: 26 = 16 + 8 + 2.

Displaying binary bits

Algorithm: Shift MSB into the Carry flag; If CF = 1,
append a "1" character to a string; otherwise,
append a "0" character. Repeat in a loop, 32
times.

mov ecx,32
mov esi,offset buffer

L1: shl eax,1
mov BYTE PTR [esi],'0'
jnc L2
mov BYTE PTR [esi],'1'

L2: inc esi
loop L1

Isolating a bit string

• The MS-DOS file date field packs the year
(relative to 1980), month, and day into 16 bits:

DH DL

Year Month Day
9-15 5-8 0-4

Field:
Bit numbers:

01 000 10 1 10 1 010 10

Isolating a bit string

mov al,dh ; make a copy of DX
shr al,1 ; shift right 1 bit
mov ah,0 ; clear AH to 0
add ax,1980 ; year is relative to 1980
mov year,ax ; save in year

mov ax,dx ; make a copy of DX
shr ax,5 ; shift right 5 bits
and al,00001111b ; clear bits 4-7
mov month,al ; save in month variable

mov al,dl ; make a copy of DL
and al,00011111b ; clear bits 5-7
mov day,al ; save in day variable

Multiplication and division instructions

• MUL Instruction
• IMUL Instruction
• DIV Instruction
• Signed Integer Division
• Implementing Arithmetic Expressions

MUL instruction

• The MUL (unsigned multiply) instruction
multiplies an 8-, 16-, or 32-bit operand by
either AL, AX, or EAX.

• The instruction formats are:
MUL r/m8
MUL r/m16
MUL r/m32 Implied operands:

MUL examples

100h * 2000h, using 16-bit operands:

.data
val1 WORD 2000h
val2 WORD 100h
.code
mov ax,val1
mul val2 ; DX:AX=00200000h, CF=1

The Carry flag indicates
whether or not the upper
half of the product
contains significant digits.

mov eax,12345h
mov ebx,1000h
mul ebx ; EDX:EAX=0000000012345000h, CF=0

12345h * 1000h, using 32-bit operands:

Your turn . . .

mov ax,1234h
mov bx,100h
mul bx

What will be the hexadecimal values of (E)DX, (E)AX,
and the Carry flag after the following instructions
execute?

DX = 0012h, AX = 3400h, CF = 1

mov eax,00128765h
mov ecx,10000h
mul ecx

EDX = 00000012h, EAX = 87650000h, CF = 1

IMUL instruction

• IMUL (signed integer multiply) multiplies an 8-,
16-, or 32-bit signed operand by either AL, AX,
or EAX (there are one/two/three operand
format)

• Preserves the sign of the product by sign-
extending it into the upper half of the
destination register
Example: multiply 48 * 4, using 8-bit operands:

mov al,48
mov bl,4
imul bl ; AX = 00C0h, OF=1

OF=1 because AH is not a sign extension of AL.

DIV instruction

• The DIV (unsigned divide) instruction performs
8-bit, 16-bit, and 32-bit division on unsigned
integers

• A single operand is supplied (register or
memory operand), which is assumed to be the
divisor

• Instruction formats:
DIV r/m8
DIV r/m16
DIV r/m32

Default Operands:

DIV examples

Divide 8003h by 100h, using 16-bit operands:

mov dx,0 ; clear dividend, high
mov ax,8003h ; dividend, low
mov cx,100h ; divisor
div cx ; AX = 0080h, DX = 3

Same division, using 32-bit operands:

mov edx,0 ; clear dividend, high
mov eax,8003h ; dividend, low
mov ecx,100h ; divisor
div ecx ; EAX=00000080h,DX= 3

Your turn . . .

mov dx,0087h
mov ax,6000h
mov bx,100h
div bx

What will be the hexadecimal values of DX and AX
after the following instructions execute?

DX = 0000h, AX = 8760h

Signed integer division

• Signed integers must be sign-extended before
division takes place
– fill high byte/word/doubleword with a copy of the

low byte/word/doubleword's sign bit
• For example, the high byte contains a copy of

the sign bit from the low byte:

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 11 1 1 1 1 1 1 1

CBW, CWD, CDQ instructions

• The CBW, CWD, and CDQ instructions
provide important sign-extension
operations:
– CBW (convert byte to word) extends AL into AH
– CWD (convert word to doubleword) extends AX into DX
– CDQ (convert doubleword to quadword) extends EAX

into EDX

• For example:
mov eax,0FFFFFF9Bh ; -101 (32 bits)
cdq ; EDX:EAX = FFFFFFFFFFFFFF9Bh

; -101 (64 bits)

IDIV instruction

• IDIV (signed divide) performs signed integer
division

• Uses same operands as DIV
Example: 8-bit division of –48 by 5

mov al,-48
cbw ; extend AL into AH
mov bl,5
idiv bl ; AL = -9, AH = -3

IDIV examples

Example: 32-bit division of –48 by 5

mov eax,-48
cdq ; extend EAX into EDX
mov ebx,5
idiv ebx ; EAX = -9, EDX = -3

Example: 16-bit division of –48 by 5

mov ax,-48
cwd ; extend AX into DX
mov bx,5
idiv bx ; AX = -9, DX = -3

Your turn . . .

mov ax,0FDFFh ; -513
cwd
mov bx,100h
idiv bx

What will be the hexadecimal values of DX and AX
after the following instructions execute?

DX = FFFFh (−1), AX = FFFEh (−2)

Divide overflow

• Divide overflow happens when the quotient is
too large to fit into the destination.

mov ax, 1000h
mov bl, 10h
div bl

It causes a CPU interrupt and halts the program.
(divided by zero cause similar results)

Implementing arithmetic expressions

• Some good reasons to learn how to implement
expressions:
– Learn how compilers do it
– Test your understanding of MUL, IMUL, DIV, and IDIV
– Check for 32-bit overflow

Example: var4 = (var1 + var2) * var3

mov eax,var1
add eax,var2
mul var3
jo TooBig ; check for overflow
mov var4,eax ; save product

Implementing arithmetic expressions

Example: eax = (-var1 * var2) + var3

mov eax,var1
neg eax
mul var2
jo TooBig ; check for overflow
add eax,var3

Example: var4 = (var1 * 5) / (var2 – 3)

mov eax,var1 ; left side
mov ebx,5
mul ebx ; EDX:EAX = product
mov ebx,var2 ; right side
sub ebx,3
div ebx ; final division
mov var4,eax

Implementing arithmetic expressions

Example: var4 = (var1 * -5) / (-var2 % var3);

mov eax,var2 ; begin right side
neg eax
cdq ; sign-extend dividend
idiv var3 ; EDX = remainder
mov ebx,edx ; EBX = right side
mov eax,-5 ; begin left side
imul var1 ; EDX:EAX = left side
idiv ebx ; final division
mov var4,eax ; quotient

Sometimes it's easiest to calculate the right-hand term of an
expression first.

Your turn . . .

mov eax,20
mul ebx
div ecx

Implement the following expression using
signed 32-bit integers:

eax = (ebx * 20) / ecx

Your turn . . .

push ecx
push edx
push eax ; EAX needed later
mov eax,ecx
mul edx ; left side: EDX:EAX
pop ecx ; saved value of EAX
div ecx ; EAX = quotient
pop edx ; restore EDX, ECX
pop ecx

Implement the following expression using signed
32-bit integers. Save and restore ECX and EDX:

eax = (ecx * edx) / eax

Your turn . . .

mov eax,var1
mov edx,var2
neg edx
mul edx ; left side: edx:eax
mov ecx,var3
sub ecx,ebx
div ecx ; eax = quotient
mov var3,eax

Implement the following expression using signed 32-bit
integers. Do not modify any variables other than var3:

var3 = (var1 * -var2) / (var3 – ebx)

Extended addition and subtraction

• ADC Instruction
• Extended Addition Example
• SBB Instruction

ADC instruction

• ADC (add with carry) instruction adds both a
source operand and the contents of the Carry
flag to a destination operand.

• Example: Add two 32-bit integers (FFFFFFFFh
+ FFFFFFFFh), producing a 64-bit sum:

mov edx,0
mov eax,0FFFFFFFFh
add eax,0FFFFFFFFh
adc edx,0 ;EDX:EAX = 00000001FFFFFFFEh

Extended addition example
• Add two integers of any size
• Pass pointers to the addends and sum
• ECX indicates the number of words
L1:

mov eax,[esi] ; get the first integer
adc eax,[edi] ; add the second integer
pushfd ; save the Carry flag
mov [ebx],eax ; store partial sum
add esi,4 ; advance all 3 pointers
add edi,4
add ebx,4
popfd ; restore the Carry flag
loop L1 ; repeat the loop
adc word ptr [ebx],0 ; add leftover carry

Extended addition example
.data
op1 QWORD 0A2B2A40674981234h
op2 QWORD 08010870000234502h
sum DWORD 3 dup(?)

; = 0000000122C32B0674BB5736
.code
...
mov esi,OFFSET op1 ; first operand
mov edi,OFFSET op2 ; second operand
mov ebx,OFFSET sum ; sum operand
mov ecx,2 ; number of doublewords
call Extended_Add
...

SBB instruction

• The SBB (subtract with borrow) instruction subtracts
both a source operand and the value of the Carry flag
from a destination operand.

• The following example code performs 64-bit
subtraction. It sets EDX:EAX to 0000000100000000h and
subtracts 1 from this value. The lower 32 bits are
subtracted first, setting the Carry flag. Then the upper
32 bits are subtracted, including the Carry flag:

mov edx,1 ; upper half
mov eax,0 ; lower half
sub eax,1 ; subtract 1
sbb edx,0 ; subtract upper half

