
Conditional Processing

Computer Organization and Assembly Languages
Yung-Yu Chuang
2006/11/13

with slides by Kip Irvine

Assignment #2 CRC32 checksum
unsigned int crc32(const char* data,

size_t length)
{

// standard polynomial in CRC32
const unsigned int POLY = 0xEDB88320;
// standard initial value in CRC32
unsigned int reminder = 0xFFFFFFFF;
for(size_t i = 0; i < length; i++){

// must be zero extended
reminder ^= (unsigned char)data[i];
for(size_t bit = 0; bit < 8; bit++)

if(reminder & 0x01)
reminder = (reminder >> 1) ^ POLY;

else
reminder >>= 1;

}
return reminder ^ 0xFFFFFFFF;

}

Boolean and comparison instructions

• CPU Status Flags
• AND Instruction
• OR Instruction
• XOR Instruction
• NOT Instruction
• Applications
• TEST Instruction
• CMP Instruction

Status flags - review
• The Zero flag is set when the result of an operation

equals zero.
• The Carry flag is set when an instruction generates a

result that is too large (or too small) for the
destination operand.

• The Sign flag is set if the destination operand is
negative, and it is clear if the destination operand is
positive.

• The Overflow flag is set when an instruction generates
an invalid signed result.

• Less important:
– The Parity flag is set when an instruction generates an even number

of 1 bits in the low byte of the destination operand.
– The Auxiliary Carry flag is set when an operation produces a carry out

from bit 3 to bit 4

NOT instruction

• Performs a bitwise Boolean NOT operation on a
single destination operand

• Syntax: (no flag affected)
NOT destination

• Example:
mov al, 11110000b
not al

NOT

0 0 1 1 1 0 1 1

1 1 0 0 0 1 0 0

NOT

inverted

AND instruction

• Performs a bitwise Boolean AND operation
between each pair of matching bits in two
operands

• Syntax: (O=0,C=0,SZP)
AND destination, source

• Example:
mov al, 00111011b
and al, 00001111b

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

AND

unchangedcleared

AND

bit extraction

OR instruction

• Performs a bitwise Boolean OR operation
between each pair of matching bits in two
operands

• Syntax: (O=0,C=0,SZP)
OR destination, source

• Example:
mov dl, 00111011b
or dl, 00001111b

OR

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1

OR

setunchanged

XOR instruction

• Performs a bitwise Boolean exclusive-OR
operation between each pair of matching bits
in two operands

• Syntax: (O=0,C=0,SZP)
XOR destination, source

• Example:
mov dl, 00111011b
xor dl, 00001111b

XOR

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 1 1 0 1 0 0

XOR

invertedunchanged

XOR is a useful way to invert the bits in an operand and data encryption

Applications (1 of 4)

mov al,'a‘ ; AL = 01100001b
and al,11011111b ; AL = 01000001b

• Task: Convert the character in AL to upper case.

• Solution: Use the AND instruction to clear bit 5.

Applications (2 of 4)

mov al,6 ; AL = 00000110b
or al,00110000b ; AL = 00110110b

• Task: Convert a binary decimal byte into its
equivalent ASCII decimal digit.

• Solution: Use the OR instruction to set bits 4 and 5.

The ASCII digit '6' = 00110110b

Applications (3 of 4)

mov ax,wordVal
and ax,1 ; low bit set?
jz EvenValue ; jump if Zero flag set

• Task: Jump to a label if an integer is even.

• Solution: AND the lowest bit with a 1. If the
result is Zero, the number was even.

Applications (4 of 4)

or al,al
jnz IsNotZero ; jump if not zero

• Task: Jump to a label if the value in AL is not zero.

• Solution: OR the byte with itself, then use the JNZ
(jump if not zero) instruction.

ORing any number with itself does not change its value.

String encryption

encodermessage
(plain text)

unintelligible string
(cipher text)

key

encodermessage
(plain text)

key

Encrypting a string
KEY = 239
.data
buffer BYTE BUFMAX DUP(0)
bufSize DWORD $-buffer
.code

mov ecx,bufSize ; loop counter
mov esi,0 ; index 0 in buffer

L1:
xor buffer[esi],KEY ; translate a byte
inc esi ; point to next byte
loop L1

Message: Attack at dawn.
Cipher text: «¢¢Äîä-Ä¢-ïÄÿü-Gs
Decrypted: Attack at dawn.

TEST instruction

• Performs a nondestructive AND operation between each
pair of matching bits in two operands

• No operands are modified, but the flags are affected.
• Example: jump to a label if either bit 0 or bit 1 in AL is

set. test al,00000011b
jnz ValueFound

• Example: jump to a label if neither bit 0 nor bit 1 in
AL is set.

test al,00000011b
jz ValueNotFound

CMP instruction (1 of 3)

• Compares the destination operand to the source
operand
– Nondestructive subtraction of source from destination

(destination operand is not changed)

• Syntax: (OSZCAP)
CMP destination, source

• Example: destination == source

mov al,5
cmp al,5 ; Zero flag set

• Example: destination < source

mov al,4
cmp al,5 ; Carry flag set

CMP instruction (2 of 3)

• Example: destination > source

mov al,6
cmp al,5 ; ZF = 0, CF = 0
(both the Zero and Carry flags are clear)

The comparisons shown so far were unsigned.

CMP instruction (3 of 3)

• Example: destination > source

mov al,5
cmp al,-2 ; Sign flag == Overflow flag

The comparisons shown here are performed with
signed integers.

• Example: destination < source
mov al,-1
cmp al,5 ; Sign flag != Overflow flag

Conditions

01destination=source

00destination>source

10destination<source

CFZFunsigned

ZF=1destination=source

SF == OFdestination>source

SF != OFdestination<source

flagssigned

Setting and clearing individual flags

and al, 0 ; set Zero
or al, 1 ; clear Zero
or al, 80h ; set Sign
and al, 7Fh ; clear Sign
stc ; set Carry
clc ; clear Carry

mov al, 7Fh
inc al ; set Overflow

or eax, 0 ; clear Overflow

Conditional jumps

Conditional structures

• There are no high-level logic structures such as
if-then-else, in the IA-32 instruction set. But,
you can use combinations of comparisons and
jumps to implement any logic structure.

• First, an operation such as CMP, AND or SUB is
executed to modified the CPU flags. Second, a
conditional jump instruction tests the flags and
changes the execution flow accordingly.

CMP AL, 0
JZ L1
:

L1:

Jcond instruction

• A conditional jump instruction branches to a
label when specific register or flag conditions
are met
Jcond destination

• Four groups: (some are the same)
1. based on specific flag values
2. based on equality between operands
3. based on comparisons of unsigned operands
4. based on comparisons of signed operands

Jumps based on specific flags

Jumps based on equality Jumps based on unsigned comparisons

＞≧＜≦

Jumps based on signed comparisons Examples

mov Large,bx
cmp ax,bx
jna Next
mov Large,ax

Next:

• Compare unsigned AX to BX, and copy the larger of
the two into a variable named Large

mov Small,ax
cmp bx,ax
jnl Next
mov Small,bx

Next:

• Compare signed AX to BX, and copy the smaller of
the two into a variable named Small

Examples

.date
intArray DWORD 7,9,3,4,6,1
.code
...

mov ebx, OFFSET intArray
mov ecx, LENGTHOF intArray

L1: test DWORD PTR [ebx], 1
jz found
add ebx, 4
loop L1

...

• Find the first even number in an array of unsigned
integers

BT (Bit Test) instruction

• Copies bit n from an operand into the Carry flag
• Syntax: BT bitBase, n

– bitBase may be r/m16 or r/m32

– n may be r16, r32, or imm8

• Example: jump to label L1 if bit 9 is set in the
AX register:
bt AX,9 ; CF = bit 9
jc L1 ; jump if Carry

• BTC bitBase, n: bit test and complement
• BTR bitBase, n: bit test and reset (clear)
• BTS bitBase, n: bit test and set

Conditional loops

LOOPZ and LOOPE
• Syntax:

LOOPE destination
LOOPZ destination

• Logic:
– ECX ← ECX – 1
– if ECX != 0 and ZF=1, jump to destination

• The destination label must be between -128
and +127 bytes from the location of the
following instruction

• Useful when scanning an array for the first
element that meets some condition.

LOOPNZ and LOOPNE
• Syntax:

LOOPNZ destination
LOOPNE destination

• Logic:
– ECX ← ECX – 1;
– if ECX != 0 and ZF=0, jump to destination

LOOPNZ example

.data
array SWORD -3,-6,-1,-10,10,30,40,4
sentinel SWORD 0
.code

mov esi,OFFSET array
mov ecx,LENGTHOF array

next:
test WORD PTR [esi],8000h ; test sign bit
pushfd ; push flags on stack
add esi,TYPE array
popfd ; pop flags from stack
loopnz next ; continue loop
jnz quit ; none found
sub esi,TYPE array ; ESI points to value

quit:

The following code finds the first positive value in an array:

Your turn

.data
array SWORD 50 DUP(?)
sentinel SWORD 0FFFFh
.code

mov esi,OFFSET array
mov ecx,LENGTHOF array

L1: cmp WORD PTR [esi],0 ; check for zero

quit:

Locate the first nonzero value in the array. If none is
found, let ESI point to the sentinel value:

Solution

.data
array SWORD 50 DUP(?)
sentinel SWORD 0FFFFh
.code

mov esi,OFFSET array
mov ecx,LENGTHOF array

L1:cmp WORD PTR [esi],0 ; check for zero
pushfd ; push flags on stack
add esi,TYPE array
Popfd ; pop flags from stack
loope next ; continue loop
jz quit ; none found
sub esi,TYPE array ; ESI points to value

quit:

Conditional structures

Block-structured IF statements

Assembly language programmers can easily translate
logical statements written in C++/Java into assembly
language. For example:

mov eax,op1
cmp eax,op2
jne L1
mov X,1
jmp L2

L1: mov X,2
L2:

if(op1 == op2)
X = 1;

else
X = 2;

Example

Implement the following pseudocode in assembly
language. All values are unsigned:

cmp ebx,ecx
ja next
mov eax,5
mov edx,6

next:

if(ebx <= ecx)
{
eax = 5;
edx = 6;

}

Example

Implement the following pseudocode in assembly
language. All values are 32-bit signed integers:

mov eax,var1
cmp eax,var2
jle L1
mov var3,6
mov var4,7
jmp L2

L1: mov var3,10
L2:

if(var1 <= var2)
var3 = 10;

else
{
var3 = 6;
var4 = 7;

}

Compound expression with AND

• When implementing the logical AND operator, consider
that HLLs use short-circuit evaluation

• In the following example, if the first expression is false,
the second expression is skipped:

if (al > bl) AND (bl > cl)
X = 1;

Compound expression with AND

cmp al,bl ; first expression...
ja L1
jmp next

L1:
cmp bl,cl ; second expression...
ja L2
jmp next

L2: ; both are true
mov X,1 ; set X to 1

next:

if (al > bl) AND (bl > cl)
X = 1;

This is one possible implementation . . .

Compound expression with AND

cmp al,bl ; first expression...
jbe next ; quit if false
cmp bl,cl ; second expression...
jbe next ; quit if false
mov X,1 ; both are true

next:

But the following implementation uses 29% less code
by reversing the first relational operator. We allow
the program to "fall through" to the second expression:

if (al > bl) AND (bl > cl)
X = 1;

Your turn . . .

Implement the following pseudocode in assembly
language. All values are unsigned:

cmp ebx,ecx
ja next
cmp ecx,edx
jbe next
mov eax,5
mov edx,6

next:

if(ebx <= ecx
&& ecx > edx)

{
eax = 5;
edx = 6;

}

(There are multiple correct solutions to this problem.)

Compound Expression with OR

• In the following example, if the first expression is true,
the second expression is skipped:

if (al > bl) OR (bl > cl)
X = 1;

Compound Expression with OR

cmp al,bl ; is AL > BL?
ja L1 ; yes
cmp bl,cl ; no: is BL > CL?
jbe next ; no: skip next statement

L1:mov X,1 ; set X to 1
next:

if (al > bl) OR (bl > cl)
X = 1;

We can use "fall-through" logic to keep the code as
short as possible:

WHILE Loops

while(eax < ebx)
eax = eax + 1;

A WHILE loop is really an IF statement followed by the
body of the loop, followed by an unconditional jump to
the top of the loop. Consider the following example:

_while:
cmp eax,ebx ; check loop condition
jae _endwhile ; false? exit loop
inc eax ; body of loop
jmp _while ; repeat the loop

_endwhile:

Your turn . . .

_while:
cmp ebx,val1 ; check loop condition
ja _endwhile ; false? exit loop
add ebx,5 ; body of loop
dec val1
jmp while ; repeat the loop

_endwhile:

while(ebx <= val1)
{

ebx = ebx + 5;
val1 = val1 - 1

}

Implement the following loop, using unsigned 32-bit
integers:

Example: IF statement nested in a loop

while(eax < ebx)
{

eax++;
if (ebx==ecx)

X=2;
else

X=3;
}

_while: cmp eax, ebx
jae _endwhile
inc eax
cmp ebx, ecx
jne _else
mov X, 2
jmp _while

_else: mov X, 3
jmp _while

_endwhile:

Table-driven selection

• Table-driven selection uses a table lookup to
replace a multiway selection structure
(switch-case statements in C)

• Create a table containing lookup values and
the offsets of labels or procedures

• Use a loop to search the table
• Suited to a large number of comparisons

Table-driven selection

.data
CaseTable BYTE 'A' ; lookup value

DWORD Process_A ; address of procedure
EntrySize = ($ - CaseTable)
BYTE 'B'
DWORD Process_B
BYTE 'C'
DWORD Process_C
BYTE 'D'
DWORD Process_D

NumberOfEntries = ($ - CaseTable) / EntrySize

Step 1: create a table containing lookup values and
procedure offsets:

Table-driven selection

mov ebx,OFFSET CaseTable ; point EBX to the table
mov ecx,NumberOfEntries ; loop counter

L1:cmp al,[ebx] ; match found?
jne L2 ; no: continue
call NEAR PTR [ebx + 1] ; yes: call the procedure
jmp L3 ; and exit the loop

L2:add ebx,EntrySize ; point to next entry
loop L1 ; repeat until ECX = 0

L3:

Step 2: Use a loop to search the table. When a match is
found, we call the procedure offset stored in the current
table entry:

required for procedure
pointers

Application: finite-state machines

• A finite-state machine (FSM) is a graph structure that
changes state based on some input. Also called a state-
transition diagram.

• We use a graph to represent an FSM, with squares or
circles called nodes, and lines with arrows between the
circles called edges (or arcs).

• A FSM is a specific instance of a more general structure
called a directed graph (or digraph).

• Three basic states, represented by nodes:

– Start state

– Terminal state(s)

– Nonterminal state(s)

Finite-state machines

• Accepts any sequence of symbols that puts it
into an accepting (final) state

• Can be used to recognize, or validate a
sequence of characters that is governed by
language rules (called a regular expression)

FSM Examples
• FSM that recognizes strings beginning with 'x',

followed by letters 'a'..'y', ending with 'z':

start 'x'

'a'..'y'

'z
'

A B

C

• FSM that recognizes signed integers:

start

digit

+,-

digit digit

A B

C

Your turn . . .

• Explain why the following FSM does not work as
well for signed integers as the one shown on
the previous slide:

start
digit

+,-A B

digit

Implementing an FSM

StateA:
call Getnext ; read next char into AL
cmp al,'+‘ ; leading + sign?
je StateB ; go to State B
cmp al,'-‘ ; leading - sign?
je StateB ; go to State B
call IsDigit ; ZF = 1 if AL = digit
jz StateC ; go to State C
call DisplayErrorMsg ; invalid input found
jmp Quit

The following is code from
State A in the Integer FSM:

start

digit

+,-

digit digit

A B

C

Isdigit
Isdigit PROC

cmp al,’0’
jb L1
cmp al,’9’
ja L1
test ax,0

L1: ret
Isdigit ENDP

Your turn

StateB:
call Getnext ; read next char into AL
call Isdigit ; ZF = 1 if AL is a digit
jz StateC
call DisplayErrorMsg ; invalid input found
jmp Quit

start

digit

+,-

digit digit

A B

C

Implementing an FSM

start

digit

+,-

digit digit

A B

C

StateC:
call Getnext ; read next char into AL
jz Quit ; quit if Enter pressed
call Isdigit ; ZF = 1 if AL is digit
jz StateC
cmp AL,ENTER_KEY ; Enter key pressed?
je Quit ; yes: quit
call DisplayErrorMsg ; no: invalid input
jmp Quit

Finite-state machine example

• [sign]integer.[integer][exponent]
sign → {+|-}
exponent → E[{+|-}]integer

High-level directives

.IF eax > ebx
mov edx,1

.ELSE
mov edx,2

.ENDIF

• .IF, .ELSE, .ELSEIF, and .ENDIF can be used to create
block-structured IF statements.

• Examples:

• MASM generates "hidden" code for you, consisting of
code labels, CMP and conditional jump instructions.

.IF eax > ebx && eax > ecx
mov edx,1

.ELSE
mov edx,2

.ENDIF

Relational and logical operators MASM-generated Code

mov eax,6
cmp eax,val1
jbe @C0001
mov result,1

@C0001:

.data
val1 DWORD 5
result DWORD ?
.code
mov eax,6
.IF eax > val1
mov result,1
.ENDIF

Generated code:

MASM automatically generates an unsigned jump (JBE).

The use of signed or unsigned comparison depends on data
type. If not defined (such as .IF eax>ebx), MASM sue
unsigned comparisons.

.REPEAT directive

; Display integers 1 – 10:

mov eax,0
.REPEAT

inc eax
call WriteDec
call Crlf

.UNTIL eax == 10

Executes the loop body before testing the loop condition
associated with the .UNTIL directive.

Example:

.WHILE directive

; Display integers 1 – 10:

mov eax,0
.WHILE eax < 10

inc eax
call WriteDec
call Crlf

.ENDW

Tests the loop condition before executing the loop body
The .ENDW directive marks the end of the loop.

Example:

