
IA-32 Architecture

Computer Organization and Assembly Languages
Yung-Yu Chuang
2006/10/30

with slides by Kip Irvine, Robert Sedgwick and Kevin Wayne

Announcements

• Midterm exam date. 11/13 (specified by school)
or 11/20?

• Open-book

Virtual machines

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Abstractions for computers

High-level language
int A[32];

i=0;
Do {

r<stdin;
if (r==0)
break;

A[i]=r;
i=i+1;

} while (1);

printr();

Virtual machines

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Abstractions for computers

compiler

Assembly language
A DUP 32

lda R1, 1
lda RA, A
lda RC, 0

read ld RD, 0xFF
bz RD, exit
add R2, RA, RC
sti RD, R2
add RC, RC, R1
bz R0, read

exit jl RF, printr
hlt

int A[32];

i=0;
Do {

r<stdin;
if (r==0)
break;

A[i]=r;
i=i+1;

} while (1);

printr();

Virtual machines

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Abstractions for computers

assembler
linker
loader

Instruction set architecture
A DUP 32

lda R1, 1
lda RA, A
lda RC, 0

read ld RD, 0xFF
bz RD, exit
add R2, RA, RC
sti RD, R2
add RC, RC, R1
bz R0, read

exit jl RF, printr
hlt

int A[32];

i=0;
Do {

r<stdin;
if (r==0)
break;

A[i]=r;
i=i+1;

} while (1);

printr();

10: C020

20: 7101
21: 7A00
22: 7C00

23: 8DFF
24: CD29
25: 12AC
26: BD02
27: 1CC1
28: C023

29: FF2B
2A: 0000

Instruction set architecture

• Machine contents at a particular place and time.
– Record of what program has done.
– Completely determines what machine will do.

0008 0005 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
8A00 8B01 1CAB 9C02 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

00:
08:
10:
18:
20:
28:
.
.
E8:
F0:
F8: 0000 0000 0000 0000 0000 0000 0000 0000

Main Memorypc
10

next
instruction

program

Registers

0000
R2

0000
R3

0000
R8

0000
R9

R0
0000
R1

0000
RA

0000
RB

0000

0000
R6

0000
R7

0000
RC

0000
RD

R4
0000
R5

0000
RE

0000
RF

0000

variables

data

Instruction set architecture

0: halt

#

1: add
2: subtract
3: and
4: xor
5: shift left
6: shift right
7: load addr

exit(0)
R[d] ← R[s] + R[t]
R[d] ← R[s] - R[t]
R[d] ← R[s] & R[t]
R[d] ← R[s] ^ R[t]
R[d] ← R[s] << R[t]
R[d] ← R[s] >> R[t]
R[d] ← addr

8: load
9: store
A: load indirect
B: store indirect
C: branch zero
D: branch positive
E: jump register
F: jump and link

R[d] ← mem[addr]
mem[addr] ← R[d]
R[d] ← mem[R[t]]
mem[R[t]] ← R[d]
if (R[d] == 0) pc ← addr
if (R[d] > 0) pc ← addr
pc ← R[d]
R[d] ← pc; pc ← addr

Operation Pseudocode
1

Fmt

1
1
1
1
1
1
2
2
2
1
1
2
2
2
2

Register 0 always 0.
Loads from mem[FF] from stdin.
Stores to mem[FF] to stdout.

Virtual machines

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Abstractions for computers

Architecture

Virtual machines

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Abstractions for computers

Gate level

Basic architecture

Basic microcomputer design

• clock synchronizes CPU operations
• control unit (CU) coordinates sequence of

execution steps
• ALU performs arithmetic and logic operations

Central Processor Unit
(CPU)

Memory Storage
Unit

registers

ALU clock

I/O
Device

#1

I/O
Device

#2

data bus

control bus

address bus

CU

Basic microcomputer design

• The memory storage unit holds instructions and
data for a running program

• A bus is a group of wires that transfer data from
one part to another (data, address, control)

Central Processor Unit
(CPU)

Memory Storage
Unit

registers

ALU clock

I/O
Device

#1

I/O
Device

#2

data bus

control bus

address bus

CU

Clock

• synchronizes all CPU and BUS operations
• machine (clock) cycle measures time of a single

operation
• clock is used to trigger events

one cycle

1

0

• Basic unit of time, 1GHz→clock cycle=1ns
• A instruction could take multiple cycles to

complete, e.g. multiply in 8088 takes 50 cycles

Instruction execution cycle

• Fetch
• Decode
• Fetch

operands
• Execute
• Store output

I-1 I-2 I-3 I-4

PC program

I-1
instruction
register

op1
op2

memory fetch

ALU

registers

w
rit

e

decode

execute

read

w
rit

e

(output)

registers

flags

program counter
instruction queue

Advanced architecture

Multi-stage pipeline

• Pipelining makes it possible for processor to
execute instructions in parallel

• Instruction execution divided into discrete stages

S1 S2 S3 S4 S5
1

C
yc

le
s

Stages
S6

2
3
4
5
6
7
8
9

10
11
12

I-1

I-2

I-1

I-2

I-1

I-2

I-1

I-2

I-1

I-2

I-1

I-2

Example of a non-
pipelined processor.
For example, 80386.
Many wasted cycles.

Pipelined execution

• More efficient use of cycles, greater throughput
of instructions: (80486 started to use pipelining)

S1 S2 S3 S4 S5
1

C
yc

le
s

Stages
S6

2
3
4
5
6
7

I-1
I-2 I-1

I-2 I-1
I-2 I-1

I-2 I-1
I-2 I-1

I-2

For k stages and
n instructions, the
number of
required cycles is:

k + (n – 1)

compared to k*n

Wasted cycles (pipelined)

• When one of the stages requires two or more
clock cycles, clock cycles are again wasted.

S1 S2 S3 S4 S5
1

C
yc

le
s

Stages

S6

2
3
4
5
6
7

I-1
I-2
I-3

I-1
I-2
I-3

I-1
I-2
I-3

I-1

I-2 I-1
I-1

8
9

I-3 I-2
I-2

exe

10
11

I-3
I-3

I-1

I-2

I-3

For k stages and n
instructions, the
number of required
cycles is:

k + (2n – 1)

Superscalar

A superscalar processor has multiple execution
pipelines. In the following, note that Stage S4
has left and right pipelines (u and v).

S1 S2 S3 u S5
1

C
yc

le
s

Stages

S6

2
3
4
5
6
7

I-1
I-2
I-3
I-4

I-1
I-2
I-3
I-4

I-1
I-2
I-3
I-4

I-1

I-3 I-1
I-2 I-1

v

I-2

I-4

S4

8
9

I-3
I-4

I-2
I-3

10 I-4

I-2

I-4

I-1

I-3

For k states and n
instructions, the
number of required
cycles is:

k + n

Pentium: 2 pipelines
Pentium Pro: 3

Reading from memory

• Multiple machine cycles are required when reading
from memory, because it responds much more slowly
than the CPU (e.g.33 MHz). The wasted clock cycles are
called wait states.

Processor ChipProcessor Chip

L1 Data
1 cycle latency

16 KB
4-way assoc

Write-through
32B lines

L1 Instruction
16 KB, 4-way

32B lines

Regs.
L2 Unified

128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

L2 Unified
128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

Main
Memory

Up to 4GB

Main
Memory

Up to 4GB

Pentium III cache hierarchy

Cache memory

• High-speed expensive static RAM both inside
and outside the CPU.
– Level-1 cache: inside the CPU
– Level-2 cache: outside the CPU

• Cache hit: when data to be read is already in
cache memory

• Cache miss: when data to be read is not in
cache memory. When? compulsory, capacity
and conflict.

• Cache design: cache size, n-way, block size,
replacement policy

Memory system in practice

Larger, slower, and
cheaper (per byte)
storage devices

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage (virtual memory)
(local disks)

remote secondary storage
(tapes, distributed file systems, Web servers)

off-chip L2
cache (SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller, faster, and
more expensive (per
byte) storage devices

How a program runs

Multitasking

• OS can run multiple programs at the same time.
• Multiple threads of execution within the same

program.
• Scheduler utility assigns a given amount of CPU

time to each running program.
• Rapid switching of tasks

– gives illusion that all programs are running at once
– the processor must support task switching
– scheduling policy, round-robin, priority

IA-32 Architecture

IA-32 architecture

• From 386 to the latest 32-bit processor, P4
• Lots of architecture improvements, pipelining,

superscalar, branch prediction and
hyperthreading.

• From programmer’s point of view, IA-32 has not
changed substantially except the introduction
of a set of high-performance instructions

Modes of operation

• Protected mode
– native mode (Windows, Linux), full features,

separate memory

• Real-address mode
– native MS-DOS

• System management mode
– power management, system security, diagnostics

• Virtual-8086 mode
• hybrid of Protected
• each program has its own 8086 computer

Addressable memory

• Protected mode
– 4 GB
– 32-bit address

• Real-address and Virtual-8086 modes
– 1 MB space
– 20-bit address

General-purpose registers

CS

SS

DS

ES

EIP

EFLAGS

16-bit Segment Registers

EAX
EBX

ECX

EDX

32-bit General-Purpose Registers

FS

GS

EBP

ESP

ESI

EDI

Named storage locations inside the CPU, optimized for
speed.

Accessing parts of registers

• Use 8-bit name, 16-bit name, or 32-bit name
• Applies to EAX, EBX, ECX, and EDX

AH AL

16 bits

8

AX

EAX

8

32 bits

8 bits + 8 bits

Index and base registers

• Some registers have only a 16-bit name for
their lower half. The 16-bit registers are usually
used only in real-address mode.

Some specialized register uses (1 of 2)

• General-Purpose
– EAX – accumulator (automatically used by division

and multiplication)
– ECX – loop counter
– ESP – stack pointer (should never be used for

arithmetic or data transfer)
– ESI, EDI – index registers (used for high-speed

memory transfer instructions)
– EBP – extended frame pointer (stack)

Some specialized register uses (2 of 2)

• Segment
– CS – code segment
– DS – data segment
– SS – stack segment
– ES, FS, GS - additional segments

• EIP – instruction pointer
• EFLAGS

– status and control flags
– each flag is a single binary bit (set or clear)

Status flags

• Carry
– unsigned arithmetic out of range

• Overflow
– signed arithmetic out of range

• Sign
– result is negative

• Zero
– result is zero

• Auxiliary Carry
– carry from bit 3 to bit 4

• Parity
– sum of 1 bits is an even number

Floating-point, MMX, XMM registers

• Eight 80-bit floating-point data
registers

– ST(0), ST(1), . . . , ST(7)

– arranged in a stack

– used for all floating-point
arithmetic

• Eight 64-bit MMX registers

• Eight 128-bit XMM registers for
single-instruction multiple-data
(SIMD) operations

ST(0)
ST(1)

ST(2)

ST(3)

ST(4)
ST(5)

ST(6)

ST(7)

IA-32 Memory Management

Real-address mode

• 1 MB RAM maximum addressable (20-bit address)
• Application programs can access any area of

memory
• Single tasking
• Supported by MS-DOS operating system

Segmented memory
Segmented memory addressing: absolute (linear) address
is a combination of a 16-bit segment value added to a 16-
bit offset

00000

10000

20000

30000

40000

50000

60000

70000

80000

90000

A0000

B0000

C0000

D0000

E0000

F0000

8000:0000

8000:FFFF

seg ofs

8000:0250

0250

lin
ea

r a
dd

r e
s s

e s

one segment

(64K)

Calculating linear addresses

• Given a segment address, multiply it by 16 (add
a hexadecimal zero), and add it to the offset

• Example: convert 08F1:0100 to a linear address

Adjusted Segment value: 0 8 F 1 0
Add the offset: 0 1 0 0
Linear address: 0 9 0 1 0

• A typical program has three segments: code,
data and stack. Segment registers CS, DS and SS
are used to store them separately.

Example

What linear address corresponds to the segment/offset
address 028F:0030?

028F0 + 0030 = 02920

Always use hexadecimal notation for addresses.

Example

What segment addresses correspond to the linear
address 28F30h?

Many different segment-offset addresses can produce
the linear address 28F30h. For example:

28F0:0030, 28F3:0000, 28B0:0430, . . .

Protected mode (1 of 2)

• 4 GB addressable RAM (32-bit address)
– (00000000 to FFFFFFFFh)

• Each program assigned a memory partition
which is protected from other programs

• Designed for multitasking
• Supported by Linux & MS-Windows

Protected mode (2 of 2)

• Segment descriptor tables
• Program structure

– code, data, and stack areas
– CS, DS, SS segment descriptors
– global descriptor table (GDT)

• MASM Programs use the Microsoft flat memory
model

Multi-segment model

• Each program has a local descriptor table (LDT)
– holds descriptor for each segment used by the program

3000

RAM

00003000

Local Descriptor Table

0002
00008000 000A
00026000 0010

base limit access

8000

26000

multiplied by

1000h

Flat segmentation model

• All segments are mapped to the entire 32-bit physical
address space, at least two, one for data and one for
code

• global descriptor table (GDT)

Paging

• Virtual memory uses disk as part of the memory,
thus allowing sum of all programs can be larger
than physical memory

• Divides each segment into 4096-byte blocks
called pages

• Page fault (supported directly by the CPU) –
issued by CPU when a page must be loaded
from disk

• Virtual memory manager (VMM) – OS utility that
manages the loading and unloading of pages

Components of an IA-32
microcomputer

Components of an IA-32 Microcomputer

• Motherboard
• Video output
• Memory
• Input-output ports

Motherboard

• CPU socket
• External cache memory slots
• Main memory slots
• BIOS chips
• Sound synthesizer chip (optional)
• Video controller chip (optional)
• IDE, parallel, serial, USB, video, keyboard,

joystick, network, and mouse connectors
• PCI bus connectors (expansion cards)

dynamic RAM

Intel 486 socket

Speaker

IDE drive connectors

mouse, keyboard,
parallel, serial, and
USB connectors

AGP slot

Batter
y

Video

Power connector

memory controller
hub

Diskette
connector

PCI slots

I/O
Controller

Firmware hub

Audio chip

Source: Intel® Desktop Board D850MD/D850MV Technical Product
Specification

Intel D850MD motherboard Video Output

• Video controller
– on motherboard, or on expansion card
– AGP (accelerated graphics port)

• Video memory (VRAM)
• Video CRT Display

– uses raster scanning
– horizontal retrace
– vertical retrace

• Direct digital LCD monitors
– no raster scanning required

Memory
• ROM

– read-only memory
• EPROM

– erasable programmable read-only memory
• Dynamic RAM (DRAM)

– inexpensive; must be refreshed constantly
• Static RAM (SRAM)

– expensive; used for cache memory; no refresh required
• Video RAM (VRAM)

– dual ported; optimized for constant video refresh
• CMOS RAM

– refreshed by a battery
– system setup information

Input-output ports
• USB (universal serial bus)

– intelligent high-speed connection to devices
– up to 12 megabits/second
– USB hub connects multiple devices
– enumeration: computer queries devices
– supports hot connections

• Parallel
– short cable, high speed
– common for printers
– bidirectional, parallel data transfer
– Intel 8255 controller chip

• Serial
– RS-232 serial port
– one bit at a time
– used for long cables and modems
– 16550 UART (universal asynchronous receiver transmitter)
– programmable in assembly language

Intel microprocessor history

Early Intel microprocessors

• Intel 8080
– 64K addressable RAM
– 8-bit registers
– CP/M operating system
– 5,6,8,10 MHz
– 29K transistros

• Intel 8086/8088 (1978)
– IBM-PC used 8088
– 1 MB addressable RAM
– 16-bit registers
– 16-bit data bus (8-bit for 8088)
– separate floating-point unit (8087)
– used in low-cost microcontrollers now

The IBM-AT

• Intel 80286 (1982)
– 16 MB addressable RAM
– Protected memory
– several times faster than 8086
– introduced IDE bus architecture
– 80287 floating point unit
– Up to 20MHz
– 134K transistors

Intel IA-32 Family

• Intel386 (1985)
– 4 GB addressable RAM
– 32-bit registers
– paging (virtual memory)
– Up to 33MHz

• Intel486 (1989)
– instruction pipelining
– Integrated FPU
– 8K cache

• Pentium (1993)
– Superscalar (two parallel pipelines)

Intel P6 Family
• Pentium Pro (1995)

– advanced optimization techniques in microcode
– More pipeline stages
– On-board L2 cache

• Pentium II (1997)
– MMX (multimedia) instruction set
– Up to 450MHz

• Pentium III (1999)
– SIMD (streaming extensions) instructions (SSE)
– Up to 1+GHz

• Pentium 4 (2000)
– NetBurst micro-architecture, tuned for multimedia
– 3.8+GHz

• Pentium D (Dual core)

CISC and RISC

• CISC – complex instruction set
– large instruction set
– high-level operations (simpler for compiler?)
– requires microcode interpreter (could take a long time)
– examples: Intel 80x86 family

• RISC – reduced instruction set
– small instruction set
– simple, atomic instructions
– directly executed by hardware very quickly
– easier to incorporate advanced architecture design
– examples:

• ARM (Advanced RISC Machines)
• DEC Alpha (now Compaq)

